• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/autodiff_cost_function.h"
32 
33 #include <cstddef>
34 
35 #include "gtest/gtest.h"
36 #include "ceres/cost_function.h"
37 
38 namespace ceres {
39 namespace internal {
40 
41 class BinaryScalarCost {
42  public:
BinaryScalarCost(double a)43   explicit BinaryScalarCost(double a): a_(a) {}
44   template <typename T>
operator ()(const T * const x,const T * const y,T * cost) const45   bool operator()(const T* const x, const T* const y,
46                   T* cost) const {
47     cost[0] = x[0] * y[0] + x[1] * y[1]  - T(a_);
48     return true;
49   }
50  private:
51   double a_;
52 };
53 
TEST(AutodiffCostFunction,BilinearDifferentiationTest)54 TEST(AutodiffCostFunction, BilinearDifferentiationTest) {
55   CostFunction* cost_function  =
56     new AutoDiffCostFunction<BinaryScalarCost, 1, 2, 2>(
57         new BinaryScalarCost(1.0));
58 
59   double** parameters = new double*[2];
60   parameters[0] = new double[2];
61   parameters[1] = new double[2];
62 
63   parameters[0][0] = 1;
64   parameters[0][1] = 2;
65 
66   parameters[1][0] = 3;
67   parameters[1][1] = 4;
68 
69   double** jacobians = new double*[2];
70   jacobians[0] = new double[2];
71   jacobians[1] = new double[2];
72 
73   double residuals = 0.0;
74 
75   cost_function->Evaluate(parameters, &residuals, NULL);
76   EXPECT_EQ(10.0, residuals);
77   cost_function->Evaluate(parameters, &residuals, jacobians);
78 
79   EXPECT_EQ(3, jacobians[0][0]);
80   EXPECT_EQ(4, jacobians[0][1]);
81   EXPECT_EQ(1, jacobians[1][0]);
82   EXPECT_EQ(2, jacobians[1][1]);
83 
84   delete[] jacobians[0];
85   delete[] jacobians[1];
86   delete[] parameters[0];
87   delete[] parameters[1];
88   delete[] jacobians;
89   delete[] parameters;
90   delete cost_function;
91 }
92 
93 struct TenParameterCost {
94   template <typename T>
operator ()ceres::internal::TenParameterCost95   bool operator()(const T* const x0,
96                   const T* const x1,
97                   const T* const x2,
98                   const T* const x3,
99                   const T* const x4,
100                   const T* const x5,
101                   const T* const x6,
102                   const T* const x7,
103                   const T* const x8,
104                   const T* const x9,
105                   T* cost) const {
106     cost[0] = *x0 + *x1 + *x2 + *x3 + *x4 + *x5 + *x6 + *x7 + *x8 + *x9;
107     return true;
108   }
109 };
110 
TEST(AutodiffCostFunction,ManyParameterAutodiffInstantiates)111 TEST(AutodiffCostFunction, ManyParameterAutodiffInstantiates) {
112   CostFunction* cost_function  =
113       new AutoDiffCostFunction<
114           TenParameterCost, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>(
115               new TenParameterCost);
116 
117   double** parameters = new double*[10];
118   double** jacobians = new double*[10];
119   for (int i = 0; i < 10; ++i) {
120     parameters[i] = new double[1];
121     parameters[i][0] = i;
122     jacobians[i] = new double[1];
123   }
124 
125   double residuals = 0.0;
126 
127   cost_function->Evaluate(parameters, &residuals, NULL);
128   EXPECT_EQ(45.0, residuals);
129 
130   cost_function->Evaluate(parameters, &residuals, jacobians);
131   EXPECT_EQ(residuals, 45.0);
132   for (int i = 0; i < 10; ++i) {
133     EXPECT_EQ(1.0, jacobians[i][0]);
134   }
135 
136   for (int i = 0; i < 10; ++i) {
137     delete[] jacobians[i];
138     delete[] parameters[i];
139   }
140   delete[] jacobians;
141   delete[] parameters;
142   delete cost_function;
143 }
144 
145 }  // namespace internal
146 }  // namespace ceres
147