1 /*
2 ** Copyright 2010 The Android Open Source Project
3 **
4 ** Licensed under the Apache License, Version 2.0 (the "License");
5 ** you may not use this file except in compliance with the License.
6 ** You may obtain a copy of the License at
7 **
8 ** http://www.apache.org/licenses/LICENSE-2.0
9 **
10 ** Unless required by applicable law or agreed to in writing, software
11 ** distributed under the License is distributed on an "AS IS" BASIS,
12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 ** See the License for the specific language governing permissions and
14 ** limitations under the License.
15 */
16
17 /*
18 * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
19 */
20
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <ctype.h>
24 #include <math.h>
25 #include <sched.h>
26 #include <sys/resource.h>
27 #include <time.h>
28 #include <unistd.h>
29
30 // The default size of data that will be manipulated in each iteration of
31 // a memory benchmark. Can be modified with the --data_size option.
32 #define DEFAULT_DATA_SIZE 1000000000
33
34 // The amount of memory allocated for the cold benchmarks to use.
35 #define DEFAULT_COLD_DATA_SIZE 128*1024*1024
36
37 // The default size of the stride between each buffer for cold benchmarks.
38 #define DEFAULT_COLD_STRIDE_SIZE 4096
39
40 // Number of nanoseconds in a second.
41 #define NS_PER_SEC 1000000000
42
43 // The maximum number of arguments that a benchmark will accept.
44 #define MAX_ARGS 2
45
46 // Default memory alignment of malloc.
47 #define DEFAULT_MALLOC_MEMORY_ALIGNMENT 8
48
49 // Contains information about benchmark options.
50 typedef struct {
51 bool print_average;
52 bool print_each_iter;
53
54 int dst_align;
55 int dst_or_mask;
56 int src_align;
57 int src_or_mask;
58
59 int cpu_to_lock;
60
61 int data_size;
62 int dst_str_size;
63 int cold_data_size;
64 int cold_stride_size;
65
66 int args[MAX_ARGS];
67 int num_args;
68 } command_data_t;
69
70 typedef void *(*void_func_t)();
71 typedef void *(*memcpy_func_t)(void *, const void *, size_t);
72 typedef void *(*memset_func_t)(void *, int, size_t);
73 typedef int (*strcmp_func_t)(const char *, const char *);
74 typedef char *(*str_func_t)(char *, const char *);
75 typedef size_t (*strlen_func_t)(const char *);
76
77 // Struct that contains a mapping of benchmark name to benchmark function.
78 typedef struct {
79 const char *name;
80 int (*ptr)(const char *, const command_data_t &, void_func_t func);
81 void_func_t func;
82 } function_t;
83
84 // Get the current time in nanoseconds.
nanoTime()85 uint64_t nanoTime() {
86 struct timespec t;
87
88 t.tv_sec = t.tv_nsec = 0;
89 clock_gettime(CLOCK_MONOTONIC, &t);
90 return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
91 }
92
93 // Allocate memory with a specific alignment and return that pointer.
94 // This function assumes an alignment value that is a power of 2.
95 // If the alignment is 0, then use the pointer returned by malloc.
getAlignedMemory(uint8_t * orig_ptr,int alignment,int or_mask)96 uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
97 uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
98 if (alignment > 0) {
99 // When setting the alignment, set it to exactly the alignment chosen.
100 // The pointer returned will be guaranteed not to be aligned to anything
101 // more than that.
102 ptr += alignment - (ptr & (alignment - 1));
103 ptr |= alignment | or_mask;
104 }
105
106 return reinterpret_cast<uint8_t*>(ptr);
107 }
108
109 // Allocate memory with a specific alignment and return that pointer.
110 // This function assumes an alignment value that is a power of 2.
111 // If the alignment is 0, then use the pointer returned by malloc.
