1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This defines a set of argument wrappers and related factory methods that 6 // can be used specify the refcounting and reference semantics of arguments 7 // that are bound by the Bind() function in base/bind.h. 8 // 9 // It also defines a set of simple functions and utilities that people want 10 // when using Callback<> and Bind(). 11 // 12 // 13 // ARGUMENT BINDING WRAPPERS 14 // 15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(), 16 // base::ConstRef(), and base::IgnoreResult(). 17 // 18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable 19 // refcounting on arguments that are refcounted objects. 20 // 21 // Owned() transfers ownership of an object to the Callback resulting from 22 // bind; the object will be deleted when the Callback is deleted. 23 // 24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr) 25 // through a Callback. Logically, this signifies a destructive transfer of 26 // the state of the argument into the target function. Invoking 27 // Callback::Run() twice on a Callback that was created with a Passed() 28 // argument will CHECK() because the first invocation would have already 29 // transferred ownership to the target function. 30 // 31 // ConstRef() allows binding a constant reference to an argument rather 32 // than a copy. 33 // 34 // IgnoreResult() is used to adapt a function or Callback with a return type to 35 // one with a void return. This is most useful if you have a function with, 36 // say, a pesky ignorable bool return that you want to use with PostTask or 37 // something else that expect a Callback with a void return. 38 // 39 // EXAMPLE OF Unretained(): 40 // 41 // class Foo { 42 // public: 43 // void func() { cout << "Foo:f" << endl; } 44 // }; 45 // 46 // // In some function somewhere. 47 // Foo foo; 48 // Closure foo_callback = 49 // Bind(&Foo::func, Unretained(&foo)); 50 // foo_callback.Run(); // Prints "Foo:f". 51 // 52 // Without the Unretained() wrapper on |&foo|, the above call would fail 53 // to compile because Foo does not support the AddRef() and Release() methods. 54 // 55 // 56 // EXAMPLE OF Owned(): 57 // 58 // void foo(int* arg) { cout << *arg << endl } 59 // 60 // int* pn = new int(1); 61 // Closure foo_callback = Bind(&foo, Owned(pn)); 62 // 63 // foo_callback.Run(); // Prints "1" 64 // foo_callback.Run(); // Prints "1" 65 // *n = 2; 66 // foo_callback.Run(); // Prints "2" 67 // 68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when 69 // // |foo_callback| goes out of scope. 70 // 71 // Without Owned(), someone would have to know to delete |pn| when the last 72 // reference to the Callback is deleted. 73 // 74 // 75 // EXAMPLE OF ConstRef(): 76 // 77 // void foo(int arg) { cout << arg << endl } 78 // 79 // int n = 1; 80 // Closure no_ref = Bind(&foo, n); 81 // Closure has_ref = Bind(&foo, ConstRef(n)); 82 // 83 // no_ref.Run(); // Prints "1" 84 // has_ref.Run(); // Prints "1" 85 // 86 // n = 2; 87 // no_ref.Run(); // Prints "1" 88 // has_ref.Run(); // Prints "2" 89 // 90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all 91 // its bound callbacks. 92 // 93 // 94 // EXAMPLE OF IgnoreResult(): 95 // 96 // int DoSomething(int arg) { cout << arg << endl; } 97 // 98 // // Assign to a Callback with a void return type. 99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); 100 // cb->Run(1); // Prints "1". 101 // 102 // // Prints "1" on |ml|. 103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); 104 // 105 // 106 // EXAMPLE OF Passed(): 107 // 108 // void TakesOwnership(scoped_ptr<Foo> arg) { } 109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); } 110 // 111 // scoped_ptr<Foo> f(new Foo()); 112 // 113 // // |cb| is given ownership of Foo(). |f| is now NULL. 114 // // You can use f.Pass() in place of &f, but it's more verbose. 115 // Closure cb = Bind(&TakesOwnership, Passed(&f)); 116 // 117 // // Run was never called so |cb| still owns Foo() and deletes 118 // // it on Reset(). 119 // cb.Reset(); 120 // 121 // // |cb| is given a new Foo created by CreateFoo(). 122 // cb = Bind(&TakesOwnership, Passed(CreateFoo())); 123 // 124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| 125 // // no longer owns Foo() and, if reset, would not delete Foo(). 126 // cb.Run(); // Foo() is now transferred to |arg| and deleted. 127 // cb.Run(); // This CHECK()s since Foo() already been used once. 128 // 129 // Passed() is particularly useful with PostTask() when you are transferring 130 // ownership of an argument into a task, but don't necessarily know if the 131 // task will always be executed. This can happen if the task is cancellable 132 // or if it is posted to a MessageLoopProxy. 