• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fault_handler.h"
18 
19 #include <setjmp.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22 #include "mirror/art_method.h"
23 #include "mirror/class.h"
24 #include "sigchain.h"
25 #include "thread-inl.h"
26 #include "verify_object-inl.h"
27 
28 // Note on nested signal support
29 // -----------------------------
30 //
31 // Typically a signal handler should not need to deal with signals that occur within it.
32 // However, when a SIGSEGV occurs that is in generated code and is not one of the
33 // handled signals (implicit checks), we call a function to try to dump the stack
34 // to the log.  This enhances the debugging experience but may have the side effect
35 // that it may not work.  If the cause of the original SIGSEGV is a corrupted stack or other
36 // memory region, the stack backtrace code may run into trouble and may either crash
37 // or fail with an abort (SIGABRT).  In either case we don't want that (new) signal to
38 // mask the original signal and thus prevent useful debug output from being presented.
39 //
40 // In order to handle this situation, before we call the stack tracer we do the following:
41 //
42 // 1. shutdown the fault manager so that we are talking to the real signal management
43 //    functions rather than those in sigchain.
44 // 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the
45 //    thread running the signal handler.
46 // 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler.
47 // 4. save the thread's state to the TLS of the current thread using 'setjmp'
48 //
49 // We then call the stack tracer and one of two things may happen:
50 // a. it completes successfully
51 // b. it crashes and a signal is raised.
52 //
53 // In the former case, we fall through and everything is fine.  In the latter case
54 // our secondary signal handler gets called in a signal context.  This results in
55 // a call to FaultManager::HandledNestedSignal(), an archirecture specific function
56 // whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current
57 // thread.  This results in a return with a non-zero value from 'setjmp'.  We detect this
58 // and write something to the log to tell the user that it happened.
59 //
60 // Regardless of how we got there, we reach the code after the stack tracer and we
61 // restore the signal states to their original values, reinstate the fault manager (thus
62 // reestablishing the signal chain) and continue.
63 
64 // This is difficult to test with a runtime test.  To invoke the nested signal code
65 // on any signal, uncomment the following line and run something that throws a
66 // NullPointerException.
67 // #define TEST_NESTED_SIGNAL
68 
69 namespace art {
70 // Static fault manger object accessed by signal handler.
71 FaultManager fault_manager;
72 
73 extern "C" {
art_sigsegv_fault()74 void art_sigsegv_fault() {
75   // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
76   VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
77 }
78 }
79 
80 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)81 static void art_fault_handler(int sig, siginfo_t* info, void* context) {
82   fault_manager.HandleFault(sig, info, context);
83 }
84 
85 // Signal handler for dealing with a nested signal.
art_nested_signal_handler(int sig,siginfo_t * info,void * context)86 static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) {
87   fault_manager.HandleNestedSignal(sig, info, context);
88 }
89 
FaultManager()90 FaultManager::FaultManager() : initialized_(false) {
91   sigaction(SIGSEGV, nullptr, &oldaction_);
92 }
93 
~FaultManager()94 FaultManager::~FaultManager() {
95 }
96 
SetUpArtAction(struct sigaction * action)97 static void SetUpArtAction(struct sigaction* action) {
98   action->sa_sigaction = art_fault_handler;
99   sigemptyset(&action->sa_mask);
100   action->sa_flags = SA_SIGINFO | SA_ONSTACK;
101 #if !defined(__APPLE__) && !defined(__mips__)
102   action->sa_restorer = nullptr;
103 #endif
104 }
105 
EnsureArtActionInFrontOfSignalChain()106 void FaultManager::EnsureArtActionInFrontOfSignalChain() {
107   if (initialized_) {
108     struct sigaction action;
109     SetUpArtAction(&action);
110     EnsureFrontOfChain(SIGSEGV, &action);
111   } else {
112     LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager";
113   }
114 }
115 
Init()116 void FaultManager::Init() {
117   CHECK(!initialized_);
118   struct sigaction action;
119   SetUpArtAction(&action);
120 
121   // Set our signal handler now.
122   int e = sigaction(SIGSEGV, &action, &oldaction_);
123   if (e != 0) {
124     VLOG(signals) << "Failed to claim SEGV: " << strerror(errno);
125   }
126   // Make sure our signal handler is called before any user handlers.
127   ClaimSignalChain(SIGSEGV, &oldaction_);
128   initialized_ = true;
129 }
130 
Shutdown()131 void FaultManager::Shutdown() {
132   if (initialized_) {
133     UnclaimSignalChain(SIGSEGV);
134     initialized_ = false;
135   }
136 }
137 
HandleFault(int sig,siginfo_t * info,void * context)138 void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
139   // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...)
