• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Create a state machine for validating UTF-8. The algorithm in brief:
6 // 1. Convert the complete unicode range of code points, except for the
7 //    surrogate code points, to an ordered array of sequences of bytes in
8 //    UTF-8.
9 // 2. Convert individual bytes to ranges, starting from the right of each byte
10 //    sequence. For each range, ensure the bytes on the left and the ranges
11 //    on the right are the identical.
12 // 3. Convert the resulting list of ranges into a state machine, collapsing
13 //    identical states.
14 // 4. Convert the state machine to an array of bytes.
15 // 5. Output as a C++ file.
16 //
17 // To use:
18 //  $ ninja -C out/Release build_utf8_validator_tables
19 //  $ out/Release/build_utf8_validator_tables
20 //                                   --output=base/i18n/utf8_validator_tables.cc
21 //  $ git add base/i18n/utf8_validator_tables.cc
22 //
23 // Because the table is not expected to ever change, it is checked into the
24 // repository rather than being regenerated at build time.
25 //
26 // This code uses type uint8 throughout to represent bytes, to avoid
27 // signed/unsigned char confusion.
28 
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 
33 #include <algorithm>
34 #include <map>
35 #include <string>
36 #include <vector>
37 
38 #include "base/basictypes.h"
39 #include "base/command_line.h"
40 #include "base/files/file_path.h"
41 #include "base/files/file_util.h"
42 #include "base/logging.h"
43 #include "base/numerics/safe_conversions.h"
44 #include "base/strings/stringprintf.h"
45 #include "third_party/icu/source/common/unicode/utf8.h"
46 
47 namespace {
48 
49 const char kHelpText[] =
50     "Usage: build_utf8_validator_tables [ --help ] [ --output=<file> ]\n";
51 
52 const char kProlog[] =
53     "// Copyright 2013 The Chromium Authors. All rights reserved.\n"
54     "// Use of this source code is governed by a BSD-style license that can "
55     "be\n"
56     "// found in the LICENSE file.\n"
57     "\n"
58     "// This file is auto-generated by build_utf8_validator_tables.\n"
59     "// DO NOT EDIT.\n"
60     "\n"
61     "#include \"base/i18n/utf8_validator_tables.h\"\n"
62     "\n"
63     "namespace base {\n"
64     "namespace internal {\n"
65     "\n"
66     "const uint8 kUtf8ValidatorTables[] = {\n";
67 
68 const char kEpilog[] =
69     "};\n"
70     "\n"
71     "const size_t kUtf8ValidatorTablesSize = arraysize(kUtf8ValidatorTables);\n"
72     "\n"
73     "}  // namespace internal\n"
74     "}  // namespace base\n";
75 
76 // Ranges are inclusive at both ends--they represent [from, to]
77 class Range {
78  public:
79   // Ranges always start with just one byte.
Range(uint8 value)80   explicit Range(uint8 value) : from_(value), to_(value) {}
81 
82   // Range objects are copyable and assignable to be used in STL
83   // containers. Since they only contain non-pointer POD types, the default copy
84   // constructor, assignment operator and destructor will work.
85 
86   // Add a byte to the range. We intentionally only support adding a byte at the
87   // end, since that is the only operation the code needs.
AddByte(uint8 to)88   void AddByte(uint8 to) {
89     CHECK(to == to_ + 1);
90     to_ = to;
91   }
92 
from() const93   uint8 from() const { return from_; }
to() const94   uint8 to() const { return to_; }
95 
operator <(const Range & rhs) const96   bool operator<(const Range& rhs) const {
97     return (from() < rhs.from() || (from() == rhs.from() && to() < rhs.to()));
98   }
99 
operator ==(const Range & rhs) const100   bool operator==(const Range& rhs) const {
101     return from() == rhs.from() && to() == rhs.to();
102   }
103 
104  private:
105   uint8 from_;
106   uint8 to_;
107 };
108 
109 // A vector of Ranges is like a simple regular expression--it corresponds to
110 // a set of strings of the same length that have bytes in each position in
111 // the appropriate range.
112 typedef std::vector<Range> StringSet;
113 
114 // A UTF-8 "character" is represented by a sequence of bytes.
115 typedef std::vector<uint8> Character;
116 
117 // In the second stage of the algorithm, we want to convert a large list of
118 // Characters into a small list of StringSets.
119 struct Pair {
120   Character character;
121   StringSet set;
122 };
123 
124 typedef std::vector<Pair> PairVector;
125 
126 // A class to print a table of numbers in the same style as clang-format.
