1 /*
2 * Copyright (c) 2012, The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 * * Neither the name of Google, Inc. nor the names of its contributors
15 * may be used to endorse or promote products derived from this
16 * software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <unistd.h>
35
36 #define MAX_BUF_SIZE 64
37
38 struct freq_info {
39 unsigned freq;
40 long unsigned time;
41 };
42
43 struct cpu_info {
44 long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime;
45 struct freq_info *freqs;
46 int freq_count;
47 };
48
49 #define die(...) { fprintf(stderr, __VA_ARGS__); exit(EXIT_FAILURE); }
50
51 static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus;
52 static int cpu_count, delay, iterations;
53 static char minimal, aggregate_freq_stats;
54
55 static int get_cpu_count();
56 static int get_cpu_count_from_file(char *filename);
57 static long unsigned get_cpu_total_time(struct cpu_info *cpu);
58 static int get_freq_scales_count(int cpu);
59 static void print_stats();
60 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
61 char print_freq);
62 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu);
63 static void read_stats();
64 static void read_freq_stats(int cpu);
65 static char should_aggregate_freq_stats();
66 static char should_print_freq_stats();
67 static void usage(char *cmd);
68
main(int argc,char * argv[])69 int main(int argc, char *argv[]) {
70 struct cpu_info *tmp_cpus, tmp_total_cpu;
71 int i, freq_count;
72
73 delay = 3;
74 iterations = -1;
75 minimal = 0;
76 aggregate_freq_stats = 0;
77
78 for (i = 0; i < argc; i++) {
79 if (!strcmp(argv[i], "-n")) {
80 if (i + 1 >= argc) {
81 fprintf(stderr, "Option -n expects an argument.\n");
82 usage(argv[0]);
83 exit(EXIT_FAILURE);
84 }
85 iterations = atoi(argv[++i]);
86 continue;
87 }
88 if (!strcmp(argv[i], "-d")) {
89 if (i + 1 >= argc) {
90 fprintf(stderr, "Option -d expects an argument.\n");
91 usage(argv[0]);
92 exit(EXIT_FAILURE);
93 }
94 delay = atoi(argv[++i]);
95 continue;
96 }
97 if (!strcmp(argv[i], "-m")) {
98 minimal = 1;
99 }
100 if (!strcmp(argv[i], "-h")) {
101 usage(argv[0]);
102 exit(EXIT_SUCCESS);
103 }
104 }
105
106 cpu_count = get_cpu_count();
107
108 old_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
109 if (!old_cpus) die("Could not allocate struct cpu_info\n");
110 new_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
111 if (!new_cpus) die("Could not allocate struct cpu_info\n");
112
113 for (i = 0; i < cpu_count; i++) {
114 old_cpus[i].freq_count = new_cpus[i].freq_count = get_freq_scales_count(i);
115 new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count);
116 if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n");
117 old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count);
118 if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n");
119 }
120
121 // Read stats without aggregating freq stats in the total cpu
122 read_stats();
123
124 aggregate_freq_stats = should_aggregate_freq_stats();
125 if (aggregate_freq_stats) {
126 old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count;
127 new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count);
128 if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n");
129 old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count);
130 if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n");
131
132 // Read stats again with aggregating freq stats in the total cpu
133 read_stats();
134 }
135
136 while ((iterations == -1) || (iterations-- > 0)) {
137 // Swap new and old cpu buffers;
138 tmp_total_cpu = old_total_cpu;
139 old_total_cpu = new_total_cpu;
140 new_total_cpu = tmp_total_cpu;
141
142 tmp_cpus = old_cpus;
143 old_cpus = new_cpus;
144 new_cpus = tmp_cpus;
145
146 sleep(delay);
147 read_stats();
148 print_stats();
149 }
150
151 // Clean up
152 if (aggregate_freq_stats) {
153 free(new_total_cpu.freqs);
154 free(old_total_cpu.freqs);
155 }
156 for (i = 0; i < cpu_count; i++) {
157 free(new_cpus[i].freqs);
158 free(old_cpus[i].freqs);
159 }
160 free(new_cpus);
161 free(old_cpus);
162
163 return 0;
164 }
165
166 /*
167 * Get the number of CPUs of the system.
