1 /* Portions are Copyright (C) 2011 Google Inc */
2 /* ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the Netscape Portable Runtime (NSPR).
16 *
17 * The Initial Developer of the Original Code is
18 * Netscape Communications Corporation.
19 * Portions created by the Initial Developer are Copyright (C) 1998-2000
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *
24 * Alternatively, the contents of this file may be used under the terms of
25 * either the GNU General Public License Version 2 or later (the "GPL"), or
26 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 * in which case the provisions of the GPL or the LGPL are applicable instead
28 * of those above. If you wish to allow use of your version of this file only
29 * under the terms of either the GPL or the LGPL, and not to allow others to
30 * use your version of this file under the terms of the MPL, indicate your
31 * decision by deleting the provisions above and replace them with the notice
32 * and other provisions required by the GPL or the LGPL. If you do not delete
33 * the provisions above, a recipient may use your version of this file under
34 * the terms of any one of the MPL, the GPL or the LGPL.
35 *
36 * ***** END LICENSE BLOCK ***** */
37
38 /*
39 * prtime.cc --
40 * NOTE: The original nspr file name is prtime.c
41 *
42 * NSPR date and time functions
43 *
44 * CVS revision 3.37
45 */
46
47 /*
48 * The following functions were copied from the NSPR prtime.c file.
49 * PR_ParseTimeString
50 * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid
51 * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime
52 * and PR_ImplodeTime calls cancel each other out.)
53 * PR_NormalizeTime
54 * PR_GMTParameters
55 * PR_ImplodeTime
56 * This was modified to use the Win32 SYSTEMTIME/FILETIME structures
57 * and the timezone offsets are applied to the FILETIME structure.
58 * All types and macros are defined in the base/third_party/prtime.h file.
59 * These have been copied from the following nspr files. We have only copied
60 * over the types we need.
61 * 1. prtime.h
62 * 2. prtypes.h
63 * 3. prlong.h
64 *
65 * Unit tests are in base/time/pr_time_unittest.cc.
66 */
67
68 #include "base/logging.h"
69 #include "base/third_party/nspr/prtime.h"
70 #include "build/build_config.h"
71
72 #if defined(OS_WIN)
73 #include <windows.h>
74 #elif defined(OS_MACOSX)
75 #include <CoreFoundation/CoreFoundation.h>
76 #elif defined(OS_ANDROID)
77 #include <ctype.h>
78 #include "base/os_compat_android.h" // For timegm()
79 #elif defined(OS_NACL)
80 #include "base/os_compat_nacl.h" // For timegm()
81 #endif
82 #include <errno.h> /* for EINVAL */
83 #include <time.h>
84
85 /* Implements the Unix localtime_r() function for windows */
86 #if defined(OS_WIN)
localtime_r(const time_t * secs,struct tm * time)87 static void localtime_r(const time_t* secs, struct tm* time) {
88 (void) localtime_s(time, secs);
89 }
90 #endif
91
92 /*
93 *------------------------------------------------------------------------
94 *
95 * PR_ImplodeTime --
96 *
97 * Cf. time_t mktime(struct tm *tp)
98 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
99 *
100 *------------------------------------------------------------------------
101 */
102 PRTime
PR_ImplodeTime(const PRExplodedTime * exploded)103 PR_ImplodeTime(const PRExplodedTime *exploded)
104 {
105 // This is important, we want to make sure multiplications are
106 // done with the correct precision.
107 static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000);
108 #if defined(OS_WIN)
109 // Create the system struct representing our exploded time.
110 SYSTEMTIME st = {0};
111 FILETIME ft = {0};
112 ULARGE_INTEGER uli = {0};
113
114 st.wYear = exploded->tm_year;
115 st.wMonth = static_cast<WORD>(exploded->tm_month + 1);
116 st.wDayOfWeek = exploded->tm_wday;
117 st.wDay = static_cast<WORD>(exploded->tm_mday);
118 st.wHour = static_cast<WORD>(exploded->tm_hour);
119 st.wMinute = static_cast<WORD>(exploded->tm_min);
120 st.wSecond = static_cast<WORD>(exploded->tm_sec);
121 st.wMilliseconds = static_cast<WORD>(exploded->tm_usec/1000);
122 // Convert to FILETIME.