133 // 134 // 135 // SIMPLE FUNCTIONS AND UTILITIES. 136 // 137 // DoNothing() - Useful for creating a Closure that does nothing when called. 138 // DeletePointer<T>() - Useful for creating a Closure that will delete a 139 // pointer when invoked. Only use this when necessary. 140 // In most cases MessageLoop::DeleteSoon() is a better 141 // fit. 142 143 #ifndef BASE_BIND_HELPERS_H_ 144 #define BASE_BIND_HELPERS_H_ 145 146 #include "base/basictypes.h" 147 #include "base/callback.h" 148 #include "base/memory/weak_ptr.h" 149 #include "base/template_util.h" 150 151 namespace base { 152 namespace internal { 153 154 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T 155 // for the existence of AddRef() and Release() functions of the correct 156 // signature. 157 // 158 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error 159 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence 160 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison 161 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions 162 // 163 // The last link in particular show the method used below. 164 // 165 // For SFINAE to work with inherited methods, we need to pull some extra tricks 166 // with multiple inheritance. In the more standard formulation, the overloads 167 // of Check would be: 168 // 169 // template <typename C> 170 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); 171 // 172 // template <typename C> 173 // No NotTheCheckWeWant(...); 174 // 175 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); 176 // 177 // The problem here is that template resolution will not match 178 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if 179 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, 180 // |value| will be false. This formulation only checks for whether or 181 // not TargetFunc exist directly in the class being introspected. 182 // 183 // To get around this, we play a dirty trick with multiple inheritance. 184 // First, We create a class BaseMixin that declares each function that we 185 // want to probe for. Then we create a class Base that inherits from both T 186 // (the class we wish to probe) and BaseMixin. Note that the function 187 // signature in BaseMixin does not need to match the signature of the function 188 // we are probing for; thus it's easiest to just use void(void). 189 // 190 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an 191 // ambiguous resolution between BaseMixin and T. This lets us write the 192 // following: 193 // 194 // template <typename C> 195 // No GoodCheck(Helper<&C::TargetFunc>*); 196 // 197 // template <typename C> 198 // Yes GoodCheck(...); 199 // 200 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); 201 // 202 // Notice here that the variadic version of GoodCheck() returns Yes here 203 // instead of No like the previous one. Also notice that we calculate |value| 204 // by specializing GoodCheck() on Base instead of T. 205 // 206 // We've reversed the roles of the variadic, and Helper overloads. 207 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid 208 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve 209 // to the variadic version if T has TargetFunc. If T::TargetFunc does not 210 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution 211 // will prefer GoodCheck(Helper<&C::TargetFunc>*). 212 // 213 // This method of SFINAE will correctly probe for inherited names, but it cannot 214 // typecheck those names. It's still a good enough sanity check though. 215 // 216 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. 217 // 218 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted 219 // this works well. 220 // 221 // TODO(ajwong): Make this check for Release() as well. 222 // See http://crbug.com/82038. 223 template <typename T> 224 class SupportsAddRefAndRelease { 225 typedef char Yes[1]; 226 typedef char No[2]; 227 228 struct BaseMixin { 229 void AddRef(); 230 }; 231 232 // MSVC warns when you try to use Base if T has a private destructor, the 233 // common pattern for refcounted types. It does this even though no attempt to 234 // instantiate Base is made. We disable the warning for this definition. 