• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include <cmath>
32 #include "ceres/autodiff_local_parameterization.h"
33 #include "ceres/fpclassify.h"
34 #include "ceres/local_parameterization.h"
35 #include "ceres/rotation.h"
36 #include "gtest/gtest.h"
37 
38 namespace ceres {
39 namespace internal {
40 
41 struct IdentityPlus {
42   template <typename T>
operator ()ceres::internal::IdentityPlus43   bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
44     for (int i = 0; i < 3; ++i) {
45       x_plus_delta[i] = x[i] + delta[i];
46     }
47     return true;
48   }
49 };
50 
TEST(AutoDiffLocalParameterizationTest,IdentityParameterization)51 TEST(AutoDiffLocalParameterizationTest, IdentityParameterization) {
52   AutoDiffLocalParameterization<IdentityPlus, 3, 3>
53       parameterization;
54 
55   double x[3] = {1.0, 2.0, 3.0};
56   double delta[3] = {0.0, 1.0, 2.0};
57   double x_plus_delta[3] = {0.0, 0.0, 0.0};
58   parameterization.Plus(x, delta, x_plus_delta);
59 
60   EXPECT_EQ(x_plus_delta[0], 1.0);
61   EXPECT_EQ(x_plus_delta[1], 3.0);
62   EXPECT_EQ(x_plus_delta[2], 5.0);
63 
64   double jacobian[9];
65   parameterization.ComputeJacobian(x, jacobian);
66   int k = 0;
67   for (int i = 0; i < 3; ++i) {
68     for (int j = 0; j < 3; ++j, ++k) {
69       EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0);
70     }
71   }
72 }
73 
74 struct ScaledPlus {
ScaledPlusceres::internal::ScaledPlus75   ScaledPlus(const double &scale_factor)
76      : scale_factor_(scale_factor)
77   {}
78 
79   template <typename T>
operator ()ceres::internal::ScaledPlus80   bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
81     for (int i = 0; i < 3; ++i) {
82       x_plus_delta[i] = x[i] + T(scale_factor_) * delta[i];
83     }
84     return true;
85   }
86 
87   const double scale_factor_;
88 };
89 
TEST(AutoDiffLocalParameterizationTest,ScaledParameterization)90 TEST(AutoDiffLocalParameterizationTest, ScaledParameterization) {
91   const double kTolerance = 1e-14;
92 
93   AutoDiffLocalParameterization<ScaledPlus, 3, 3>
94       parameterization(new ScaledPlus(1.2345));
95 
96   double x[3] = {1.0, 2.0, 3.0};
97   double delta[3] = {0.0, 1.0, 2.0};
98   double x_plus_delta[3] = {0.0, 0.0, 0.0};
99   parameterization.Plus(x, delta, x_plus_delta);
100 
101   EXPECT_NEAR(x_plus_delta[0], 1.0, kTolerance);
102   EXPECT_NEAR(x_plus_delta[1], 3.2345, kTolerance);
103   EXPECT_NEAR(x_plus_delta[2], 5.469, kTolerance);
104 
105   double jacobian[9];
106   parameterization.ComputeJacobian(x, jacobian);
107   int k = 0;
108   for (int i = 0; i < 3; ++i) {
109     for (int j = 0; j < 3; ++j, ++k) {
110       EXPECT_NEAR(jacobian[k], (i == j) ? 1.2345 : 0.0, kTolerance);
111     }
112   }
113 }
114 
115 struct QuaternionPlus {
116   template<typename T>
operator ()ceres::internal::QuaternionPlus117   bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
118     const T squared_norm_delta =
119         delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
120 
121     T q_delta[4];
122     if (squared_norm_delta > T(0.0)) {
123       T norm_delta = sqrt(squared_norm_delta);
124       const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
125       q_delta[0] = cos(norm_delta);
126       q_delta[1] = sin_delta_by_delta * delta[0];
127       q_delta[2] = sin_delta_by_delta * delta[1];
128       q_delta[3] = sin_delta_by_delta * delta[2];
129     } else {
130       // We do not just use q_delta = [1,0,0,0] here because that is a
131       // constant and when used for automatic differentiation will
132       // lead to a zero derivative. Instead we take a first order
133       // approximation and evaluate it at zero.
