1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // PLEASE READ: Do you really need a singleton? 6 // 7 // Singletons make it hard to determine the lifetime of an object, which can 8 // lead to buggy code and spurious crashes. 9 // 10 // Instead of adding another singleton into the mix, try to identify either: 11 // a) An existing singleton that can manage your object's lifetime 12 // b) Locations where you can deterministically create the object and pass 13 // into other objects 14 // 15 // If you absolutely need a singleton, please keep them as trivial as possible 16 // and ideally a leaf dependency. Singletons get problematic when they attempt 17 // to do too much in their destructor or have circular dependencies. 18 19 #ifndef BASE_MEMORY_SINGLETON_H_ 20 #define BASE_MEMORY_SINGLETON_H_ 21 22 #include "base/at_exit.h" 23 #include "base/atomicops.h" 24 #include "base/base_export.h" 25 #include "base/memory/aligned_memory.h" 26 #include "base/third_party/dynamic_annotations/dynamic_annotations.h" 27 #include "base/threading/thread_restrictions.h" 28 29 namespace base { 30 namespace internal { 31 32 // Our AtomicWord doubles as a spinlock, where a value of 33 // kBeingCreatedMarker means the spinlock is being held for creation. 34 static const subtle::AtomicWord kBeingCreatedMarker = 1; 35 36 // We pull out some of the functionality into a non-templated function, so that 37 // we can implement the more complicated pieces out of line in the .cc file. 38 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance); 39 40 } // namespace internal 41 } // namespace base 42 43 // TODO(joth): Move more of this file into namespace base 44 45 // Default traits for Singleton<Type>. Calls operator new and operator delete on 46 // the object. Registers automatic deletion at process exit. 47 // Overload if you need arguments or another memory allocation function. 48 template<typename Type> 49 struct DefaultSingletonTraits { 50 // Allocates the object. NewDefaultSingletonTraits51 static Type* New() { 52 // The parenthesis is very important here; it forces POD type 53 // initialization. 54 return new Type(); 55 } 56 57 // Destroys the object. DeleteDefaultSingletonTraits58 static void Delete(Type* x) { 59 delete x; 60 } 61 62 // Set to true to automatically register deletion of the object on process 63 // exit. See below for the required call that makes this happen. 64 static const bool kRegisterAtExit = true; 65 66 #ifndef NDEBUG 67 // Set to false to disallow access on a non-joinable thread. This is 68 // different from kRegisterAtExit because StaticMemorySingletonTraits allows 69 // access on non-joinable threads, and gracefully handles this. 70 static const bool kAllowedToAccessOnNonjoinableThread = false; 71 #endif 72 }; 73 74 75 // Alternate traits for use with the Singleton<Type>. Identical to 76 // DefaultSingletonTraits except that the Singleton will not be cleaned up 77 // at exit. 78 template<typename Type> 79 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { 80 static const bool kRegisterAtExit = false; 81 #ifndef NDEBUG 82 static const bool kAllowedToAccessOnNonjoinableThread = true; 83 #endif 84 }; 85 86 87 // Alternate traits for use with the Singleton<Type>. Allocates memory 88 // for the singleton instance from a static buffer. The singleton will 89 // be cleaned up at exit, but can't be revived after destruction unless 90 // the Resurrect() method is called. 91 // 92 // This is useful for a certain category of things, notably logging and 93 // tracing, where the singleton instance is of a type carefully constructed to 94 // be safe to access post-destruction. 95 // In logging and tracing you'll typically get stray calls at odd times, like 96 // during static destruction, thread teardown and the like, and there's a 97 // termination race on the heap-based singleton - e.g. if one thread calls 98 // get(), but then another thread initiates AtExit processing, the first thread 99 // may call into an object residing in unallocated memory. If the instance is 100 // allocated from the data segment, then this is survivable. 101 // 102 // The destructor is to deallocate system resources, in this case to unregister 103 // a callback the system will invoke when logging levels change. Note that 104 // this is also used in e.g. Chrome Frame, where you have to allow for the 105 // possibility of loading briefly into someone else's process space, and 106 // so leaking is not an option, as that would sabotage the state of your host 107 // process once you've unloaded. 108 template <typename Type> 109 struct StaticMemorySingletonTraits { 110 // WARNING: User has to deal with get() in the singleton class 111 // this is traits for returning NULL. NewStaticMemorySingletonTraits112 static Type* New() { 113 // Only constructs once and returns pointer; otherwise returns NULL. 114 if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1)) 115 return NULL; 116 117 return new(buffer_.void_data()) Type(); 118 } 119 DeleteStaticMemorySingletonTraits120 static void Delete(Type* p) { 121 if (p != NULL) 122 p->Type::~Type(); 123 } 124 125 static const bool kRegisterAtExit = true; 126 static const bool kAllowedToAccessOnNonjoinableThread = true; 127 128 // Exposed for unittesting. ResurrectStaticMemorySingletonTraits129 static void Resurrect() { 130 base::subtle::NoBarrier_Store(&dead_, 0); 131 } 132 133 private: 134 static base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_; 135 // Signal the object was already deleted, so it is not revived. 136 static base::subtle::Atomic32 dead_; 137 }; 138 139 template <typename Type> base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> 140 StaticMemorySingletonTraits<Type>::buffer_; 141 template <typename Type> base::subtle::Atomic32 142 StaticMemorySingletonTraits<Type>::dead_ = 0; 143 144 // The Singleton<Type, Traits, DifferentiatingType> class manages a single 145 // instance of Type which will be created on first use and will be destroyed at 146 // normal process exit). The Trait::Delete function will not be called on 147 // abnormal process exit. 148 // 149 // DifferentiatingType is used as a key to differentiate two different 150 // singletons having the same memory allocation functions but serving a 151 // different purpose. This is mainly used for Locks serving different purposes. 