allocateAlignedMemory(size_t size,int alignment,int or_mask)112 uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
113 uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
114 if (!ptr)
115 return NULL;
116 return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
117 }
118
initString(uint8_t * buf,size_t size)119 void initString(uint8_t *buf, size_t size) {
120 for (size_t i = 0; i < size - 1; i++) {
121 buf[i] = static_cast<char>(32 + (i % 96));
122 }
123 buf[size-1] = '\0';
124 }
125
computeAverage(uint64_t time_ns,size_t size,size_t copies)126 static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
127 return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
128 }
129
computeRunningAvg(double avg,double running_avg,size_t cur_idx)130 static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
131 return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
132 }
133
computeRunningSquareAvg(double avg,double square_avg,size_t cur_idx)134 static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
135 return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
136 }
137
computeStdDev(double square_avg,double running_avg)138 static inline double computeStdDev(double square_avg, double running_avg) {
139 return sqrt(square_avg - running_avg * running_avg);
140 }
141
printIter(uint64_t time_ns,const char * name,size_t size,size_t copies,double avg)142 static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
143 printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n",
144 name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
145 }
146
printSummary(uint64_t,const char * name,size_t size,size_t copies,double running_avg,double std_dev,double min,double max)147 static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
148 printf(" %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
149 name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
150 max/1024.0);
151 }
152
153 // For the cold benchmarks, a large buffer will be created which
154 // contains many "size" buffers. This function will figure out the increment
155 // needed between each buffer so that each one is aligned to "alignment".
getAlignmentIncrement(size_t size,int alignment)156 int getAlignmentIncrement(size_t size, int alignment) {
157 if (alignment == 0) {
158 alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
159 }
160 alignment *= 2;
161 return size + alignment - (size % alignment);
162 }
163
getColdBuffer(int num_buffers,size_t incr,int alignment,int or_mask)164 uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
165 uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
166 if (!buffers) {
167 return NULL;
168 }
169 return getAlignedMemory(buffers, alignment, or_mask);
170 }
171
computeColdAverage(uint64_t time_ns,size_t size,size_t copies,size_t num_buffers)172 static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
173 return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
174 }
175
printColdIter(uint64_t time_ns,const char * name,size_t size,size_t copies,size_t num_buffers,double avg)176 static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
177 printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n",
178 name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
179 }
180
printColdSummary(uint64_t,const char * name,size_t size,size_t copies,size_t num_buffers,double running_avg,double square_avg,double min,double max)181 static void inline printColdSummary(
182 uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers,
183 double running_avg, double square_avg, double min, double max) {
184 printf(" %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
185 name, copies, num_buffers, size, running_avg/1024.0,
186 computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
187 }
188
189 #define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
190 uint64_t time_ns; \
191 int iters = cmd_data.args[1]; \
192 bool print_average = cmd_data.print_average; \
193 bool print_each_iter = cmd_data.print_each_iter; \
194 double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
195 double avg; \
196 for (int i = 0; iters == -1 || i < iters; i++) { \
197 time_ns = nanoTime(); \
198 BENCH; \
199 time_ns = nanoTime() - time_ns; \
200 avg = COMPUTE_AVG; \
201 if (print_average) { \
202 running_avg = computeRunningAvg(avg, running_avg, i); \
203 square_avg = computeRunningSquareAvg(avg, square_avg, i); \
204 if (min == 0.0 || avg < min) { \
205 min = avg; \
206 } \
207 if (avg > max) { \
208 max = avg; \
209 } \
210 } \
211 if (print_each_iter) { \
212 PRINT_ITER; \
213 } \
214 } \
215 if (print_average) { \
216 PRINT_AVG; \
217 }
218
219 #define MAINLOOP_DATA(name, cmd_data, size, BENCH) \
220 size_t copies = cmd_data.data_size/size; \
221 size_t j; \
222 MAINLOOP(cmd_data, \
223 for (j = 0; j < copies; j++) { \
224 BENCH; \
225 }, \
226 computeAverage(time_ns, size, copies), \
227 printIter(time_ns, name, size, copies, avg), \
228 double std_dev = computeStdDev(square_avg, running_avg); \
229 printSummary(time_ns, name, size, copies, running_avg, \
230 std_dev, min, max));
231
232 #define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH) \
233 size_t num_strides = num_buffers / num_incrs; \
234 if ((num_buffers % num_incrs) != 0) { \
235 num_strides--; \
236 } \
237 size_t copies = 1; \
238 num_buffers = num_incrs * num_strides; \
239 if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) { \
240 copies = cmd_data.data_size / (num_buffers * size); \
241 } \
242 if (num_strides == 0) { \
243 printf("%s: Chosen options lead to no copies, aborting.\n", name); \
244 return -1; \
245 } \
246 size_t j, k; \
247 MAINLOOP(cmd_data, \
248 for (j = 0; j < copies; j++) { \
249 for (k = 0; k < num_incrs; k++) { \
250 BENCH; \
251 } \
252 }, \
253 computeColdAverage(time_ns, size, copies, num_buffers), \
254 printColdIter(time_ns, name, size, copies, num_buffers, avg), \
255 printColdSummary(time_ns, name, size, copies, num_buffers, \
256 running_avg, square_avg, min, max));
257
258 // This version of the macro creates a single buffer of the given size and
259 // alignment. The variable "buf" will be a pointer to the buffer and should
260 // be used by the BENCH code.
