• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // PLEASE READ: Do you really need a singleton?
6 //
7 // Singletons make it hard to determine the lifetime of an object, which can
8 // lead to buggy code and spurious crashes.
9 //
10 // Instead of adding another singleton into the mix, try to identify either:
11 //   a) An existing singleton that can manage your object's lifetime
12 //   b) Locations where you can deterministically create the object and pass
13 //      into other objects
14 //
15 // If you absolutely need a singleton, please keep them as trivial as possible
16 // and ideally a leaf dependency. Singletons get problematic when they attempt
17 // to do too much in their destructor or have circular dependencies.
18 
19 #ifndef BASE_MEMORY_SINGLETON_H_
20 #define BASE_MEMORY_SINGLETON_H_
21 
22 #include "base/at_exit.h"
23 #include "base/atomicops.h"
24 #include "base/base_export.h"
25 #include "base/memory/aligned_memory.h"
26 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
27 #include "base/threading/thread_restrictions.h"
28 
29 namespace base {
30 namespace internal {
31 
32 // Our AtomicWord doubles as a spinlock, where a value of
33 // kBeingCreatedMarker means the spinlock is being held for creation.
34 static const subtle::AtomicWord kBeingCreatedMarker = 1;
35 
36 // We pull out some of the functionality into a non-templated function, so that
37 // we can implement the more complicated pieces out of line in the .cc file.
38 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
39 
40 }  // namespace internal
41 }  // namespace base
42 
43 // TODO(joth): Move more of this file into namespace base
44 
45 // Default traits for Singleton<Type>. Calls operator new and operator delete on
46 // the object. Registers automatic deletion at process exit.
47 // Overload if you need arguments or another memory allocation function.
48 template<typename Type>
49 struct DefaultSingletonTraits {
50   // Allocates the object.
NewDefaultSingletonTraits51   static Type* New() {
52     // The parenthesis is very important here; it forces POD type
53     // initialization.
54     return new Type();
55   }
56 
57   // Destroys the object.
DeleteDefaultSingletonTraits58   static void Delete(Type* x) {
59     delete x;
60   }
61 
62   // Set to true to automatically register deletion of the object on process
63   // exit. See below for the required call that makes this happen.
64   static const bool kRegisterAtExit = true;
65 
66 #ifndef NDEBUG
67   // Set to false to disallow access on a non-joinable thread.  This is
68   // different from kRegisterAtExit because StaticMemorySingletonTraits allows
69   // access on non-joinable threads, and gracefully handles this.
70   static const bool kAllowedToAccessOnNonjoinableThread = false;
71 #endif
72 };
73 
74 
75 // Alternate traits for use with the Singleton<Type>.  Identical to
76 // DefaultSingletonTraits except that the Singleton will not be cleaned up
77 // at exit.
78 template<typename Type>
79 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
80   static const bool kRegisterAtExit = false;
81 #ifndef NDEBUG
82   static const bool kAllowedToAccessOnNonjoinableThread = true;
83 #endif
84 };
85 
86 
87 // Alternate traits for use with the Singleton<Type>.  Allocates memory
88 // for the singleton instance from a static buffer.  The singleton will
89 // be cleaned up at exit, but can't be revived after destruction unless
90 // the Resurrect() method is called.
91 //
92 // This is useful for a certain category of things, notably logging and
93 // tracing, where the singleton instance is of a type carefully constructed to
94 // be safe to access post-destruction.
95 // In logging and tracing you'll typically get stray calls at odd times, like
96 // during static destruction, thread teardown and the like, and there's a
97 // termination race on the heap-based singleton - e.g. if one thread calls
98 // get(), but then another thread initiates AtExit processing, the first thread
99 // may call into an object residing in unallocated memory. If the instance is
100 // allocated from the data segment, then this is survivable.
101 //
102 // The destructor is to deallocate system resources, in this case to unregister
103 // a callback the system will invoke when logging levels change. Note that
104 // this is also used in e.g. Chrome Frame, where you have to allow for the
105 // possibility of loading briefly into someone else's process space, and
106 // so leaking is not an option, as that would sabotage the state of your host
107 // process once you've unloaded.
108 template <typename Type>
109 struct StaticMemorySingletonTraits {
110   // WARNING: User has to deal with get() in the singleton class
111   // this is traits for returning NULL.
NewStaticMemorySingletonTraits112   static Type* New() {
113     // Only constructs once and returns pointer; otherwise returns NULL.
114     if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1))
115       return NULL;
116 
117     return new(buffer_.void_data()) Type();
118   }
119 
DeleteStaticMemorySingletonTraits120   static void Delete(Type* p) {
121     if (p != NULL)
122       p->Type::~Type();
123   }
124 
125   static const bool kRegisterAtExit = true;
126   static const bool kAllowedToAccessOnNonjoinableThread = true;
127 
128   // Exposed for unittesting.
ResurrectStaticMemorySingletonTraits129   static void Resurrect() {
130     base::subtle::NoBarrier_Store(&dead_, 0);
131   }
132 
133  private:
134   static base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
135   // Signal the object was already deleted, so it is not revived.
136   static base::subtle::Atomic32 dead_;
137 };
138 
139 template <typename Type> base::AlignedMemory<sizeof(Type), ALIGNOF(Type)>
140     StaticMemorySingletonTraits<Type>::buffer_;
141 template <typename Type> base::subtle::Atomic32
142     StaticMemorySingletonTraits<Type>::dead_ = 0;
143 
144 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
145 // instance of Type which will be created on first use and will be destroyed at
146 // normal process exit). The Trait::Delete function will not be called on
147 // abnormal process exit.