123 if (!SystemTimeToFileTime(&st, &ft)) {
124 NOTREACHED() << "Unable to convert time";
125 return 0;
126 }
127 // Apply offsets.
128 uli.LowPart = ft.dwLowDateTime;
129 uli.HighPart = ft.dwHighDateTime;
130 // Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units
131 // to microsecond units.
132 PRTime result =
133 static_cast<PRTime>((uli.QuadPart / 10) - 11644473600000000i64);
134 // Adjust for time zone and dst. Convert from seconds to microseconds.
135 result -= (exploded->tm_params.tp_gmt_offset +
136 exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds;
137 // Add microseconds that cannot be represented in |st|.
138 result += exploded->tm_usec % 1000;
139 return result;
140 #elif defined(OS_MACOSX)
141 // Create the system struct representing our exploded time.
142 CFGregorianDate gregorian_date;
143 gregorian_date.year = exploded->tm_year;
144 gregorian_date.month = exploded->tm_month + 1;
145 gregorian_date.day = exploded->tm_mday;
146 gregorian_date.hour = exploded->tm_hour;
147 gregorian_date.minute = exploded->tm_min;
148 gregorian_date.second = exploded->tm_sec;
149
150 // Compute |absolute_time| in seconds, correct for gmt and dst
151 // (note the combined offset will be negative when we need to add it), then
152 // convert to microseconds which is what PRTime expects.
153 CFAbsoluteTime absolute_time =
154 CFGregorianDateGetAbsoluteTime(gregorian_date, NULL);
155 PRTime result = static_cast<PRTime>(absolute_time);
156 result -= exploded->tm_params.tp_gmt_offset +
157 exploded->tm_params.tp_dst_offset;
158 result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970
159 result *= kSecondsToMicroseconds;
160 result += exploded->tm_usec;
161 return result;
162 #elif defined(OS_POSIX)
163 struct tm exp_tm = {0};
164 exp_tm.tm_sec = exploded->tm_sec;
165 exp_tm.tm_min = exploded->tm_min;
166 exp_tm.tm_hour = exploded->tm_hour;
167 exp_tm.tm_mday = exploded->tm_mday;
168 exp_tm.tm_mon = exploded->tm_month;
169 exp_tm.tm_year = exploded->tm_year - 1900;
170
171 time_t absolute_time = timegm(&exp_tm);
172
173 // If timegm returned -1. Since we don't pass it a time zone, the only
174 // valid case of returning -1 is 1 second before Epoch (Dec 31, 1969).
175 if (absolute_time == -1 &&
176 !(exploded->tm_year == 1969 && exploded->tm_month == 11 &&
177 exploded->tm_mday == 31 && exploded->tm_hour == 23 &&
178 exploded->tm_min == 59 && exploded->tm_sec == 59)) {
179 // If we get here, time_t must be 32 bits.
180 // Date was possibly too far in the future and would overflow. Return
181 // the most future date possible (year 2038).
182 if (exploded->tm_year >= 1970)
183 return INT_MAX * kSecondsToMicroseconds;
184 // Date was possibly too far in the past and would underflow. Return
185 // the most past date possible (year 1901).
186 return INT_MIN * kSecondsToMicroseconds;
187 }
188
189 PRTime result = static_cast<PRTime>(absolute_time);
190 result -= exploded->tm_params.tp_gmt_offset +
191 exploded->tm_params.tp_dst_offset;
192 result *= kSecondsToMicroseconds;
193 result += exploded->tm_usec;
194 return result;
195 #else
196 #error No PR_ImplodeTime implemented on your platform.