261 // INIT - Any specialized code needed to initialize the data. This will only
262 // be executed once.
263 // BENCH - The actual code to benchmark and is timed.
264 #define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH) \
265 size_t size = cmd_data.args[0]; \
266 uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \
267 if (!buf) \
268 return -1; \
269 INIT; \
270 MAINLOOP_DATA(name, cmd_data, size, BENCH);
271
272 // This version of the macro creates two buffers of the given sizes and
273 // alignments. The variables "buf1" and "buf2" will be pointers to the
274 // buffers and should be used by the BENCH code.
275 // INIT - Any specialized code needed to initialize the data. This will only
276 // be executed once.
277 // BENCH - The actual code to benchmark and is timed.
278 #define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH) \
279 size_t size = cmd_data.args[0]; \
280 uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \
281 if (!buf1) \
282 return -1; \
283 size_t total_size = size; \
284 if (cmd_data.dst_str_size > 0) \
285 total_size += cmd_data.dst_str_size; \
286 uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \
287 if (!buf2) \
288 return -1; \
289 INIT; \
290 MAINLOOP_DATA(name, cmd_data, size, BENCH);
291
292 // This version of the macro attempts to benchmark code when the data
293 // being manipulated is not in the cache, thus the cache is cold. It does
294 // this by creating a single large buffer that is designed to be larger than
295 // the largest cache in the system. The variable "buf" will be one slice
296 // of the buffer that the BENCH code should use that is of the correct size
297 // and alignment. In order to avoid any algorithms that prefetch past the end
298 // of their "buf" and into the next sequential buffer, the code strides
299 // through the buffer. Specifically, as "buf" values are iterated in BENCH
300 // code, the end of "buf" is guaranteed to be at least "stride_size" away
301 // from the next "buf".
302 // INIT - Any specialized code needed to initialize the data. This will only
303 // be executed once.
304 // BENCH - The actual code to benchmark and is timed.
305 #define COLD_ONE_BUF(name, cmd_data, INIT, BENCH) \
306 size_t size = cmd_data.args[0]; \
307 size_t incr = getAlignmentIncrement(size, cmd_data.dst_align); \
308 size_t num_buffers = cmd_data.cold_data_size / incr; \
309 size_t buffer_size = num_buffers * incr; \
310 uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
311 if (!buffer) \
312 return -1; \
313 size_t num_incrs = cmd_data.cold_stride_size / incr + 1; \
314 size_t stride_incr = incr * num_incrs; \
315 uint8_t *buf; \
316 size_t l; \
317 INIT; \
318 MAINLOOP_COLD(name, cmd_data, size, num_incrs, \
319 buf = buffer + k * incr; \
320 for (l = 0; l < num_strides; l++) { \
321 BENCH; \
322 buf += stride_incr; \
323 });
324
325 // This version of the macro attempts to benchmark code when the data
326 // being manipulated is not in the cache, thus the cache is cold. It does
327 // this by creating two large buffers each of which is designed to be
328 // larger than the largest cache in the system. Two variables "buf1" and
329 // "buf2" will be the two buffers that BENCH code should use. In order
330 // to avoid any algorithms that prefetch past the end of either "buf1"
331 // or "buf2" and into the next sequential buffer, the code strides through
332 // both buffers. Specifically, as "buf1" and "buf2" values are iterated in
333 // BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
334 // "stride_size" away from the next "buf1" and "buf2".
335 // INIT - Any specialized code needed to initialize the data. This will only
336 // be executed once.
337 // BENCH - The actual code to benchmark and is timed.