168 *
169 * Uses the two files /sys/devices/system/cpu/present and
170 * /sys/devices/system/cpu/online to determine the number of CPUs. Expects the
171 * format of both files to be either 0 or 0-N where N+1 is the number of CPUs.
172 *
173 * Exits if the present CPUs is not equal to the online CPUs
174 */
get_cpu_count()175 static int get_cpu_count() {
176 int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present");
177 if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) {
178 die("present cpus != online cpus\n");
179 }
180 return cpu_count;
181 }
182
183 /*
184 * Get the number of CPUs from a given filename.
185 */
get_cpu_count_from_file(char * filename)186 static int get_cpu_count_from_file(char *filename) {
187 FILE *file;
188 char line[MAX_BUF_SIZE];
189 int cpu_count;
190
191 file = fopen(filename, "r");
192 if (!file) die("Could not open %s\n", filename);
193 if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename);
194 fclose(file);
195
196 if (strcmp(line, "0\n") == 0) {
197 return 1;
198 }
199
200 if (1 == sscanf(line, "0-%d\n", &cpu_count)) {
201 return cpu_count + 1;
202 }
203
204 die("Unexpected input in file %s (%s).\n", filename, line);
205 return -1;
206 }
207
208 /*
209 * Get the number of frequency states a given CPU can be scaled to.
210 */
get_freq_scales_count(int cpu)211 static int get_freq_scales_count(int cpu) {
212 FILE *file;
213 char filename[MAX_BUF_SIZE];
214 long unsigned freq;
215 int count = 0;
216
217 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
218 file = fopen(filename, "r");
219 if (!file) die("Could not open %s\n", filename);
220 do {
221 freq = 0;
222 fscanf(file, "%lu %*d\n", &freq);
223 if (freq) count++;
224 } while(freq);
225 fclose(file);
226
227 return count;
228 }
229
230 /*
231 * Read the CPU and frequency stats for all cpus.
232 */
read_stats()233 static void read_stats() {
234 FILE *file;
235 char scanline[MAX_BUF_SIZE];
236 int i;
237
238 file = fopen("/proc/stat", "r");
239 if (!file) die("Could not open /proc/stat.\n");
240 fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n",
241 &new_total_cpu.utime, &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime,
242 &new_total_cpu.iowtime, &new_total_cpu.irqtime, &new_total_cpu.sirqtime);
243 if (aggregate_freq_stats) {
244 for (i = 0; i < new_total_cpu.freq_count; i++) {
245 new_total_cpu.freqs[i].time = 0;
246 }
247 }
248
249 for (i = 0; i < cpu_count; i++) {
250 sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i);
251 fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime,
252 &new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime,
253 &new_cpus[i].sirqtime);
254 read_freq_stats(i);
255 }
256 fclose(file);
257 }
258
259 /*
260 * Read the frequency stats for a given cpu.
261 */
read_freq_stats(int cpu)262 static void read_freq_stats(int cpu) {
263 FILE *file;
264 char filename[MAX_BUF_SIZE];
265 int i;
266
267 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
268 file = fopen(filename, "r");
269 if (!file) die("Could not open %s\n", filename);
270 for (i = 0; i < new_cpus[cpu].freq_count; i++) {
271 fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq,
272 &new_cpus[cpu].freqs[i].time);
273 if (aggregate_freq_stats) {
274 new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq;
275 new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time;
276 }
277 }
278 fclose(file);
279 }
280
281 /*
282 * Get the sum of the cpu time from all categories.
283 */
get_cpu_total_time(struct cpu_info * cpu)284 static long unsigned get_cpu_total_time(struct cpu_info *cpu) {
285 return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime +
286 cpu->sirqtime);
287 }
288
289 /*
290 * Print the stats for all CPUs.
291 */
print_stats()292 static void print_stats() {
293 char label[8];
294 int i, j;
295 char print_freq;
296
297 print_freq = should_print_freq_stats();
298
299 print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1);
300 for (i = 0; i < cpu_count; i++) {
301 sprintf(label, "cpu%d", i);
302 print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq);
303 }
304 printf("\n");
305 }
306
307 /*
308 * Print the stats for a single CPU.