127 class TablePrinter {
128  public:
TablePrinter(FILE * stream)129   explicit TablePrinter(FILE* stream)
130       : stream_(stream), values_on_this_line_(0), current_offset_(0) {}
131 
PrintValue(uint8 value)132   void PrintValue(uint8 value) {
133     if (values_on_this_line_ == 0) {
134       fputs("   ", stream_);
135     } else if (values_on_this_line_ == kMaxValuesPerLine) {
136       fprintf(stream_, "  // 0x%02x\n   ", current_offset_);
137       values_on_this_line_ = 0;
138     }
139     fprintf(stream_, " 0x%02x,", static_cast<int>(value));
140     ++values_on_this_line_;
141     ++current_offset_;
142   }
143 
NewLine()144   void NewLine() {
145     while (values_on_this_line_ < kMaxValuesPerLine) {
146       fputs("      ", stream_);
147       ++values_on_this_line_;
148     }
149     fprintf(stream_, "  // 0x%02x\n", current_offset_);
150     values_on_this_line_ = 0;
151   }
152 
153  private:
154   // stdio stream. Not owned.
155   FILE* stream_;
156 
157   // Number of values so far printed on this line.
158   int values_on_this_line_;
159 
160   // Total values printed so far.
161   int current_offset_;
162 
163   static const int kMaxValuesPerLine = 8;
164 
165   DISALLOW_COPY_AND_ASSIGN(TablePrinter);
166 };
167 
168 // Start by filling a PairVector with characters. The resulting vector goes from
169 // "\x00" to "\xf4\x8f\xbf\xbf".
InitializeCharacters()170 PairVector InitializeCharacters() {
171   PairVector vector;
172   for (int i = 0; i <= 0x10FFFF; ++i) {
173     if (i >= 0xD800 && i < 0xE000) {
174       // Surrogate codepoints are not permitted. Non-character code points are
175       // explicitly permitted.
176       continue;
177     }
178     uint8 bytes[4];
179     unsigned int offset = 0;
180     UBool is_error = false;
181     U8_APPEND(bytes, offset, arraysize(bytes), i, is_error);
182     DCHECK(!is_error);
183     DCHECK_GT(offset, 0u);
184     DCHECK_LE(offset, arraysize(bytes));
185     Pair pair = {Character(bytes, bytes + offset), StringSet()};
186     vector.push_back(pair);
187   }
188   return vector;
189 }
190 
191 // Construct a new Pair from |character| and the concatenation of |new_range|
192 // and |existing_set|, and append it to |pairs|.
ConstructPairAndAppend(const Character & character,const Range & new_range,const StringSet & existing_set,PairVector * pairs)193 void ConstructPairAndAppend(const Character& character,
194                             const Range& new_range,
195                             const StringSet& existing_set,
196                             PairVector* pairs) {
197   Pair new_pair = {character, StringSet(1, new_range)};
198   new_pair.set.insert(
199       new_pair.set.end(), existing_set.begin(), existing_set.end());
200   pairs->push_back(new_pair);
201 }
202 
203 // Each pass over the PairVector strips one byte off the right-hand-side of the
204 // characters and adds a range to the set on the right. For example, the first
205 // pass converts the range from "\xe0\xa0\x80" to "\xe0\xa0\xbf" to ("\xe0\xa0",
206 // [\x80-\xbf]), then the second pass converts the range from ("\xe0\xa0",
207 // [\x80-\xbf]) to ("\xe0\xbf", [\x80-\xbf]) to ("\xe0",
208 // [\xa0-\xbf][\x80-\xbf]).
MoveRightMostCharToSet(PairVector * pairs)209 void MoveRightMostCharToSet(PairVector* pairs) {
210   PairVector new_pairs;
211   PairVector::const_iterator it = pairs->begin();
212   while (it != pairs->end() && it->character.empty()) {
213     new_pairs.push_back(*it);
214     ++it;
215   }
216   CHECK(it != pairs->end());
217   Character unconverted_bytes(it->character.begin(), it->character.end() - 1);
218   Range new_range(it->character.back());
219   StringSet converted = it->set;
220   ++it;
221   while (it != pairs->end()) {
222     const Pair& current_pair = *it++;
223     if (current_pair.character.size() == unconverted_bytes.size() + 1 &&
224         std::equal(unconverted_bytes.begin(),
225                    unconverted_bytes.end(),
226                    current_pair.character.begin()) &&
227         converted == current_pair.set) {
228       // The particular set of UTF-8 codepoints we are validating guarantees
229       // that each byte range will be contiguous. This would not necessarily be
230       // true for an arbitrary set of UTF-8 codepoints.
231       DCHECK_EQ(new_range.to() + 1, current_pair.character.back());
232       new_range.AddByte(current_pair.character.back());
233       continue;
234     }
235     ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
236     unconverted_bytes = Character(current_pair.character.begin(),
237                                   current_pair.character.end() - 1);
238     new_range = Range(current_pair.character.back());
239     converted = current_pair.set;
240   }
241   ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
242   new_pairs.swap(*pairs);
243 }
244 
MoveAllCharsToSets(PairVector * pairs)245 void MoveAllCharsToSets(PairVector* pairs) {
246   // Since each pass of the function moves one character, and UTF-8 sequences
247   // are at most 4 characters long, this simply runs the algorithm four times.