338 #define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH) \
339 size_t size = cmd_data.args[0]; \
340 size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align); \
341 size_t total_size = size; \
342 if (cmd_data.dst_str_size > 0) \
343 total_size += cmd_data.dst_str_size; \
344 size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \
345 size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr; \
346 size_t num_buffers = cmd_data.cold_data_size / max_incr; \
347 size_t buffer1_size = num_buffers * buf1_incr; \
348 size_t buffer2_size = num_buffers * buf2_incr; \
349 uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \
350 if (!buffer1) \
351 return -1; \
352 uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
353 if (!buffer2) \
354 return -1; \
355 size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr; \
356 size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1; \
357 size_t buf1_stride_incr = buf1_incr * num_incrs; \
358 size_t buf2_stride_incr = buf2_incr * num_incrs; \
359 size_t l; \
360 uint8_t *buf1; \
361 uint8_t *buf2; \
362 INIT; \
363 MAINLOOP_COLD(name, cmd_data, size, num_incrs, \
364 buf1 = buffer1 + k * buf1_incr; \
365 buf2 = buffer2 + k * buf2_incr; \
366 for (l = 0; l < num_strides; l++) { \
367 BENCH; \
368 buf1 += buf1_stride_incr; \
369 buf2 += buf2_stride_incr; \
370 });
371
benchmarkSleep(const char *,const command_data_t & cmd_data,void_func_t)372 int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
373 int delay = cmd_data.args[0];
374 MAINLOOP(cmd_data, sleep(delay),
375 (double)time_ns/NS_PER_SEC,
376 printf("sleep(%d) took %.06f seconds\n", delay, avg);,
377 printf(" sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
378 delay, running_avg, computeStdDev(square_avg, running_avg), \
379 min, max));
380
381 return 0;
382 }
383
benchmarkCpu(const char *,const command_data_t & cmd_data,void_func_t)384 int benchmarkCpu(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
385 // Use volatile so that the loop is not optimized away by the compiler.
386 volatile int cpu_foo;
387
388 MAINLOOP(cmd_data,
389 for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++),
390 (double)time_ns/NS_PER_SEC,
391 printf("cpu took %.06f seconds\n", avg),
392 printf(" cpu average %.06f seconds std dev %f min %0.6f seconds max %0.6f seconds\n", \
393 running_avg, computeStdDev(square_avg, running_avg), min, max));
394
395 return 0;
396 }
397
benchmarkMemset(const char * name,const command_data_t & cmd_data,void_func_t func)398 int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
399 memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
400 BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));
401
402 return 0;
403 }
404
benchmarkMemsetCold(const char * name,const command_data_t & cmd_data,void_func_t func)405 int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
406 memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
407 COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));
408
409 return 0;
410 }
411
benchmarkMemcpy(const char * name,const command_data_t & cmd_data,void_func_t func)412 int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
413 memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
414
415 BENCH_TWO_BUFS(name, cmd_data,
416 memset(buf1, 0xff, size); \
417 memset(buf2, 0, size),
418 memcpy_func(buf2, buf1, size));
419
420 return 0;
421 }
422
benchmarkMemcpyCold(const char * name,const command_data_t & cmd_data,void_func_t func)423 int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
424 memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
425
426 COLD_TWO_BUFS(name, cmd_data,
427 memset(buffer1, 0xff, buffer1_size); \
428 memset(buffer2, 0x0, buffer2_size),
429 memcpy_func(buf2, buf1, size));
430
431 return 0;
432 }
433
benchmarkMemread(const char * name,const command_data_t & cmd_data,void_func_t)434 int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) {
435 int size = cmd_data.args[0];
436
437 uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
438 if (!src)
439 return -1;
440 memset(src, 0xff, size);
441
442 // Use volatile so the compiler does not optimize away the reads.
