• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/dense_normal_cholesky_solver.h"
32 
33 #include <cstddef>
34 
35 #include "Eigen/Dense"
36 #include "ceres/blas.h"
37 #include "ceres/dense_sparse_matrix.h"
38 #include "ceres/internal/eigen.h"
39 #include "ceres/internal/scoped_ptr.h"
40 #include "ceres/lapack.h"
41 #include "ceres/linear_solver.h"
42 #include "ceres/types.h"
43 #include "ceres/wall_time.h"
44 
45 namespace ceres {
46 namespace internal {
47 
DenseNormalCholeskySolver(const LinearSolver::Options & options)48 DenseNormalCholeskySolver::DenseNormalCholeskySolver(
49     const LinearSolver::Options& options)
50     : options_(options) {}
51 
SolveImpl(DenseSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)52 LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl(
53     DenseSparseMatrix* A,
54     const double* b,
55     const LinearSolver::PerSolveOptions& per_solve_options,
56     double* x) {
57   if (options_.dense_linear_algebra_library_type == EIGEN) {
58     return SolveUsingEigen(A, b, per_solve_options, x);
59   } else {
60     return SolveUsingLAPACK(A, b, per_solve_options, x);
61   }
62 }
63 
SolveUsingEigen(DenseSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)64 LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingEigen(
65     DenseSparseMatrix* A,
66     const double* b,
67     const LinearSolver::PerSolveOptions& per_solve_options,
68     double* x) {
69   EventLogger event_logger("DenseNormalCholeskySolver::Solve");
70 
71   const int num_rows = A->num_rows();
72   const int num_cols = A->num_cols();
73 
74   ConstColMajorMatrixRef Aref = A->matrix();
75   Matrix lhs(num_cols, num_cols);
76   lhs.setZero();
77 
78   event_logger.AddEvent("Setup");
79 
80   //   lhs += A'A
81   //
82   // Using rankUpdate instead of GEMM, exposes the fact that its the
83   // same matrix being multiplied with itself and that the product is
84   // symmetric.
85   lhs.selfadjointView<Eigen::Upper>().rankUpdate(Aref.transpose());
86 
87   //   rhs = A'b
88   Vector rhs = Aref.transpose() * ConstVectorRef(b, num_rows);
89 
90   if (per_solve_options.D != NULL) {
91     ConstVectorRef D(per_solve_options.D, num_cols);
92     lhs += D.array().square().matrix().asDiagonal();
93   }
94   event_logger.AddEvent("Product");
95 
96   LinearSolver::Summary summary;
97   summary.num_iterations = 1;
98   summary.termination_type = LINEAR_SOLVER_SUCCESS;
99   Eigen::LLT<Matrix, Eigen::Upper> llt =
100       lhs.selfadjointView<Eigen::Upper>().llt();
101 
102   if (llt.info() != Eigen::Success) {
103     summary.termination_type = LINEAR_SOLVER_FAILURE;
104     summary.message = "Eigen LLT decomposition failed.";
105   } else {
106     summary.termination_type = LINEAR_SOLVER_SUCCESS;
107     summary.message = "Success.";
108   }
109 
110   VectorRef(x, num_cols) = llt.solve(rhs);
111   event_logger.AddEvent("Solve");
112   return summary;
113 }
114 
SolveUsingLAPACK(DenseSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)115 LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK(
116     DenseSparseMatrix* A,
117     const double* b,
118     const LinearSolver::PerSolveOptions& per_solve_options,
119     double* x) {
120   EventLogger event_logger("DenseNormalCholeskySolver::Solve");
121 
122   if (per_solve_options.D != NULL) {
123     // Temporarily append a diagonal block to the A matrix, but undo
124     // it before returning the matrix to the user.
125     A->AppendDiagonal(per_solve_options.D);
126   }
127 
128   const int num_cols = A->num_cols();
129   Matrix lhs(num_cols, num_cols);
130   event_logger.AddEvent("Setup");
131 
132   // lhs = A'A
133   //
134   // Note: This is a bit delicate, it assumes that the stride on this
135   // matrix is the same as the number of rows.
136   BLAS::SymmetricRankKUpdate(A->num_rows(),
137                              num_cols,
138                              A->values(),
139                              true,
140                              1.0,
141                              0.0,
142                              lhs.data());
143 
144   if (per_solve_options.D != NULL) {
145     // Undo the modifications to the matrix A.
146     A->RemoveDiagonal();
147   }
148 
149   // TODO(sameeragarwal): Replace this with a gemv call for true blasness.
150   //   rhs = A'b
151   VectorRef(x, num_cols) =
152       A->matrix().transpose() * ConstVectorRef(b, A->num_rows());
153   event_logger.AddEvent("Product");
154 
155   LinearSolver::Summary summary;
156   summary.num_iterations = 1;
157   summary.termination_type =
158       LAPACK::SolveInPlaceUsingCholesky(num_cols,
159                                         lhs.data(),
160                                         x,
161                                         &summary.message);
162   event_logger.AddEvent("Solve");
163   return summary;
164 }
165 }   // namespace internal
166 }   // namespace ceres
167