• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/corrector.h"
32 
33 #include <cstddef>
34 #include <cmath>
35 #include "ceres/internal/eigen.h"
36 #include "glog/logging.h"
37 
38 namespace ceres {
39 namespace internal {
40 
Corrector(const double sq_norm,const double rho[3])41 Corrector::Corrector(const double sq_norm, const double rho[3]) {
42   CHECK_GE(sq_norm, 0.0);
43   sqrt_rho1_ = sqrt(rho[1]);
44 
45   // If sq_norm = 0.0, the correction becomes trivial, the residual
46   // and the jacobian are scaled by the squareroot of the derivative
47   // of rho. Handling this case explicitly avoids the divide by zero
48   // error that would occur below.
49   //
50   // The case where rho'' < 0 also gets special handling. Technically
51   // it shouldn't, and the computation of the scaling should proceed
52   // as below, however we found in experiments that applying the
53   // curvature correction when rho'' < 0, which is the case when we
54   // are in the outlier region slows down the convergence of the
55   // algorithm significantly.
56   //
57   // Thus, we have divided the action of the robustifier into two
58   // parts. In the inliner region, we do the full second order
59   // correction which re-wights the gradient of the function by the
60   // square root of the derivative of rho, and the Gauss-Newton
61   // Hessian gets both the scaling and the rank-1 curvature
62   // correction. Normaly, alpha is upper bounded by one, but with this
63   // change, alpha is bounded above by zero.
64   //
65   // Empirically we have observed that the full Triggs correction and
66   // the clamped correction both start out as very good approximations
67   // to the loss function when we are in the convex part of the
68   // function, but as the function starts transitioning from convex to
69   // concave, the Triggs approximation diverges more and more and
70   // ultimately becomes linear. The clamped Triggs model however
71   // remains quadratic.
72   //
73   // The reason why the Triggs approximation becomes so poor is
74   // because the curvature correction that it applies to the gauss
75   // newton hessian goes from being a full rank correction to a rank
76   // deficient correction making the inversion of the Hessian fraught
77   // with all sorts of misery and suffering.
78   //
79   // The clamped correction retains its quadratic nature and inverting it
80   // is always well formed.
81   if ((sq_norm == 0.0) || (rho[2] <= 0.0)) {
82     residual_scaling_ = sqrt_rho1_;
83     alpha_sq_norm_ = 0.0;
84     return;
85   }
86 
87   // We now require that the first derivative of the loss function be
88   // positive only if the second derivative is positive. This is
89   // because when the second derivative is non-positive, we do not use
90   // the second order correction suggested by BANS and instead use a
91   // simpler first order strategy which does not use a division by the
92   // gradient of the loss function.
93   CHECK_GT(rho[1], 0.0);
94 
95   // Calculate the smaller of the two solutions to the equation
96   //
97   // 0.5 *  alpha^2 - alpha - rho'' / rho' *  z'z = 0.
98   //
99   // Start by calculating the discriminant D.
100   const double D = 1.0 + 2.0 * sq_norm * rho[2] / rho[1];
101 
102   // Since both rho[1] and rho[2] are guaranteed to be positive at
103   // this point, we know that D > 1.0.
104 
105   const double alpha = 1.0 - sqrt(D);
106 
107   // Calculate the constants needed by the correction routines.
108   residual_scaling_ = sqrt_rho1_ / (1 - alpha);
109   alpha_sq_norm_ = alpha / sq_norm;
110 }
111 
CorrectResiduals(const int num_rows,double * residuals)112 void Corrector::CorrectResiduals(const int num_rows, double* residuals) {
113   DCHECK(residuals != NULL);
114   // Equation 11 in BANS.
115   VectorRef(residuals, num_rows) *= residual_scaling_;
116 }
117 
CorrectJacobian(const int num_rows,const int num_cols,double * residuals,double * jacobian)118 void Corrector::CorrectJacobian(const int num_rows,
119                                 const int num_cols,
120                                 double* residuals,
121                                 double* jacobian) {
122   DCHECK(residuals != NULL);
123   DCHECK(jacobian != NULL);
124 
125   // The common case (rho[2] <= 0).
126   if (alpha_sq_norm_ == 0.0) {
127     VectorRef(jacobian, num_rows * num_cols) *= sqrt_rho1_;
128     return;
129   }
130 
131   // Equation 11 in BANS.
132   //
133   //  J = sqrt(rho) * (J - alpha^2 r * r' J)
134   //
135   // In days gone by this loop used to be a single Eigen expression of
136   // the form
137   //
138   //  J = sqrt_rho1_ * (J - alpha_sq_norm_ * r* (r.transpose() * J));
139   //
140   // Which turns out to about 17x slower on bal problems. The reason
141   // is that Eigen is unable to figure out that this expression can be
142   // evaluated columnwise and ends up creating a temporary.
143   for (int c = 0; c < num_cols; ++c) {
144     double r_transpose_j = 0.0;
145     for (int r = 0; r < num_rows; ++r) {
146       r_transpose_j += jacobian[r * num_cols + c] * residuals[r];
147     }
148 
149     for (int r = 0; r < num_rows; ++r) {
150       jacobian[r * num_cols + c] = sqrt_rho1_ *
151           (jacobian[r * num_cols + c] -
152            alpha_sq_norm_ * residuals[r] * r_transpose_j);
153     }
154   }
155 }
156 
157 }  // namespace internal
158 }  // namespace ceres
159