443 volatile int foo;
444 size_t k;
445 MAINLOOP_DATA(name, cmd_data, size,
446 for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);
447
448 return 0;
449 }
450
benchmarkStrcmp(const char * name,const command_data_t & cmd_data,void_func_t func)451 int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
452 strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
453
454 int retval;
455 BENCH_TWO_BUFS(name, cmd_data,
456 initString(buf1, size); \
457 initString(buf2, size),
458 retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
459 if (retval != 0) printf("%s failed, return value %d\n", name, retval));
460
461 return 0;
462 }
463
benchmarkStrcmpCold(const char * name,const command_data_t & cmd_data,void_func_t func)464 int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
465 strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
466
467 int retval;
468 COLD_TWO_BUFS(name, cmd_data,
469 memset(buffer1, 'a', buffer1_size); \
470 memset(buffer2, 'a', buffer2_size); \
471 for (size_t i =0; i < num_buffers; i++) { \
472 buffer1[size-1+buf1_incr*i] = '\0'; \
473 buffer2[size-1+buf2_incr*i] = '\0'; \
474 },
475 retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
476 if (retval != 0) printf("%s failed, return value %d\n", name, retval));
477
478 return 0;
479 }
480
benchmarkStrlen(const char * name,const command_data_t & cmd_data,void_func_t func)481 int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
482 size_t real_size;
483 strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
484 BENCH_ONE_BUF(name, cmd_data,
485 initString(buf, size),
486 real_size = strlen_func(reinterpret_cast<char*>(buf)); \
487 if (real_size + 1 != size) { \
488 printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
489 return -1; \
490 });
491
492 return 0;
493 }
494
benchmarkStrlenCold(const char * name,const command_data_t & cmd_data,void_func_t func)495 int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
496 strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
497 size_t real_size;
498 COLD_ONE_BUF(name, cmd_data,
499 memset(buffer, 'a', buffer_size); \
500 for (size_t i = 0; i < num_buffers; i++) { \
501 buffer[size-1+incr*i] = '\0'; \
502 },
503 real_size = strlen_func(reinterpret_cast<char*>(buf)); \
504 if (real_size + 1 != size) { \
505 printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
506 return -1; \
507 });
508 return 0;
509 }
510
benchmarkStrcat(const char * name,const command_data_t & cmd_data,void_func_t func)511 int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
512 str_func_t str_func = reinterpret_cast<str_func_t>(func);
513
514 int dst_str_size = cmd_data.dst_str_size;
515 if (dst_str_size <= 0) {
516 printf("%s requires --dst_str_size to be set to a non-zero value.\n",
517 name);
518 return -1;
519 }
520 BENCH_TWO_BUFS(name, cmd_data,
521 initString(buf1, size); \
522 initString(buf2, dst_str_size),
523 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
524
525 return 0;
526 }
527
benchmarkStrcatCold(const char * name,const command_data_t & cmd_data,void_func_t func)528 int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
529 str_func_t str_func = reinterpret_cast<str_func_t>(func);
530
531 int dst_str_size = cmd_data.dst_str_size;
532 if (dst_str_size <= 0) {
533 printf("%s requires --dst_str_size to be set to a non-zero value.\n",
534 name);
535 return -1;
536 }
537 COLD_TWO_BUFS(name, cmd_data,
538 memset(buffer1, 'a', buffer1_size); \
539 memset(buffer2, 'b', buffer2_size); \
540 for (size_t i = 0; i < num_buffers; i++) { \
541 buffer1[size-1+buf1_incr*i] = '\0'; \
542 buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
543 },
544 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
545
546 return 0;
547 }
548
549
benchmarkStrcpy(const char * name,const command_data_t & cmd_data,void_func_t func)550 int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
551 str_func_t str_func = reinterpret_cast<str_func_t>(func);
552
553 BENCH_TWO_BUFS(name, cmd_data,
554 initString(buf1, size); \
555 memset(buf2, 0, size),
556 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
557
558 return 0;
559 }
560
benchmarkStrcpyCold(const char * name,const command_data_t & cmd_data,void_func_t func)561 int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
562 str_func_t str_func = reinterpret_cast<str_func_t>(func);
563
564 COLD_TWO_BUFS(name, cmd_data,
565 memset(buffer1, 'a', buffer1_size); \
566 for (size_t i = 0; i < num_buffers; i++) { \
567 buffer1[size-1+buf1_incr*i] = '\0'; \
568 } \
569 memset(buffer2, 0, buffer2_size),
570 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
571
572 return 0;
573 }
574
575 // Create the mapping structure.