140   //
141   // If malloc calls abort, it will be holding its lock.
142   // If the handler tries to call malloc, it will deadlock.
143   VLOG(signals) << "Handling fault";
144   if (IsInGeneratedCode(info, context, true)) {
145     VLOG(signals) << "in generated code, looking for handler";
146     for (const auto& handler : generated_code_handlers_) {
147       VLOG(signals) << "invoking Action on handler " << handler;
148       if (handler->Action(sig, info, context)) {
149 #ifdef TEST_NESTED_SIGNAL
150         // In test mode we want to fall through to stack trace handler
151         // on every signal (in reality this will cause a crash on the first
152         // signal).
153         break;
154 #else
155         // We have handled a signal so it's time to return from the
156         // signal handler to the appropriate place.
157         return;
158 #endif
159       }
160     }
161   }
162 
163   // We hit a signal we didn't handle.  This might be something for which
164   // we can give more information about so call all registered handlers to see
165   // if it is.
166   for (const auto& handler : other_handlers_) {
167     if (handler->Action(sig, info, context)) {
168       return;
169     }
170   }
171 
172   // Set a breakpoint in this function to catch unhandled signals.
173   art_sigsegv_fault();
174 
175   // Pass this on to the next handler in the chain, or the default if none.
176   InvokeUserSignalHandler(sig, info, context);
177 }
178 
AddHandler(FaultHandler * handler,bool generated_code)179 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
180   if (generated_code) {
181     generated_code_handlers_.push_back(handler);
182   } else {
183     other_handlers_.push_back(handler);
184   }
185 }
186 
RemoveHandler(FaultHandler * handler)187 void FaultManager::RemoveHandler(FaultHandler* handler) {
188   auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
189   if (it != generated_code_handlers_.end()) {
190     generated_code_handlers_.erase(it);
191     return;
192   }
193   auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
194   if (it2 != other_handlers_.end()) {
195     other_handlers_.erase(it);
196     return;
197   }
198   LOG(FATAL) << "Attempted to remove non existent handler " << handler;
199 }
200 
201 // This function is called within the signal handler.  It checks that
202 // the mutator_lock is held (shared).  No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)203 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
204   // We can only be running Java code in the current thread if it
205   // is in Runnable state.
206   VLOG(signals) << "Checking for generated code";
207   Thread* thread = Thread::Current();
208   if (thread == nullptr) {
209     VLOG(signals) << "no current thread";
210     return false;
211   }
212 
213   ThreadState state = thread->GetState();
214   if (state != kRunnable) {
215     VLOG(signals) << "not runnable";
216     return false;
217   }
218 
219   // Current thread is runnable.
220   // Make sure it has the mutator lock.
221   if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
222     VLOG(signals) << "no lock";
223     return false;
224   }
225 
226   mirror::ArtMethod* method_obj = 0;
227   uintptr_t return_pc = 0;
228   uintptr_t sp = 0;
229 
230   // Get the architecture specific method address and return address.  These
231   // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
232   GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);
233 
234   // If we don't have a potential method, we're outta here.
235   VLOG(signals) << "potential method: " << method_obj;
236   if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) {
237     VLOG(signals) << "no method";
238     return false;
239   }
240 
241   // Verify that the potential method is indeed a method.
242   // TODO: check the GC maps to make sure it's an object.
243   // Check that the class pointer inside the object is not null and is aligned.
244   // TODO: Method might be not a heap address, and GetClass could fault.
245   mirror::Class* cls = method_obj->GetClass<kVerifyNone>();
246   if (cls == nullptr) {
247     VLOG(signals) << "not a class";
248     return false;
249   }
250   if (!IsAligned<kObjectAlignment>(cls)) {
251     VLOG(signals) << "not aligned";
252     return false;
253   }
254 
255 
256   if (!VerifyClassClass(cls)) {
257     VLOG(signals) << "not a class class";
258     return false;
259   }
260 
261   // Now make sure the class is a mirror::ArtMethod.
262   if (!cls->IsArtMethodClass()) {
263     VLOG(signals) << "not a method";
264     return false;
265   }
266 
267   // We can be certain that this is a method now.  Check if we have a GC map
268   // at the return PC address.