134       q_delta[0] = T(1.0);
135       q_delta[1] = delta[0];
136       q_delta[2] = delta[1];
137       q_delta[3] = delta[2];
138     }
139 
140     QuaternionProduct(q_delta, x, x_plus_delta);
141     return true;
142   }
143 };
144 
QuaternionParameterizationTestHelper(const double * x,const double * delta)145 void QuaternionParameterizationTestHelper(const double* x,
146                                           const double* delta) {
147   const double kTolerance = 1e-14;
148   double x_plus_delta_ref[4] = {0.0, 0.0, 0.0, 0.0};
149   double jacobian_ref[12];
150 
151 
152   QuaternionParameterization ref_parameterization;
153   ref_parameterization.Plus(x, delta, x_plus_delta_ref);
154   ref_parameterization.ComputeJacobian(x, jacobian_ref);
155 
156   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};
157   double jacobian[12];
158   AutoDiffLocalParameterization<QuaternionPlus, 4, 3> parameterization;
159   parameterization.Plus(x, delta, x_plus_delta);
160   parameterization.ComputeJacobian(x, jacobian);
161 
162   for (int i = 0; i < 4; ++i) {
163     EXPECT_NEAR(x_plus_delta[i], x_plus_delta_ref[i], kTolerance);
164   }
165 
166   const double x_plus_delta_norm =
167       sqrt(x_plus_delta[0] * x_plus_delta[0] +
168            x_plus_delta[1] * x_plus_delta[1] +
169            x_plus_delta[2] * x_plus_delta[2] +
170            x_plus_delta[3] * x_plus_delta[3]);
171 
172   EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance);
173 
174   for (int i = 0; i < 12; ++i) {
175     EXPECT_TRUE(IsFinite(jacobian[i]));
176     EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance)
177         << "Jacobian mismatch: i = " << i
178         << "\n Expected \n" << ConstMatrixRef(jacobian_ref, 4, 3)
179         << "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3);
180   }
181 }
182 
TEST(AutoDiffLocalParameterization,QuaternionParameterizationZeroTest)183 TEST(AutoDiffLocalParameterization, QuaternionParameterizationZeroTest) {
184   double x[4] = {0.5, 0.5, 0.5, 0.5};
185   double delta[3] = {0.0, 0.0, 0.0};
186   QuaternionParameterizationTestHelper(x, delta);
187 }
188 
189 
TEST(AutoDiffLocalParameterization,QuaternionParameterizationNearZeroTest)190 TEST(AutoDiffLocalParameterization, QuaternionParameterizationNearZeroTest) {
191   double x[4] = {0.52, 0.25, 0.15, 0.45};
192   double norm_x = sqrt(x[0] * x[0] +
193                        x[1] * x[1] +
194                        x[2] * x[2] +
195                        x[3] * x[3]);
196   for (int i = 0; i < 4; ++i) {
197     x[i] = x[i] / norm_x;
198   }
199 
200   double delta[3] = {0.24, 0.15, 0.10};
201   for (int i = 0; i < 3; ++i) {
202     delta[i] = delta[i] * 1e-14;
203   }
204 
205   QuaternionParameterizationTestHelper(x, delta);
206 }
207 
TEST(AutoDiffLocalParameterization,QuaternionParameterizationNonZeroTest)208 TEST(AutoDiffLocalParameterization, QuaternionParameterizationNonZeroTest) {
209   double x[4] = {0.52, 0.25, 0.15, 0.45};
210   double norm_x = sqrt(x[0] * x[0] +
211                        x[1] * x[1] +
212                        x[2] * x[2] +
213                        x[3] * x[3]);
214 
215   for (int i = 0; i < 4; ++i) {
216     x[i] = x[i] / norm_x;
217   }
218 
219   double delta[3] = {0.24, 0.15, 0.10};
220   QuaternionParameterizationTestHelper(x, delta);
221 }
222 
223 }  // namespace internal
224 }  // namespace ceres
225