576 function_t function_table[] = {
577 { "cpu", benchmarkCpu, NULL },
578 { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
579 { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
580 { "memread", benchmarkMemread, NULL },
581 { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
582 { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
583 { "sleep", benchmarkSleep, NULL },
584 { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
585 { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
586 { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
587 { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
588 { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
589 { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
590 { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
591 { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
592 };
593
usage()594 void usage() {
595 printf("Usage:\n");
596 printf(" micro_bench [--data_size DATA_BYTES] [--print_average]\n");
597 printf(" [--no_print_each_iter] [--lock_to_cpu CORE]\n");
598 printf(" [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
599 printf(" [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
600 printf(" [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
601 printf(" [--cold_stride_size SIZE]\n");
602 printf(" --data_size DATA_BYTES\n");
603 printf(" For the data benchmarks (memcpy/memset/memread) the approximate\n");
604 printf(" size of data, in bytes, that will be manipulated in each iteration.\n");
605 printf(" --print_average\n");
606 printf(" Print the average and standard deviation of all iterations.\n");
607 printf(" --no_print_each_iter\n");
608 printf(" Do not print any values in each iteration.\n");
609 printf(" --lock_to_cpu CORE\n");
610 printf(" Lock to the specified CORE. The default is to use the last core found.\n");
611 printf(" --dst_align ALIGN\n");
612 printf(" If the command supports it, align the destination pointer to ALIGN.\n");
613 printf(" The default is to use the value returned by malloc.\n");
614 printf(" --dst_or_mask OR_MASK\n");
615 printf(" If the command supports it, or in the OR_MASK on to the destination pointer.\n");
616 printf(" The OR_MASK must be smaller than the dst_align value.\n");
617 printf(" The default value is 0.\n");
618
619 printf(" --src_align ALIGN\n");
620 printf(" If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
621 printf(" value returned by malloc.\n");
622 printf(" --src_or_mask OR_MASK\n");
623 printf(" If the command supports it, or in the OR_MASK on to the source pointer.\n");
624 printf(" The OR_MASK must be smaller than the src_align value.\n");
625 printf(" The default value is 0.\n");
626 printf(" --dst_str_size SIZE\n");
627 printf(" If the command supports it, create a destination string of this length.\n");
628 printf(" The default is to not update the destination string.\n");
629 printf(" --cold_data_size DATA_SIZE\n");
630 printf(" For _cold benchmarks, use this as the total amount of memory to use.\n");
631 printf(" The default is 128MB, and the number should be larger than the cache on the chip.\n");
632 printf(" This value is specified in bytes.\n");
633 printf(" --cold_stride_size SIZE\n");
634 printf(" For _cold benchmarks, use this as the minimum stride between iterations.\n");
635 printf(" The default is 4096 bytes and the number should be larger than the amount of data\n");
636 printf(" pulled in to the cache by each run of the benchmark.\n");
637 printf(" ITERS\n");
638 printf(" The number of iterations to execute each benchmark. If not\n");
639 printf(" passed in then run forever.\n");
640 printf(" micro_bench cpu UNUSED [ITERS]\n");
641 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
642 printf(" micro_bench memread NUM_BYTES [ITERS]\n");
643 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
644 printf(" micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
645 printf(" TIME_TO_SLEEP\n");
646 printf(" The time in seconds to sleep.\n");
647 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
648 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
649 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
650 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
651 printf("\n");
652 printf(" In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
653 printf(" that will execute the function on a buffer not in the cache.\n");
654 }
655
processOptions(int argc,char ** argv,command_data_t * cmd_data)656 function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
657 function_t *command = NULL;
658
659 // Initialize the command_flags.
660 cmd_data->print_average = false;
661 cmd_data->print_each_iter = true;
662 cmd_data->dst_align = 0;
663 cmd_data->src_align = 0;
664 cmd_data->src_or_mask = 0;
665 cmd_data->dst_or_mask = 0;
666 cmd_data->num_args = 0;
667 cmd_data->cpu_to_lock = -1;
668 cmd_data->data_size = DEFAULT_DATA_SIZE;
669 cmd_data->dst_str_size = -1;
670 cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
671 cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
672 for (int i = 0; i < MAX_ARGS; i++) {
673 cmd_data->args[i] = -1;
674 }
675
676 for (int i = 1; i < argc; i++) {
677 if (argv[i][0] == '-') {
678 int *save_value = NULL;
679 if (strcmp(argv[i], "--print_average") == 0) {
680 cmd_data->print_average = true;
681 } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
682 cmd_data->print_each_iter = false;
683 } else if (strcmp(argv[i], "--dst_align") == 0) {
684 save_value = &cmd_data->dst_align;
685 } else if (strcmp(argv[i], "--src_align") == 0) {
686 save_value = &cmd_data->src_align;
687 } else if (strcmp(argv[i], "--dst_or_mask") == 0) {
688 save_value = &cmd_data->dst_or_mask;
689 } else if (strcmp(argv[i], "--src_or_mask") == 0) {
690 save_value = &cmd_data->src_or_mask;
691 } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
692 save_value = &cmd_data->cpu_to_lock;
693 } else if (strcmp(argv[i], "--data_size") == 0) {
694 save_value = &cmd_data->data_size;
695 } else if (strcmp(argv[i], "--dst_str_size") == 0) {
696 save_value = &cmd_data->dst_str_size;
697 } else if (strcmp(argv[i], "--cold_data_size") == 0) {
698 save_value = &cmd_data->cold_data_size;
699 } else if (strcmp(argv[i], "--cold_stride_size") == 0) {
700 save_value = &cmd_data->cold_stride_size;
701 } else {
702 printf("Unknown option %s\n", argv[i]);
703 return NULL;
704 }
705 if (save_value) {
706 // Checking both characters without a strlen() call should be
707 // safe since as long as the argument exists, one character will
708 // be present (\0). And if the first character is '-', then
709 // there will always be a second character (\0 again).