269   if (true || kIsDebugBuild) {
270     VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
271     const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj,
272                                                                                  sizeof(void*));
273     uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code);
274     VLOG(signals) << "pc offset: " << std::hex << sought_offset;
275   }
276   uint32_t dexpc = method_obj->ToDexPc(return_pc, false);
277   VLOG(signals) << "dexpc: " << dexpc;
278   return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
279 }
280 
FaultHandler(FaultManager * manager)281 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
282 }
283 
284 //
285 // Null pointer fault handler
286 //
NullPointerHandler(FaultManager * manager)287 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
288   manager_->AddHandler(this, true);
289 }
290 
291 //
292 // Suspension fault handler
293 //
SuspensionHandler(FaultManager * manager)294 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
295   manager_->AddHandler(this, true);
296 }
297 
298 //
299 // Stack overflow fault handler
300 //
StackOverflowHandler(FaultManager * manager)301 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
302   manager_->AddHandler(this, true);
303 }
304 
305 //
306 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
307 //
JavaStackTraceHandler(FaultManager * manager)308 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
309   manager_->AddHandler(this, false);
310 }
311 
Action(int sig,siginfo_t * siginfo,void * context)312 bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) {
313   // Make sure that we are in the generated code, but we may not have a dex pc.
314 
315 #ifdef TEST_NESTED_SIGNAL
316   bool in_generated_code = true;
317 #else
318   bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
319 #endif
320   if (in_generated_code) {
321     LOG(ERROR) << "Dumping java stack trace for crash in generated code";
322     mirror::ArtMethod* method = nullptr;
323     uintptr_t return_pc = 0;
324     uintptr_t sp = 0;
325     Thread* self = Thread::Current();
326 
327     // Shutdown the fault manager so that it will remove the signal chain for
328     // SIGSEGV and we call the real sigaction.
329     fault_manager.Shutdown();
330 
331     // The action for SIGSEGV should be the default handler now.
332 
333     // Unblock the signals we allow so that they can be delivered in the signal handler.
334     sigset_t sigset;
335     sigemptyset(&sigset);
336     sigaddset(&sigset, SIGSEGV);
337     sigaddset(&sigset, SIGABRT);
338     pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr);
339 
340     // If we get a signal in this code we want to invoke our nested signal
341     // handler.
342     struct sigaction action, oldsegvaction, oldabortaction;
343     action.sa_sigaction = art_nested_signal_handler;
344 
345     // Explictly mask out SIGSEGV and SIGABRT from the nested signal handler.  This
346     // should be the default but we definitely don't want these happening in our
347     // nested signal handler.
348     sigemptyset(&action.sa_mask);
349     sigaddset(&action.sa_mask, SIGSEGV);
350     sigaddset(&action.sa_mask, SIGABRT);
351 
352     action.sa_flags = SA_SIGINFO | SA_ONSTACK;
353 #if !defined(__APPLE__) && !defined(__mips__)
354     action.sa_restorer = nullptr;
355 #endif
356 
357     // Catch SIGSEGV and SIGABRT to invoke our nested handler
358     int e1 = sigaction(SIGSEGV, &action, &oldsegvaction);
359     int e2 = sigaction(SIGABRT, &action, &oldabortaction);
360     if (e1 != 0 || e2 != 0) {
361       LOG(ERROR) << "Unable to register nested signal handler - no stack trace possible";
362       // If sigaction failed we have a serious problem.  We cannot catch
363       // any failures in the stack tracer and it's likely to occur since
364       // the program state is bad.  Therefore we don't even try to give
365       // a stack trace.
366     } else {
367       // Save the current state and try to dump the stack.  If this causes a signal
368       // our nested signal handler will be invoked and this will longjmp to the saved
369       // state.
370       if (setjmp(*self->GetNestedSignalState()) == 0) {
371         manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
372         // Inside of generated code, sp[0] is the method, so sp is the frame.
373         StackReference<mirror::ArtMethod>* frame =
374             reinterpret_cast<StackReference<mirror::ArtMethod>*>(sp);
375         self->SetTopOfStack(frame, 0);  // Since we don't necessarily have a dex pc, pass in 0.
376 #ifdef TEST_NESTED_SIGNAL
377         // To test the nested signal handler we raise a signal here.  This will cause the
378         // nested signal handler to be called and perform a longjmp back to the setjmp
379         // above.
380         abort();
381 #endif
382         self->DumpJavaStack(LOG(ERROR));
383       } else {
384         LOG(ERROR) << "Stack trace aborted due to nested signal - original signal being reported";
385       }
386 
387       // Restore the signal handlers.
388       sigaction(SIGSEGV, &oldsegvaction, nullptr);
389       sigaction(SIGABRT, &oldabortaction, nullptr);
390     }
391 
392     // Now put the fault manager back in place.
393     fault_manager.Init();
394 
395     // And we're done.
396   }
397 
398   return false;  // Return false since we want to propagate the fault to the main signal handler.
399 }
400 
401 }   // namespace art
402 
403