235 #if defined(OS_WIN) 236 #pragma warning(push) 237 #pragma warning(disable:4624) 238 #endif 239 struct Base : public T, public BaseMixin { 240 }; 241 #if defined(OS_WIN) 242 #pragma warning(pop) 243 #endif 244 245 template <void(BaseMixin::*)(void)> struct Helper {}; 246 247 template <typename C> 248 static No& Check(Helper<&C::AddRef>*); 249 250 template <typename > 251 static Yes& Check(...); 252 253 public: 254 enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) }; 255 }; 256 257 // Helpers to assert that arguments of a recounted type are bound with a 258 // scoped_refptr. 259 template <bool IsClasstype, typename T> 260 struct UnsafeBindtoRefCountedArgHelper : false_type { 261 }; 262 263 template <typename T> 264 struct UnsafeBindtoRefCountedArgHelper<true, T> 265 : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { 266 }; 267 268 template <typename T> 269 struct UnsafeBindtoRefCountedArg : false_type { 270 }; 271 272 template <typename T> 273 struct UnsafeBindtoRefCountedArg<T*> 274 : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { 275 }; 276 277 template <typename T> 278 class HasIsMethodTag { 279 typedef char Yes[1]; 280 typedef char No[2]; 281 282 template <typename U> 283 static Yes& Check(typename U::IsMethod*); 284 285 template <typename U> 286 static No& Check(...); 287 288 public: 289 enum { value = sizeof(Check<T>(0)) == sizeof(Yes) }; 290 }; 291 292 template <typename T> 293 class UnretainedWrapper { 294 public: 295 explicit UnretainedWrapper(T* o) : ptr_(o) {} 296 T* get() const { return ptr_; } 297 private: 298 T* ptr_; 299 }; 300 301 template <typename T> 302 class ConstRefWrapper { 303 public: 304 explicit ConstRefWrapper(const T& o) : ptr_(&o) {} 305 const T& get() const { return *ptr_; } 306 private: 307 const T* ptr_; 308 }; 309 310 template <typename T> 311 struct IgnoreResultHelper { 312 explicit IgnoreResultHelper(T functor) : functor_(functor) {} 313 314 T functor_; 315 }; 316 317 template <typename T> 318 struct IgnoreResultHelper<Callback<T> > { 319 explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {} 320 321 const Callback<T>& functor_; 322 }; 323 324 // An alternate implementation is to avoid the destructive copy, and instead 325 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to 326 // a class that is essentially a scoped_ptr<>. 327 // 328 // The current implementation has the benefit though of leaving ParamTraits<> 329 // fully in callback_internal.h as well as avoiding type conversions during 330 // storage. 331 template <typename T> 332 class OwnedWrapper { 333 public: 334 explicit OwnedWrapper(T* o) : ptr_(o) {} 335 ~OwnedWrapper() { delete ptr_; } 336 T* get() const { return ptr_; } 337 OwnedWrapper(const OwnedWrapper& other) { 338 ptr_ = other.ptr_; 339 other.ptr_ = NULL; 340 } 341 342 private: 343 mutable T* ptr_; 344 }; 345 346 // PassedWrapper is a copyable adapter for a scoper that ignores const. 347 // 348 // It is needed to get around the fact that Bind() takes a const reference to 349 // all its arguments. Because Bind() takes a const reference to avoid 350 // unnecessary copies, it is incompatible with movable-but-not-copyable 351 // types; doing a destructive "move" of the type into Bind() would violate 352 // the const correctness. 353 // 354 // This conundrum cannot be solved without either C++11 rvalue references or 355 // a O(2^n) blowup of Bind() templates to handle each combination of regular 356 // types and movable-but-not-copyable types. Thus we introduce a wrapper type 357 // that is copyable to transmit the correct type information down into 358 // BindState<>. Ignoring const in this type makes sense because it is only 359 // created when we are explicitly trying to do a destructive move. 360 // 361 // Two notes: 362 // 1) PassedWrapper supports any type that has a "Pass()" function. 363 // This is intentional. The whitelisting of which specific types we 364 // support is maintained by CallbackParamTraits<>. 365 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" 366 // scoper to a Callback and allow the Callback to execute once. 367 template <typename T> 368 class PassedWrapper { 369 public: 370 explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {} 371 PassedWrapper(const PassedWrapper& other) 372 : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) { 373 } 374 T Pass() const { 375 CHECK(is_valid_); 376 is_valid_ = false; 377 return scoper_.Pass(); 378 } 379 380 private: 381 mutable bool is_valid_; 382 mutable T scoper_; 383 }; 384 385 // Unwrap the stored parameters for the wrappers above. 