710 if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
711 printf("The option %s requires one argument.\n",
712 argv[i]);
713 return NULL;
714 }
715 *save_value = (int)strtol(argv[++i], NULL, 0);
716 }
717 } else if (!command) {
718 for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
719 if (strcmp(argv[i], function_table[j].name) == 0) {
720 command = &function_table[j];
721 break;
722 }
723 }
724 if (!command) {
725 printf("Uknown command %s\n", argv[i]);
726 return NULL;
727 }
728 } else if (cmd_data->num_args > MAX_ARGS) {
729 printf("More than %d number arguments passed in.\n", MAX_ARGS);
730 return NULL;
731 } else {
732 cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
733 }
734 }
735
736 // Check the arguments passed in make sense.
737 if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
738 printf("Not enough arguments passed in.\n");
739 return NULL;
740 } else if (cmd_data->dst_align < 0) {
741 printf("The --dst_align option must be greater than or equal to 0.\n");
742 return NULL;
743 } else if (cmd_data->src_align < 0) {
744 printf("The --src_align option must be greater than or equal to 0.\n");
745 return NULL;
746 } else if (cmd_data->data_size <= 0) {
747 printf("The --data_size option must be a positive number.\n");
748 return NULL;
749 } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
750 printf("The --dst_align option must be a power of 2.\n");
751 return NULL;
752 } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
753 printf("The --src_align option must be a power of 2.\n");
754 return NULL;
755 } else if (!cmd_data->src_align && cmd_data->src_or_mask) {
756 printf("The --src_or_mask option requires that --src_align be set.\n");
757 return NULL;
758 } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
759 printf("The --dst_or_mask option requires that --dst_align be set.\n");
760 return NULL;
761 } else if (cmd_data->src_or_mask > cmd_data->src_align) {
762 printf("The value of --src_or_mask cannot be larger that --src_align.\n");
763 return NULL;
764 } else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
765 printf("The value of --src_or_mask cannot be larger that --src_align.\n");
766 return NULL;
767 }
768
769 return command;
770 }
771
raisePriorityAndLock(int cpu_to_lock)772 bool raisePriorityAndLock(int cpu_to_lock) {
773 cpu_set_t cpuset;
774
775 if (setpriority(PRIO_PROCESS, 0, -20)) {
776 perror("Unable to raise priority of process.\n");
777 return false;
778 }
779
780 CPU_ZERO(&cpuset);
781 if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
782 perror("sched_getaffinity failed");
783 return false;
784 }
785
786 if (cpu_to_lock < 0) {
787 // Lock to the last active core we find.
788 for (int i = 0; i < CPU_SETSIZE; i++) {
789 if (CPU_ISSET(i, &cpuset)) {
790 cpu_to_lock = i;
791 }
792 }
793 } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
794 printf("Cpu %d does not exist.\n", cpu_to_lock);
795 return false;
796 }
797
798 if (cpu_to_lock < 0) {
799 printf("Cannot find any valid cpu to lock.\n");
800 return false;
801 }
802
803 CPU_ZERO(&cpuset);
804 CPU_SET(cpu_to_lock, &cpuset);
805 if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
806 perror("sched_setaffinity failed");
807 return false;
808 }
809
810 return true;
811 }
812
main(int argc,char ** argv)813 int main(int argc, char **argv) {
814 command_data_t cmd_data;
815
816 function_t *command = processOptions(argc, argv, &cmd_data);
817 if (!command) {
818 usage();
819 return -1;
820 }
821
822 if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
823 return -1;
824 }
825
826 printf("%s\n", command->name);
827 return (*command->ptr)(command->name, cmd_data, command->func);
828 }
829