197 #endif
198 }
199
200 /*
201 * The COUNT_LEAPS macro counts the number of leap years passed by
202 * till the start of the given year Y. At the start of the year 4
203 * A.D. the number of leap years passed by is 0, while at the start of
204 * the year 5 A.D. this count is 1. The number of years divisible by
205 * 100 but not divisible by 400 (the non-leap years) is deducted from
206 * the count to get the correct number of leap years.
207 *
208 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the
209 * start of the given year Y. The number of days at the start of the year
210 * 1 is 0 while the number of days at the start of the year 2 is 365
211 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
212 * midnight 00:00:00.
213 */
214
215 #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 )
216 #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) )
217 #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
218
219 /*
220 * Static variables used by functions in this file
221 */
222
223 /*
224 * The following array contains the day of year for the last day of
225 * each month, where index 1 is January, and day 0 is January 1.
226 */
227
228 static const int lastDayOfMonth[2][13] = {
229 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
230 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
231 };
232
233 /*
234 * The number of days in a month
235 */
236
237 static const PRInt8 nDays[2][12] = {
238 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
239 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
240 };
241
242 /*
243 *-------------------------------------------------------------------------
244 *
245 * IsLeapYear --
246 *
247 * Returns 1 if the year is a leap year, 0 otherwise.
248 *
249 *-------------------------------------------------------------------------
250 */
251
IsLeapYear(PRInt16 year)252 static int IsLeapYear(PRInt16 year)
253 {
254 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
255 return 1;
256 else
257 return 0;
258 }
259
260 /*
261 * 'secOffset' should be less than 86400 (i.e., a day).
262 * 'time' should point to a normalized PRExplodedTime.
263 */
264
265 static void
ApplySecOffset(PRExplodedTime * time,PRInt32 secOffset)266 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
267 {
268 time->tm_sec += secOffset;
269
270 /* Note that in this implementation we do not count leap seconds */
271 if (time->tm_sec < 0 || time->tm_sec >= 60) {
272 time->tm_min += time->tm_sec / 60;
273 time->tm_sec %= 60;
274 if (time->tm_sec < 0) {
275 time->tm_sec += 60;
276 time->tm_min--;
277 }
278 }
279
280 if (time->tm_min < 0 || time->tm_min >= 60) {
281 time->tm_hour += time->tm_min / 60;
282 time->tm_min %= 60;
283 if (time->tm_min < 0) {
284 time->tm_min += 60;
285 time->tm_hour--;
286 }
287 }
288
289 if (time->tm_hour < 0) {
290 /* Decrement mday, yday, and wday */
291 time->tm_hour += 24;
292 time->tm_mday--;
293 time->tm_yday--;
294 if (time->tm_mday < 1) {
295 time->tm_month--;
296 if (time->tm_month < 0) {
297 time->tm_month = 11;
298 time->tm_year--;
299 if (IsLeapYear(time->tm_year))
300 time->tm_yday = 365;
301 else
302 time->tm_yday = 364;
303 }
304 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
305 }
306 time->tm_wday--;
307 if (time->tm_wday < 0)
308 time->tm_wday = 6;
309 } else if (time->tm_hour > 23) {
310 /* Increment mday, yday, and wday */
311 time->tm_hour -= 24;
312 time->tm_mday++;
313 time->tm_yday++;
314 if (time->tm_mday >
315 nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
316 time->tm_mday = 1;
317 time->tm_month++;
318 if (time->tm_month > 11) {
319 time->tm_month = 0;
320 time->tm_year++;
321 time->tm_yday = 0;
322 }
323 }
324 time->tm_wday++;