386 template <typename T> 387 struct UnwrapTraits { 388 typedef const T& ForwardType; 389 static ForwardType Unwrap(const T& o) { return o; } 390 }; 391 392 template <typename T> 393 struct UnwrapTraits<UnretainedWrapper<T> > { 394 typedef T* ForwardType; 395 static ForwardType Unwrap(UnretainedWrapper<T> unretained) { 396 return unretained.get(); 397 } 398 }; 399 400 template <typename T> 401 struct UnwrapTraits<ConstRefWrapper<T> > { 402 typedef const T& ForwardType; 403 static ForwardType Unwrap(ConstRefWrapper<T> const_ref) { 404 return const_ref.get(); 405 } 406 }; 407 408 template <typename T> 409 struct UnwrapTraits<scoped_refptr<T> > { 410 typedef T* ForwardType; 411 static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); } 412 }; 413 414 template <typename T> 415 struct UnwrapTraits<WeakPtr<T> > { 416 typedef const WeakPtr<T>& ForwardType; 417 static ForwardType Unwrap(const WeakPtr<T>& o) { return o; } 418 }; 419 420 template <typename T> 421 struct UnwrapTraits<OwnedWrapper<T> > { 422 typedef T* ForwardType; 423 static ForwardType Unwrap(const OwnedWrapper<T>& o) { 424 return o.get(); 425 } 426 }; 427 428 template <typename T> 429 struct UnwrapTraits<PassedWrapper<T> > { 430 typedef T ForwardType; 431 static T Unwrap(PassedWrapper<T>& o) { 432 return o.Pass(); 433 } 434 }; 435 436 // Utility for handling different refcounting semantics in the Bind() 437 // function. 438 template <bool is_method, typename T> 439 struct MaybeRefcount; 440 441 template <typename T> 442 struct MaybeRefcount<false, T> { 443 static void AddRef(const T&) {} 444 static void Release(const T&) {} 445 }; 446 447 template <typename T, size_t n> 448 struct MaybeRefcount<false, T[n]> { 449 static void AddRef(const T*) {} 450 static void Release(const T*) {} 451 }; 452 453 template <typename T> 454 struct MaybeRefcount<true, T> { 455 static void AddRef(const T&) {} 456 static void Release(const T&) {} 457 }; 458 459 template <typename T> 460 struct MaybeRefcount<true, T*> { 461 static void AddRef(T* o) { o->AddRef(); } 462 static void Release(T* o) { o->Release(); } 463 }; 464 465 // No need to additionally AddRef() and Release() since we are storing a 466 // scoped_refptr<> inside the storage object already. 467 template <typename T> 468 struct MaybeRefcount<true, scoped_refptr<T> > { 469 static void AddRef(const scoped_refptr<T>& o) {} 470 static void Release(const scoped_refptr<T>& o) {} 471 }; 472 473 template <typename T> 474 struct MaybeRefcount<true, const T*> { 475 static void AddRef(const T* o) { o->AddRef(); } 476 static void Release(const T* o) { o->Release(); } 477 }; 478 479 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a 480 // method. It is used internally by Bind() to select the correct 481 // InvokeHelper that will no-op itself in the event the WeakPtr<> for 482 // the target object is invalidated. 483 // 484 // P1 should be the type of the object that will be received of the method. 485 template <bool IsMethod, typename P1> 486 struct IsWeakMethod : public false_type {}; 487 488 template <typename T> 489 struct IsWeakMethod<true, WeakPtr<T> > : public true_type {}; 490 491 template <typename T> 492 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {}; 493 494 } // namespace internal 495 496 template <typename T> 497 static inline internal::UnretainedWrapper<T> Unretained(T* o) { 498 return internal::UnretainedWrapper<T>(o); 499 } 500 501 template <typename T> 502 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { 503 return internal::ConstRefWrapper<T>(o); 504 } 505 506 template <typename T> 507 static inline internal::OwnedWrapper<T> Owned(T* o) { 508 return internal::OwnedWrapper<T>(o); 509 } 510 511 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and 512 // is best suited for use with the return value of a function. The second 513 // takes a pointer to the scoper and is just syntactic sugar to avoid having 514 // to write Passed(scoper.Pass()). 515 template <typename T> 516 static inline internal::PassedWrapper<T> Passed(T scoper) { 517 return internal::PassedWrapper<T>(scoper.Pass()); 518 } 519 template <typename T> 520 static inline internal::PassedWrapper<T> Passed(T* scoper) { 521 return internal::PassedWrapper<T>(scoper->Pass()); 522 } 523 524 template <typename T> 525 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { 526 return internal::IgnoreResultHelper<T>(data); 527 } 528 529 template <typename T> 530 static inline internal::IgnoreResultHelper<Callback<T> > 531 IgnoreResult(const Callback<T>& data) { 532 return internal::IgnoreResultHelper<Callback<T> >(data); 533 } 534 535 BASE_EXPORT void DoNothing(); 536 537 template<typename T> 538 void DeletePointer(T* obj) { 539 delete obj; 540 } 541 542 } // namespace base 543 544 #endif // BASE_BIND_HELPERS_H_ 545