248   for (int i = 0; i < 4; ++i) {
249     MoveRightMostCharToSet(pairs);
250   }
251 #if DCHECK_IS_ON
252   for (PairVector::const_iterator it = pairs->begin(); it != pairs->end();
253        ++it) {
254     DCHECK(it->character.empty());
255   }
256 #endif
257 }
258 
259 // Logs the generated string sets in regular-expression style, ie. [\x00-\x7f],
260 // [\xc2-\xdf][\x80-\xbf], etc. This can be a useful sanity-check that the
261 // algorithm is working. Use the command-line option
262 // --vmodule=build_utf8_validator_tables=1 to see this output.
LogStringSets(const PairVector & pairs)263 void LogStringSets(const PairVector& pairs) {
264   for (PairVector::const_iterator pair_it = pairs.begin();
265        pair_it != pairs.end();
266        ++pair_it) {
267     std::string set_as_string;
268     for (StringSet::const_iterator set_it = pair_it->set.begin();
269          set_it != pair_it->set.end();
270          ++set_it) {
271       set_as_string += base::StringPrintf("[\\x%02x-\\x%02x]",
272                                           static_cast<int>(set_it->from()),
273                                           static_cast<int>(set_it->to()));
274     }
275     VLOG(1) << set_as_string;
276   }
277 }
278 
279 // A single state in the state machine is represented by a sorted vector of
280 // start bytes and target states. All input bytes in the range between the start
281 // byte and the next entry in the vector (or 0xFF) result in a transition to the
282 // target state.
283 struct StateRange {
284   uint8 from;
285   uint8 target_state;
286 };
287 
288 typedef std::vector<StateRange> State;
289 
290 // Generates a state where all bytes go to state 1 (invalid). This is also used
291 // as an initialiser for other states (since bytes from outside the desired
292 // range are invalid).
GenerateInvalidState()293 State GenerateInvalidState() {
294   const StateRange range = {0, 1};
295   return State(1, range);
296 }
297 
298 // A map from a state (ie. a set of strings which will match from this state) to
299 // a number (which is an index into the array of states).
300 typedef std::map<StringSet, uint8> StateMap;
301 
302 // Create a new state corresponding to |set|, add it |states| and |state_map|
303 // and return the index it was given in |states|.
MakeState(const StringSet & set,std::vector<State> * states,StateMap * state_map)304 uint8 MakeState(const StringSet& set,
305                 std::vector<State>* states,
306                 StateMap* state_map) {
307   DCHECK(!set.empty());
308   const Range& range = set.front();
309   const StringSet rest(set.begin() + 1, set.end());
310   const StateMap::const_iterator where = state_map->find(rest);
311   const uint8 target_state = where == state_map->end()
312                                  ? MakeState(rest, states, state_map)
313                                  : where->second;
314   DCHECK_LT(0, range.from());
315   DCHECK_LT(range.to(), 0xFF);
316   const StateRange new_state_initializer[] = {
317       {0, 1}, {range.from(), target_state},
318       {static_cast<uint8>(range.to() + 1), 1}};
319   states->push_back(
320       State(new_state_initializer,
321             new_state_initializer + arraysize(new_state_initializer)));
322   const uint8 new_state_number =
323       base::checked_cast<uint8>(states->size() - 1);
324   CHECK(state_map->insert(std::make_pair(set, new_state_number)).second);
325   return new_state_number;
326 }
327 
GenerateStates(const PairVector & pairs)328 std::vector<State> GenerateStates(const PairVector& pairs) {
329   // States 0 and 1 are the initial/valid state and invalid state, respectively.