325 if (time->tm_wday > 6)
326 time->tm_wday = 0;
327 }
328 }
329
330 void
PR_NormalizeTime(PRExplodedTime * time,PRTimeParamFn params)331 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
332 {
333 int daysInMonth;
334 PRInt32 numDays;
335
336 /* Get back to GMT */
337 time->tm_sec -= time->tm_params.tp_gmt_offset
338 + time->tm_params.tp_dst_offset;
339 time->tm_params.tp_gmt_offset = 0;
340 time->tm_params.tp_dst_offset = 0;
341
342 /* Now normalize GMT */
343
344 if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
345 time->tm_sec += time->tm_usec / 1000000;
346 time->tm_usec %= 1000000;
347 if (time->tm_usec < 0) {
348 time->tm_usec += 1000000;
349 time->tm_sec--;
350 }
351 }
352
353 /* Note that we do not count leap seconds in this implementation */
354 if (time->tm_sec < 0 || time->tm_sec >= 60) {
355 time->tm_min += time->tm_sec / 60;
356 time->tm_sec %= 60;
357 if (time->tm_sec < 0) {
358 time->tm_sec += 60;
359 time->tm_min--;
360 }
361 }
362
363 if (time->tm_min < 0 || time->tm_min >= 60) {
364 time->tm_hour += time->tm_min / 60;
365 time->tm_min %= 60;
366 if (time->tm_min < 0) {
367 time->tm_min += 60;
368 time->tm_hour--;
369 }
370 }
371
372 if (time->tm_hour < 0 || time->tm_hour >= 24) {
373 time->tm_mday += time->tm_hour / 24;
374 time->tm_hour %= 24;
375 if (time->tm_hour < 0) {
376 time->tm_hour += 24;
377 time->tm_mday--;
378 }
379 }
380
381 /* Normalize month and year before mday */
382 if (time->tm_month < 0 || time->tm_month >= 12) {
383 time->tm_year += static_cast<PRInt16>(time->tm_month / 12);
384 time->tm_month %= 12;
385 if (time->tm_month < 0) {
386 time->tm_month += 12;
387 time->tm_year--;
388 }
389 }
390
391 /* Now that month and year are in proper range, normalize mday */
392
393 if (time->tm_mday < 1) {
394 /* mday too small */
395 do {
396 /* the previous month */
397 time->tm_month--;
398 if (time->tm_month < 0) {
399 time->tm_month = 11;
400 time->tm_year--;
401 }
402 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
403 } while (time->tm_mday < 1);
404 } else {
405 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
406 while (time->tm_mday > daysInMonth) {
407 /* mday too large */
408 time->tm_mday -= daysInMonth;
409 time->tm_month++;
410 if (time->tm_month > 11) {
411 time->tm_month = 0;
412 time->tm_year++;
413 }
414 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
415 }
416 }
417
418 /* Recompute yday and wday */
419 time->tm_yday = static_cast<PRInt16>(time->tm_mday +
420 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]);
421
422 numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
423 time->tm_wday = (numDays + 4) % 7;
424 if (time->tm_wday < 0) {
425 time->tm_wday += 7;
426 }
427
428 /* Recompute time parameters */
429
430 time->tm_params = params(time);
431
432 ApplySecOffset(time, time->tm_params.tp_gmt_offset
433 + time->tm_params.tp_dst_offset);
434 }
435
436 /*
437 *------------------------------------------------------------------------
438 *
439 * PR_GMTParameters --
440 *
441 * Returns the PRTimeParameters for Greenwich Mean Time.
442 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
443 *
444 *------------------------------------------------------------------------
445 */
446
447 PRTimeParameters
PR_GMTParameters(const PRExplodedTime * gmt)448 PR_GMTParameters(const PRExplodedTime *gmt)
449 {
450 PRTimeParameters retVal = { 0, 0 };
451 return retVal;
452 }
453
454 /*
455 * The following code implements PR_ParseTimeString(). It is based on
456 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
457 */
458
459 /*
460 * We only recognize the abbreviations of a small subset of time zones
461 * in North America, Europe, and Japan.
