• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /* @(#)e_log10.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #include <sys/cdefs.h>
15 __FBSDID("$FreeBSD$");
16 
17 /*
18  * Return the base 2 logarithm of x.  See e_log.c and k_log.h for most
19  * comments.
20  *
21  * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
22  * then does the combining and scaling steps
23  *    log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
24  * in not-quite-routine extra precision.
25  */
26 
27 #include <float.h>
28 
29 #include "math.h"
30 #include "math_private.h"
31 #include "k_log.h"
32 
33 static const double
34 two54      =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
35 ivln2hi    =  1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
36 ivln2lo    =  1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
37 
38 static const double zero   =  0.0;
39 static volatile double vzero = 0.0;
40 
41 double
__ieee754_log2(double x)42 __ieee754_log2(double x)
43 {
44 	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
45 	int32_t i,k,hx;
46 	u_int32_t lx;
47 
48 	EXTRACT_WORDS(hx,lx,x);
49 
50 	k=0;
51 	if (hx < 0x00100000) {			/* x < 2**-1022  */
52 	    if (((hx&0x7fffffff)|lx)==0)
53 		return -two54/vzero;		/* log(+-0)=-inf */
54 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
55 	    k -= 54; x *= two54; /* subnormal number, scale up x */
56 	    GET_HIGH_WORD(hx,x);
57 	}
58 	if (hx >= 0x7ff00000) return x+x;
59 	if (hx == 0x3ff00000 && lx == 0)
60 	    return zero;			/* log(1) = +0 */
61 	k += (hx>>20)-1023;
62 	hx &= 0x000fffff;
63 	i = (hx+0x95f64)&0x100000;
64 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
65 	k += (i>>20);
66 	y = (double)k;
67 	f = x - 1.0;
68 	hfsq = 0.5*f*f;
69 	r = k_log1p(f);
70 
71 	/*
72 	 * f-hfsq must (for args near 1) be evaluated in extra precision
73 	 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
74 	 * This is fairly efficient since f-hfsq only depends on f, so can
75 	 * be evaluated in parallel with R.  Not combining hfsq with R also
76 	 * keeps R small (though not as small as a true `lo' term would be),
77 	 * so that extra precision is not needed for terms involving R.
78 	 *
79 	 * Compiler bugs involving extra precision used to break Dekker's
80 	 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
81 	 * or the multi-precision calculations were avoided when double_t
82 	 * has extra precision.  These problems are now automatically
83 	 * avoided as a side effect of the optimization of combining the
84 	 * Dekker splitting step with the clear-low-bits step.
85 	 *
86 	 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
87 	 * precision to avoid a very large cancellation when x is very near
88 	 * these values.  Unlike the above cancellations, this problem is
89 	 * specific to base 2.  It is strange that adding +-1 is so much
90 	 * harder than adding +-ln2 or +-log10_2.
91 	 *
92 	 * This uses Dekker's theorem to normalize y+val_hi, so the
93 	 * compiler bugs are back in some configurations, sigh.  And I
94 	 * don't want to used double_t to avoid them, since that gives a
95 	 * pessimization and the support for avoiding the pessimization
96 	 * is not yet available.
97 	 *
98 	 * The multi-precision calculations for the multiplications are
99 	 * routine.
100 	 */
101 	hi = f - hfsq;
102 	SET_LOW_WORD(hi,0);
103 	lo = (f - hi) - hfsq + r;
104 	val_hi = hi*ivln2hi;
105 	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
106 
107 	/* spadd(val_hi, val_lo, y), except for not using double_t: */
108 	w = y + val_hi;
109 	val_lo += (y - w) + val_hi;
110 	val_hi = w;
111 
112 	return val_lo + val_hi;
113 }
114 
115 #if (LDBL_MANT_DIG == 53)
116 #define __weak_reference(sym,alias) \
117     __asm__(".weak " #alias); \
118     __asm__(".equ "  #alias ", " #sym)
119 __weak_reference(log2, log2l);
120 #endif
121