148 //
149 // DifferentiatingType is used as a key to differentiate two different
150 // singletons having the same memory allocation functions but serving a
151 // different purpose. This is mainly used for Locks serving different purposes.
152 //
153 // Example usage:
154 //
155 // In your header:
156 //   template <typename T> struct DefaultSingletonTraits;
157 //   class FooClass {
158 //    public:
159 //     static FooClass* GetInstance();  <-- See comment below on this.
160 //     void Bar() { ... }
161 //    private:
162 //     FooClass() { ... }
163 //     friend struct DefaultSingletonTraits<FooClass>;
164 //
165 //     DISALLOW_COPY_AND_ASSIGN(FooClass);
166 //   };
167 //
168 // In your source file:
169 //  #include "base/memory/singleton.h"
170 //  FooClass* FooClass::GetInstance() {
171 //    return Singleton<FooClass>::get();
172 //  }
173 //
174 // And to call methods on FooClass:
175 //   FooClass::GetInstance()->Bar();
176 //
177 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
178 // and it is important that FooClass::GetInstance() is not inlined in the
179 // header. This makes sure that when source files from multiple targets include
180 // this header they don't end up with different copies of the inlined code
181 // creating multiple copies of the singleton.
182 //
183 // Singleton<> has no non-static members and doesn't need to actually be
184 // instantiated.
185 //
186 // This class is itself thread-safe. The underlying Type must of course be
187 // thread-safe if you want to use it concurrently. Two parameters may be tuned
188 // depending on the user's requirements.
189 //
190 // Glossary:
191 //   RAE = kRegisterAtExit
192 //
193 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
194 // process exit. More precisely it uses base::AtExitManager which requires an
195 // object of this type to be instantiated. AtExitManager mimics the semantics
196 // of atexit() such as LIFO order but under Windows is safer to call. For more
197 // information see at_exit.h.
198 //
199 // If Traits::RAE is false, the singleton will not be freed at process exit,
200 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
201 // shouldn't be false unless absolutely necessary. Remember that the heap where
202 // the object is allocated may be destroyed by the CRT anyway.
203 //
204 // Caveats:
205 // (a) Every call to get(), operator->() and operator*() incurs some overhead
206 //     (16ns on my P4/2.8GHz) to check whether the object has already been
207 //     initialized.  You may wish to cache the result of get(); it will not
208 //     change.
209 //
210 // (b) Your factory function must never throw an exception. This class is not
211 //     exception-safe.
212 //
213 template <typename Type,
214           typename Traits = DefaultSingletonTraits<Type>,
215           typename DifferentiatingType = Type>
216 class Singleton {
217  private:
218   // Classes using the Singleton<T> pattern should declare a GetInstance()
219   // method and call Singleton::get() from within that.
220   friend Type* Type::GetInstance();
221 
222   // Allow TraceLog tests to test tracing after OnExit.
223   friend class DeleteTraceLogForTesting;
224 
225   // This class is safe to be constructed and copy-constructed since it has no
226   // member.
227 
228   // Return a pointer to the one true instance of the class.
get()229   static Type* get() {
230 #ifndef NDEBUG
231     // Avoid making TLS lookup on release builds.
232     if (!Traits::kAllowedToAccessOnNonjoinableThread)
233       base::ThreadRestrictions::AssertSingletonAllowed();
234 #endif
235 
236     // The load has acquire memory ordering as the thread which reads the
237     // instance_ pointer must acquire visibility over the singleton data.
238     base::subtle::AtomicWord value = base::subtle::Acquire_Load(&instance_);
239     if (value != 0 && value != base::internal::kBeingCreatedMarker) {
240       // See the corresponding HAPPENS_BEFORE below.
241       ANNOTATE_HAPPENS_AFTER(&instance_);
242       return reinterpret_cast<Type*>(value);
243     }
244 
245     // Object isn't created yet, maybe we will get to create it, let's try...
246     if (base::subtle::Acquire_CompareAndSwap(
247           &instance_, 0, base::internal::kBeingCreatedMarker) == 0) {
248       // instance_ was NULL and is now kBeingCreatedMarker.  Only one thread
249       // will ever get here.  Threads might be spinning on us, and they will
250       // stop right after we do this store.
251       Type* newval = Traits::New();
252 
253       // This annotation helps race detectors recognize correct lock-less
254       // synchronization between different threads calling get().
255       // See the corresponding HAPPENS_AFTER below and above.
256       ANNOTATE_HAPPENS_BEFORE(&instance_);
257       // Releases the visibility over instance_ to the readers.
258       base::subtle::Release_Store(
259           &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval));
260 
261       if (newval != NULL && Traits::kRegisterAtExit)
262         base::AtExitManager::RegisterCallback(OnExit, NULL);
263 
264       return newval;
265     }
266 
267     // We hit a race. Wait for the other thread to complete it.
268     value = base::internal::WaitForInstance(&instance_);
269 
270     // See the corresponding HAPPENS_BEFORE above.
271     ANNOTATE_HAPPENS_AFTER(&instance_);
272     return reinterpret_cast<Type*>(value);
273   }
274 
275   // Adapter function for use with AtExit().  This should be called single
276   // threaded, so don't use atomic operations.
277   // Calling OnExit while singleton is in use by other threads is a mistake.
OnExit(void *)278   static void OnExit(void* /*unused*/) {
279     // AtExit should only ever be register after the singleton instance was
280     // created.  We should only ever get here with a valid instance_ pointer.
281     Traits::Delete(
282         reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_)));
283     instance_ = 0;
284   }
285   static base::subtle::AtomicWord instance_;
286 };
287 
288 template <typename Type, typename Traits, typename DifferentiatingType>
289 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::
290     instance_ = 0;
291 
292 #endif  // BASE_MEMORY_SINGLETON_H_
293