462 *
463 * PST/PDT: Pacific Standard/Daylight Time
464 * MST/MDT: Mountain Standard/Daylight Time
465 * CST/CDT: Central Standard/Daylight Time
466 * EST/EDT: Eastern Standard/Daylight Time
467 * AST: Atlantic Standard Time
468 * NST: Newfoundland Standard Time
469 * GMT: Greenwich Mean Time
470 * BST: British Summer Time
471 * MET: Middle Europe Time
472 * EET: Eastern Europe Time
473 * JST: Japan Standard Time
474 */
475
476 typedef enum
477 {
478 TT_UNKNOWN,
479
480 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
481
482 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
483 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
484
485 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
486 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
487 } TIME_TOKEN;
488
489 /*
490 * This parses a time/date string into a PRTime
491 * (microseconds after "1-Jan-1970 00:00:00 GMT").
492 * It returns PR_SUCCESS on success, and PR_FAILURE
493 * if the time/date string can't be parsed.
494 *
495 * Many formats are handled, including:
496 *
497 * 14 Apr 89 03:20:12
498 * 14 Apr 89 03:20 GMT
499 * Fri, 17 Mar 89 4:01:33
500 * Fri, 17 Mar 89 4:01 GMT
501 * Mon Jan 16 16:12 PDT 1989
502 * Mon Jan 16 16:12 +0130 1989
503 * 6 May 1992 16:41-JST (Wednesday)
504 * 22-AUG-1993 10:59:12.82
505 * 22-AUG-1993 10:59pm
506 * 22-AUG-1993 12:59am
507 * 22-AUG-1993 12:59 PM
508 * Friday, August 04, 1995 3:54 PM
509 * 06/21/95 04:24:34 PM
510 * 20/06/95 21:07
511 * 95-06-08 19:32:48 EDT
512 * 1995-06-17T23:11:25.342156Z
513 *
514 * If the input string doesn't contain a description of the timezone,
515 * we consult the `default_to_gmt' to decide whether the string should
516 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
517 * The correct value for this argument depends on what standard specified
518 * the time string which you are parsing.
519 */
520
521 PRStatus
PR_ParseTimeString(const char * string,PRBool default_to_gmt,PRTime * result_imploded)522 PR_ParseTimeString(
523 const char *string,
524 PRBool default_to_gmt,
525 PRTime *result_imploded)
526 {
527 PRExplodedTime tm;
528 PRExplodedTime *result = &tm;
529 TIME_TOKEN dotw = TT_UNKNOWN;
530 TIME_TOKEN month = TT_UNKNOWN;
531 TIME_TOKEN zone = TT_UNKNOWN;
532 int zone_offset = -1;
533 int dst_offset = 0;
534 int date = -1;
535 PRInt32 year = -1;
536 int hour = -1;
537 int min = -1;
538 int sec = -1;
539 int usec = -1;
540
541 const char *rest = string;
542
543 int iterations = 0;
544
545 PR_ASSERT(string && result);
546 if (!string || !result) return PR_FAILURE;
547
548 while (*rest)
549 {
550
551 if (iterations++ > 1000)
552 {
553 return PR_FAILURE;
554 }
555
556 switch (*rest)
557 {
558 case 'a': case 'A':
559 if (month == TT_UNKNOWN &&
560 (rest[1] == 'p' || rest[1] == 'P') &&
561 (rest[2] == 'r' || rest[2] == 'R'))