330   std::vector<State> states(2, GenerateInvalidState());
331   StateMap state_map;
332   state_map.insert(std::make_pair(StringSet(), 0));
333   for (PairVector::const_iterator it = pairs.begin(); it != pairs.end(); ++it) {
334     DCHECK(it->character.empty());
335     DCHECK(!it->set.empty());
336     const Range& range = it->set.front();
337     const StringSet rest(it->set.begin() + 1, it->set.end());
338     const StateMap::const_iterator where = state_map.find(rest);
339     const uint8 target_state = where == state_map.end()
340                                    ? MakeState(rest, &states, &state_map)
341                                    : where->second;
342     if (states[0].back().from == range.from()) {
343       DCHECK_EQ(1, states[0].back().target_state);
344       states[0].back().target_state = target_state;
345       DCHECK_LT(range.to(), 0xFF);
346       const StateRange new_range = {static_cast<uint8>(range.to() + 1), 1};
347       states[0].push_back(new_range);
348     } else {
349       DCHECK_LT(range.to(), 0xFF);
350       const StateRange new_range_initializer[] = {{range.from(), target_state},
351            {static_cast<uint8>(range.to() + 1), 1}};
352       states[0]
353           .insert(states[0].end(),
354                   new_range_initializer,
355                   new_range_initializer + arraysize(new_range_initializer));
356     }
357   }
358   return states;
359 }
360 
361 // Output the generated states as a C++ table. Two tricks are used to compact
362 // the table: each state in the table starts with a shift value which indicates
363 // how many bits we can discard from the right-hand-side of the byte before
364 // doing the table lookup. Secondly, only the state-transitions for bytes
365 // with the top-bit set are included in the table; bytes without the top-bit set
366 // are just ASCII and are handled directly by the code.
PrintStates(const std::vector<State> & states,FILE * stream)367 void PrintStates(const std::vector<State>& states, FILE* stream) {
368   // First calculate the start-offset of each state. This allows the state
369   // machine to jump directly to the correct offset, avoiding an extra
370   // indirection. State 0 starts at offset 0.
371   std::vector<uint8> state_offset(1, 0);
372   std::vector<uint8> shifts;
373   uint8 pos = 0;
374 
375   for (std::vector<State>::const_iterator state_it = states.begin();
376        state_it != states.end();
377        ++state_it) {
378     // We want to set |shift| to the (0-based) index of the least-significant
379     // set bit in any of the ranges for this state, since this tells us how many
380     // bits we can discard and still determine what range a byte lies in. Sadly
381     // it appears that ffs() is not portable, so we do it clumsily.
382     uint8 shift = 7;
383     for (State::const_iterator range_it = state_it->begin();
384          range_it != state_it->end();
385          ++range_it) {
386       while (shift > 0 && range_it->from % (1 << shift) != 0) {
387         --shift;
388       }
389     }
390     shifts.push_back(shift);
391     pos += 1 + (1 << (7 - shift));
392     state_offset.push_back(pos);
393   }
394 
395   DCHECK_EQ(129, state_offset[1]);
396 
397   fputs(kProlog, stream);
398   TablePrinter table_printer(stream);
399 
400   for (uint8 state_index = 0; state_index < states.size(); ++state_index) {
401     const uint8 shift = shifts[state_index];
402     uint8 next_range = 0;
403     uint8 target_state = 1;
404     fprintf(stream,
405             "    // State %d, offset 0x%02x\n",
406             static_cast<int>(state_index),
407             static_cast<int>(state_offset[state_index]));
408     table_printer.PrintValue(shift);
409     for (int i = 0; i < 0x100; i += (1 << shift)) {
410       if (next_range < states[state_index].size() &&
411           states[state_index][next_range].from == i) {
412         target_state = states[state_index][next_range].target_state;
413         ++next_range;
414       }
415       if (i >= 0x80) {
416         table_printer.PrintValue(state_offset[target_state]);
417       }
418     }
419     table_printer.NewLine();
420   }
421 
422   fputs(kEpilog, stream);
423 }
424 
425 }  // namespace
426 
main(int argc,char * argv[])427 int main(int argc, char* argv[]) {
428   CommandLine::Init(argc, argv);
429   logging::LoggingSettings settings;
430   settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG;
431   logging::InitLogging(settings);
432   if (CommandLine::ForCurrentProcess()->HasSwitch("help")) {
433     fwrite(kHelpText, 1, arraysize(kHelpText), stdout);
434     exit(EXIT_SUCCESS);
435   }
436   base::FilePath filename =
437       CommandLine::ForCurrentProcess()->GetSwitchValuePath("output");
438 
439   FILE* output = stdout;
440   if (!filename.empty()) {
441     output = base::OpenFile(filename, "wb");
442     if (!output)
443       PLOG(FATAL) << "Couldn't open '" << filename.AsUTF8Unsafe()
444                   << "' for writing";
445   }
446 
447   // Step 1: Enumerate the characters
448   PairVector pairs = InitializeCharacters();
449   // Step 2: Convert to sets.
450   MoveAllCharsToSets(&pairs);
451   if (VLOG_IS_ON(1)) {
452     LogStringSets(pairs);
453   }
454   // Step 3: Generate states.
455   std::vector<State> states = GenerateStates(pairs);
456   // Step 4/5: Print output
457   PrintStates(states, output);
458 
459   if (!filename.empty()) {
460     if (!base::CloseFile(output))
461       PLOG(FATAL) << "Couldn't finish writing '" << filename.AsUTF8Unsafe()
462                   << "'";
463   }
464 
465   return EXIT_SUCCESS;
466 }
467