152 // 153 // Example usage: 154 // 155 // In your header: 156 // template <typename T> struct DefaultSingletonTraits; 157 // class FooClass { 158 // public: 159 // static FooClass* GetInstance(); <-- See comment below on this. 160 // void Bar() { ... } 161 // private: 162 // FooClass() { ... } 163 // friend struct DefaultSingletonTraits<FooClass>; 164 // 165 // DISALLOW_COPY_AND_ASSIGN(FooClass); 166 // }; 167 // 168 // In your source file: 169 // #include "base/memory/singleton.h" 170 // FooClass* FooClass::GetInstance() { 171 // return Singleton<FooClass>::get(); 172 // } 173 // 174 // And to call methods on FooClass: 175 // FooClass::GetInstance()->Bar(); 176 // 177 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance 178 // and it is important that FooClass::GetInstance() is not inlined in the 179 // header. This makes sure that when source files from multiple targets include 180 // this header they don't end up with different copies of the inlined code 181 // creating multiple copies of the singleton. 182 // 183 // Singleton<> has no non-static members and doesn't need to actually be 184 // instantiated. 185 // 186 // This class is itself thread-safe. The underlying Type must of course be 187 // thread-safe if you want to use it concurrently. Two parameters may be tuned 188 // depending on the user's requirements. 189 // 190 // Glossary: 191 // RAE = kRegisterAtExit 192 // 193 // On every platform, if Traits::RAE is true, the singleton will be destroyed at 194 // process exit. More precisely it uses base::AtExitManager which requires an 195 // object of this type to be instantiated. AtExitManager mimics the semantics 196 // of atexit() such as LIFO order but under Windows is safer to call. For more 197 // information see at_exit.h. 198 // 199 // If Traits::RAE is false, the singleton will not be freed at process exit, 200 // thus the singleton will be leaked if it is ever accessed. Traits::RAE 201 // shouldn't be false unless absolutely necessary. Remember that the heap where 202 // the object is allocated may be destroyed by the CRT anyway. 203 // 204 // Caveats: 205 // (a) Every call to get(), operator->() and operator*() incurs some overhead 206 // (16ns on my P4/2.8GHz) to check whether the object has already been 207 // initialized. You may wish to cache the result of get(); it will not 208 // change. 209 // 210 // (b) Your factory function must never throw an exception. This class is not 211 // exception-safe. 212 // 213 template <typename Type, 214 typename Traits = DefaultSingletonTraits<Type>, 215 typename DifferentiatingType = Type> 216 class Singleton { 217 private: 218 // Classes using the Singleton<T> pattern should declare a GetInstance() 219 // method and call Singleton::get() from within that. 220 friend Type* Type::GetInstance(); 221 222 // Allow TraceLog tests to test tracing after OnExit. 223 friend class DeleteTraceLogForTesting; 224 225 // This class is safe to be constructed and copy-constructed since it has no 226 // member. 227 228 // Return a pointer to the one true instance of the class. get()229 static Type* get() { 230 #ifndef NDEBUG 231 // Avoid making TLS lookup on release builds. 232 if (!Traits::kAllowedToAccessOnNonjoinableThread) 233 base::ThreadRestrictions::AssertSingletonAllowed(); 234 #endif 235 236 // The load has acquire memory ordering as the thread which reads the 237 // instance_ pointer must acquire visibility over the singleton data. 238 base::subtle::AtomicWord value = base::subtle::Acquire_Load(&instance_); 239 if (value != 0 && value != base::internal::kBeingCreatedMarker) { 240 // See the corresponding HAPPENS_BEFORE below. 241 ANNOTATE_HAPPENS_AFTER(&instance_); 242 return reinterpret_cast<Type*>(value); 243 } 244 245 // Object isn't created yet, maybe we will get to create it, let's try... 246 if (base::subtle::Acquire_CompareAndSwap( 247 &instance_, 0, base::internal::kBeingCreatedMarker) == 0) { 248 // instance_ was NULL and is now kBeingCreatedMarker. Only one thread 249 // will ever get here. Threads might be spinning on us, and they will 250 // stop right after we do this store. 251 Type* newval = Traits::New(); 252 253 // This annotation helps race detectors recognize correct lock-less 254 // synchronization between different threads calling get(). 255 // See the corresponding HAPPENS_AFTER below and above. 256 ANNOTATE_HAPPENS_BEFORE(&instance_); 257 // Releases the visibility over instance_ to the readers. 258 base::subtle::Release_Store( 259 &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval)); 260 261 if (newval != NULL && Traits::kRegisterAtExit) 262 base::AtExitManager::RegisterCallback(OnExit, NULL); 263 264 return newval; 265 } 266 267 // We hit a race. Wait for the other thread to complete it. 268 value = base::internal::WaitForInstance(&instance_); 269 270 // See the corresponding HAPPENS_BEFORE above. 271 ANNOTATE_HAPPENS_AFTER(&instance_); 272 return reinterpret_cast<Type*>(value); 273 } 274 275 // Adapter function for use with AtExit(). This should be called single 276 // threaded, so don't use atomic operations. 277 // Calling OnExit while singleton is in use by other threads is a mistake. OnExit(void *)278 static void OnExit(void* /*unused*/) { 279 // AtExit should only ever be register after the singleton instance was 280 // created. We should only ever get here with a valid instance_ pointer. 281 Traits::Delete( 282 reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_))); 283 instance_ = 0; 284 } 285 static base::subtle::AtomicWord instance_; 286 }; 287 288 template <typename Type, typename Traits, typename DifferentiatingType> 289 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>:: 290 instance_ = 0; 291 292 #endif // BASE_MEMORY_SINGLETON_H_ 293