562 month = TT_APR;
563 else if (zone == TT_UNKNOWN &&
564 (rest[1] == 's' || rest[1] == 'S') &&
565 (rest[2] == 't' || rest[2] == 'T'))
566 zone = TT_AST;
567 else if (month == TT_UNKNOWN &&
568 (rest[1] == 'u' || rest[1] == 'U') &&
569 (rest[2] == 'g' || rest[2] == 'G'))
570 month = TT_AUG;
571 break;
572 case 'b': case 'B':
573 if (zone == TT_UNKNOWN &&
574 (rest[1] == 's' || rest[1] == 'S') &&
575 (rest[2] == 't' || rest[2] == 'T'))
576 zone = TT_BST;
577 break;
578 case 'c': case 'C':
579 if (zone == TT_UNKNOWN &&
580 (rest[1] == 'd' || rest[1] == 'D') &&
581 (rest[2] == 't' || rest[2] == 'T'))
582 zone = TT_CDT;
583 else if (zone == TT_UNKNOWN &&
584 (rest[1] == 's' || rest[1] == 'S') &&
585 (rest[2] == 't' || rest[2] == 'T'))
586 zone = TT_CST;
587 break;
588 case 'd': case 'D':
589 if (month == TT_UNKNOWN &&
590 (rest[1] == 'e' || rest[1] == 'E') &&
591 (rest[2] == 'c' || rest[2] == 'C'))
592 month = TT_DEC;
593 break;
594 case 'e': case 'E':
595 if (zone == TT_UNKNOWN &&
596 (rest[1] == 'd' || rest[1] == 'D') &&
597 (rest[2] == 't' || rest[2] == 'T'))
598 zone = TT_EDT;
599 else if (zone == TT_UNKNOWN &&
600 (rest[1] == 'e' || rest[1] == 'E') &&
601 (rest[2] == 't' || rest[2] == 'T'))
602 zone = TT_EET;
603 else if (zone == TT_UNKNOWN &&
604 (rest[1] == 's' || rest[1] == 'S') &&
605 (rest[2] == 't' || rest[2] == 'T'))
606 zone = TT_EST;
607 break;
608 case 'f': case 'F':
609 if (month == TT_UNKNOWN &&
610 (rest[1] == 'e' || rest[1] == 'E') &&
611 (rest[2] == 'b' || rest[2] == 'B'))
612 month = TT_FEB;
613 else if (dotw == TT_UNKNOWN &&
614 (rest[1] == 'r' || rest[1] == 'R') &&
615 (rest[2] == 'i' || rest[2] == 'I'))
616 dotw = TT_FRI;
617 break;
618 case 'g': case 'G':
619 if (zone == TT_UNKNOWN &&
620 (rest[1] == 'm' || rest[1] == 'M') &&
621 (rest[2] == 't' || rest[2] == 'T'))
622 zone = TT_GMT;
623 break;
624 case 'j': case 'J':
625 if (month == TT_UNKNOWN &&
626 (rest[1] == 'a' || rest[1] == 'A') &&
627 (rest[2] == 'n' || rest[2] == 'N'))
628 month = TT_JAN;
629 else if (zone == TT_UNKNOWN &&
630 (rest[1] == 's' || rest[1] == 'S') &&
631 (rest[2] == 't' || rest[2] == 'T'))
632 zone = TT_JST;
633 else if (month == TT_UNKNOWN &&
634 (rest[1] == 'u' || rest[1] == 'U') &&
635 (rest[2] == 'l' || rest[2] == 'L'))
636 month = TT_JUL;
637 else if (month == TT_UNKNOWN &&
638 (rest[1] == 'u' || rest[1] == 'U') &&
639 (rest[2] == 'n' || rest[2] == 'N'))
640 month = TT_JUN;
641 break;
642 case 'm': case 'M':
643 if (month == TT_UNKNOWN &&
644 (rest[1] == 'a' || rest[1] == 'A') &&
645 (rest[2] == 'r' || rest[2] == 'R'))
646 month = TT_MAR;
647 else if (month == TT_UNKNOWN &&
648 (rest[1] == 'a' || rest[1] == 'A') &&
649 (rest[2] == 'y' || rest[2] == 'Y'))
650 month = TT_MAY;
651 else if (zone == TT_UNKNOWN &&
652 (rest[1] == 'd' || rest[1] == 'D') &&
