• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // The original file was copied from sqlite, and was in the public domain.
6 
7 /*
8  * This code implements the MD5 message-digest algorithm.
9  * The algorithm is due to Ron Rivest.  This code was
10  * written by Colin Plumb in 1993, no copyright is claimed.
11  * This code is in the public domain; do with it what you wish.
12  *
13  * Equivalent code is available from RSA Data Security, Inc.
14  * This code has been tested against that, and is equivalent,
15  * except that you don't need to include two pages of legalese
16  * with every copy.
17  *
18  * To compute the message digest of a chunk of bytes, declare an
19  * MD5Context structure, pass it to MD5Init, call MD5Update as
20  * needed on buffers full of bytes, and then call MD5Final, which
21  * will fill a supplied 16-byte array with the digest.
22  */
23 
24 #include "base/md5.h"
25 
26 #include "base/basictypes.h"
27 
28 namespace {
29 
30 struct Context {
31   uint32 buf[4];
32   uint32 bits[2];
33   unsigned char in[64];
34 };
35 
36 /*
37  * Note: this code is harmless on little-endian machines.
38  */
byteReverse(unsigned char * buf,unsigned longs)39 void byteReverse(unsigned char *buf, unsigned longs) {
40         uint32 t;
41         do {
42                 t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
43                             ((unsigned)buf[1]<<8 | buf[0]);
44                 *(uint32 *)buf = t;
45                 buf += 4;
46         } while (--longs);
47 }
48 
49 /* The four core functions - F1 is optimized somewhat */
50 
51 /* #define F1(x, y, z) (x & y | ~x & z) */
52 #define F1(x, y, z) (z ^ (x & (y ^ z)))
53 #define F2(x, y, z) F1(z, x, y)
54 #define F3(x, y, z) (x ^ y ^ z)
55 #define F4(x, y, z) (y ^ (x | ~z))
56 
57 /* This is the central step in the MD5 algorithm. */
58 #define MD5STEP(f, w, x, y, z, data, s) \
59         ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
60 
61 /*
62  * The core of the MD5 algorithm, this alters an existing MD5 hash to
63  * reflect the addition of 16 longwords of new data.  MD5Update blocks
64  * the data and converts bytes into longwords for this routine.
65  */
MD5Transform(uint32 buf[4],const uint32 in[16])66 void MD5Transform(uint32 buf[4], const uint32 in[16]) {
67         register uint32 a, b, c, d;
68 
69         a = buf[0];
70         b = buf[1];
71         c = buf[2];
72         d = buf[3];
73 
74         MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
75         MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
76         MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
77         MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
78         MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
79         MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
80         MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
81         MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
82         MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
83         MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
84         MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
85         MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
86         MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
87         MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
88         MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
89         MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
90 
91         MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
92         MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
93         MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
94         MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
95         MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
96         MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
97         MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
98         MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
99         MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
100         MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
101         MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
102         MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
103         MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
104         MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
105         MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
106         MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
107 
108         MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
109         MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
110         MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
111         MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
112         MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
113         MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
114         MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
115         MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
116         MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
117         MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
118         MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
119         MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
120         MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
121         MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
122         MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
123         MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
124 
125         MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
126         MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
127         MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
128         MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
129         MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
130         MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
131         MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
132         MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
133         MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
134         MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
135         MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
136         MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
137         MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
138         MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
139         MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
140         MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
141 
142         buf[0] += a;
143         buf[1] += b;
144         buf[2] += c;
145         buf[3] += d;
146 }
147 
148 }  // namespace
149 
150 namespace base {
151 
152 /*
153  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
154  * initialization constants.
155  */
MD5Init(MD5Context * context)156 void MD5Init(MD5Context* context) {
157         struct Context *ctx = (struct Context *)context;
158         ctx->buf[0] = 0x67452301;
159         ctx->buf[1] = 0xefcdab89;
160         ctx->buf[2] = 0x98badcfe;
161         ctx->buf[3] = 0x10325476;
162         ctx->bits[0] = 0;
163         ctx->bits[1] = 0;
164 }
165 
166 /*
167  * Update context to reflect the concatenation of another buffer full
168  * of bytes.