309 */
print_cpu_stats(char * label,struct cpu_info * new_cpu,struct cpu_info * old_cpu,char print_freq)310 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
311 char print_freq) {
312 long int total_delta_time;
313
314 if (!minimal) {
315 total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu);
316 printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = "
317 "%ld\n", label,
318 new_cpu->utime - old_cpu->utime,
319 new_cpu->ntime - old_cpu->ntime,
320 new_cpu->stime - old_cpu->stime,
321 new_cpu->itime - old_cpu->itime,
322 new_cpu->iowtime - old_cpu->iowtime,
323 new_cpu->irqtime - old_cpu->irqtime,
324 new_cpu->sirqtime - old_cpu->sirqtime,
325 total_delta_time);
326 if (print_freq) {
327 print_freq_stats(new_cpu, old_cpu);
328 }
329 } else {
330 printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label,
331 new_cpu->utime - old_cpu->utime,
332 new_cpu->ntime - old_cpu->ntime,
333 new_cpu->stime - old_cpu->stime,
334 new_cpu->itime - old_cpu->itime,
335 new_cpu->iowtime - old_cpu->iowtime,
336 new_cpu->irqtime - old_cpu->irqtime,
337 new_cpu->sirqtime - old_cpu->sirqtime);
338 print_freq_stats(new_cpu, old_cpu);
339 printf("\n");
340 }
341 }
342
343 /*
344 * Print the CPU stats for a single CPU.
345 */
print_freq_stats(struct cpu_info * new_cpu,struct cpu_info * old_cpu)346 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu) {
347 long int delta_time, total_delta_time;
348 int i;
349
350 if (new_cpu->freq_count > 0) {
351 if (!minimal) {
352 total_delta_time = 0;
353 printf(" ");
354 for (i = 0; i < new_cpu->freq_count; i++) {
355 delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time;
356 total_delta_time += delta_time;
357 printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time);
358 if (i + 1 != new_cpu->freq_count) {
359 printf(" + \n ");
360 } else {
361 printf(" = ");
362 }
363 }
364 printf("%ld\n", total_delta_time);
365 } else {
366 for (i = 0; i < new_cpu->freq_count; i++) {
367 printf(",%u,%ld", new_cpu->freqs[i].freq,
368 new_cpu->freqs[i].time - old_cpu->freqs[i].time);
369 }
370 }
371 }
372 }
373
374 /*
375 * Determine if frequency stats should be printed.
376 *
377 * If the frequency stats are different between CPUs, the stats should be
378 * printed for each CPU, else only the aggregate frequency stats should be
379 * printed.
380 */
should_print_freq_stats()381 static char should_print_freq_stats() {
382 int i, j;
383
384 for (i = 1; i < cpu_count; i++) {
385 for (j = 0; j < new_cpus[i].freq_count; j++) {
386 if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time !=
387 new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) {
388 return 1;
389 }
390 }
391 }
392 return 0;
393 }
394
395 /*
396 * Determine if the frequency stats should be aggregated.
397 *
398 * Only aggregate the frequency stats in the total cpu stats if the frequencies
399 * reported by all CPUs are identical. Must be called after read_stats() has
400 * been called once.
401 */
should_aggregate_freq_stats()402 static char should_aggregate_freq_stats() {
403 int i, j;
404
405 for (i = 1; i < cpu_count; i++) {
406 if (new_cpus[i].freq_count != new_cpus[0].freq_count) {
407 return 0;
408 }
409 for (j = 0; j < new_cpus[i].freq_count; j++) {
410 if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) {
411 return 0;
412 }
413 }
414 }
415
416 return 1;
417 }
418
419 /*
420 * Print the usage message.
421 */
usage(char * cmd)422 static void usage(char *cmd) {
423 fprintf(stderr, "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n"
424 " -n num Updates to show before exiting.\n"
425 " -d num Seconds to wait between updates.\n"
426 " -m Display minimal output.\n"
427 " -h Display this help screen.\n",
428 cmd);
429 }
430