169  */
MD5Update(MD5Context * context,const StringPiece & data)170 void MD5Update(MD5Context* context, const StringPiece& data) {
171         const unsigned char* inbuf = (const unsigned char*)data.data();
172         size_t len = data.size();
173         struct Context *ctx = (struct Context *)context;
174         const unsigned char* buf = (const unsigned char*)inbuf;
175         uint32 t;
176 
177         /* Update bitcount */
178 
179         t = ctx->bits[0];
180         if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
181                 ctx->bits[1]++; /* Carry from low to high */
182         ctx->bits[1] += static_cast<uint32>(len >> 29);
183 
184         t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */
185 
186         /* Handle any leading odd-sized chunks */
187 
188         if (t) {
189                 unsigned char *p = (unsigned char *)ctx->in + t;
190 
191                 t = 64-t;
192                 if (len < t) {
193                         memcpy(p, buf, len);
194                         return;
195                 }
196                 memcpy(p, buf, t);
197                 byteReverse(ctx->in, 16);
198                 MD5Transform(ctx->buf, (uint32 *)ctx->in);
199                 buf += t;
200                 len -= t;
201         }
202 
203         /* Process data in 64-byte chunks */
204 
205         while (len >= 64) {
206                 memcpy(ctx->in, buf, 64);
207                 byteReverse(ctx->in, 16);
208                 MD5Transform(ctx->buf, (uint32 *)ctx->in);
209                 buf += 64;
210                 len -= 64;
211         }
212 
213         /* Handle any remaining bytes of data. */
214 
215         memcpy(ctx->in, buf, len);
216 }
217 
218 /*
219  * Final wrapup - pad to 64-byte boundary with the bit pattern
220  * 1 0* (64-bit count of bits processed, MSB-first)
221  */
MD5Final(MD5Digest * digest,MD5Context * context)222 void MD5Final(MD5Digest* digest, MD5Context* context) {
223         struct Context *ctx = (struct Context *)context;
224         unsigned count;
225         unsigned char *p;
226 
227         /* Compute number of bytes mod 64 */
228         count = (ctx->bits[0] >> 3) & 0x3F;
229 
230         /* Set the first char of padding to 0x80.  This is safe since there is
231            always at least one byte free */
232         p = ctx->in + count;
233         *p++ = 0x80;
234 
235         /* Bytes of padding needed to make 64 bytes */
236         count = 64 - 1 - count;
237 
238         /* Pad out to 56 mod 64 */
239         if (count < 8) {
240                 /* Two lots of padding:  Pad the first block to 64 bytes */
241                 memset(p, 0, count);
242                 byteReverse(ctx->in, 16);
243                 MD5Transform(ctx->buf, (uint32 *)ctx->in);
244 
245                 /* Now fill the next block with 56 bytes */
246                 memset(ctx->in, 0, 56);
247         } else {
248                 /* Pad block to 56 bytes */
249                 memset(p, 0, count-8);
250         }
251         byteReverse(ctx->in, 14);
252 
253         /* Append length in bits and transform */
254         memcpy(&ctx->in[14 * sizeof(ctx->bits[0])],
255                &ctx->bits[0],
256                sizeof(ctx->bits[0]));
257         memcpy(&ctx->in[15 * sizeof(ctx->bits[1])],
258                &ctx->bits[1],
259                sizeof(ctx->bits[1]));
260 
261         MD5Transform(ctx->buf, (uint32 *)ctx->in);
262         byteReverse((unsigned char *)ctx->buf, 4);
263         memcpy(digest->a, ctx->buf, 16);
264         memset(ctx, 0, sizeof(*ctx));    /* In case it's sensitive */
265 }
266 
MD5IntermediateFinal(MD5Digest * digest,const MD5Context * context)267 void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) {
268   /* MD5Final mutates the MD5Context*. Make a copy for generating the
269      intermediate value. */
270   MD5Context context_copy;
271   memcpy(&context_copy, context, sizeof(context_copy));
272   MD5Final(digest, &context_copy);
273 }
274 
MD5DigestToBase16(const MD5Digest & digest)275 std::string MD5DigestToBase16(const MD5Digest& digest) {
276   static char const zEncode[] = "0123456789abcdef";
277 
278   std::string ret;
279   ret.resize(32);
280 
281   int j = 0;
282   for (int i = 0; i < 16; i ++) {
283     int a = digest.a[i];
284     ret[j++] = zEncode[(a>>4)&0xf];
285     ret[j++] = zEncode[a & 0xf];
286   }
287   return ret;
288 }
289 
MD5Sum(const void * data,size_t length,MD5Digest * digest)290 void MD5Sum(const void* data, size_t length, MD5Digest* digest) {
291   MD5Context ctx;
292   MD5Init(&ctx);
293   MD5Update(&ctx,
294             StringPiece(reinterpret_cast<const char*>(data), length));
295   MD5Final(digest, &ctx);
296 }
297 
MD5String(const StringPiece & str)298 std::string MD5String(const StringPiece& str) {
299   MD5Digest digest;
300   MD5Sum(str.data(), str.length(), &digest);
301   return MD5DigestToBase16(digest);
302 }
303 
304 }  // namespace base
305