653 (rest[2] == 't' || rest[2] == 'T'))
654 zone = TT_MDT;
655 else if (zone == TT_UNKNOWN &&
656 (rest[1] == 'e' || rest[1] == 'E') &&
657 (rest[2] == 't' || rest[2] == 'T'))
658 zone = TT_MET;
659 else if (dotw == TT_UNKNOWN &&
660 (rest[1] == 'o' || rest[1] == 'O') &&
661 (rest[2] == 'n' || rest[2] == 'N'))
662 dotw = TT_MON;
663 else if (zone == TT_UNKNOWN &&
664 (rest[1] == 's' || rest[1] == 'S') &&
665 (rest[2] == 't' || rest[2] == 'T'))
666 zone = TT_MST;
667 break;
668 case 'n': case 'N':
669 if (month == TT_UNKNOWN &&
670 (rest[1] == 'o' || rest[1] == 'O') &&
671 (rest[2] == 'v' || rest[2] == 'V'))
672 month = TT_NOV;
673 else if (zone == TT_UNKNOWN &&
674 (rest[1] == 's' || rest[1] == 'S') &&
675 (rest[2] == 't' || rest[2] == 'T'))
676 zone = TT_NST;
677 break;
678 case 'o': case 'O':
679 if (month == TT_UNKNOWN &&
680 (rest[1] == 'c' || rest[1] == 'C') &&
681 (rest[2] == 't' || rest[2] == 'T'))
682 month = TT_OCT;
683 break;
684 case 'p': case 'P':
685 if (zone == TT_UNKNOWN &&
686 (rest[1] == 'd' || rest[1] == 'D') &&
687 (rest[2] == 't' || rest[2] == 'T'))
688 zone = TT_PDT;
689 else if (zone == TT_UNKNOWN &&
690 (rest[1] == 's' || rest[1] == 'S') &&
691 (rest[2] == 't' || rest[2] == 'T'))
692 zone = TT_PST;
693 break;
694 case 's': case 'S':
695 if (dotw == TT_UNKNOWN &&
696 (rest[1] == 'a' || rest[1] == 'A') &&
697 (rest[2] == 't' || rest[2] == 'T'))
698 dotw = TT_SAT;
699 else if (month == TT_UNKNOWN &&
700 (rest[1] == 'e' || rest[1] == 'E') &&
701 (rest[2] == 'p' || rest[2] == 'P'))
702 month = TT_SEP;
703 else if (dotw == TT_UNKNOWN &&
704 (rest[1] == 'u' || rest[1] == 'U') &&
705 (rest[2] == 'n' || rest[2] == 'N'))
706 dotw = TT_SUN;
707 break;
708 case 't': case 'T':
709 if (dotw == TT_UNKNOWN &&
710 (rest[1] == 'h' || rest[1] == 'H') &&
711 (rest[2] == 'u' || rest[2] == 'U'))
712 dotw = TT_THU;
713 else if (dotw == TT_UNKNOWN &&
714 (rest[1] == 'u' || rest[1] == 'U') &&
715 (rest[2] == 'e' || rest[2] == 'E'))
716 dotw = TT_TUE;
717 break;
718 case 'u': case 'U':
719 if (zone == TT_UNKNOWN &&
720 (rest[1] == 't' || rest[1] == 'T') &&
721 !(rest[2] >= 'A' && rest[2] <= 'Z') &&
722 !(rest[2] >= 'a' && rest[2] <= 'z'))
723 /* UT is the same as GMT but UTx is not. */
724 zone = TT_GMT;
725 break;
726 case 'w': case 'W':
727 if (dotw == TT_UNKNOWN &&
728 (rest[1] == 'e' || rest[1] == 'E') &&
729 (rest[2] == 'd' || rest[2] == 'D'))
730 dotw = TT_WED;
731 break;
732
733 case '+': case '-':
734 {
735 const char *end;
736 int sign;
737 if (zone_offset != -1)
738 {
739 /* already got one... */
740 rest++;
741 break;
742 }
743 if (zone != TT_UNKNOWN && zone != TT_GMT)
744 {
745 /* GMT+0300 is legal, but PST+0300 is not. */
746 rest++;
747 break;
748 }
749
750 sign = ((*rest == '+') ? 1 : -1);
751 rest++; /* move over sign */
752 end = rest;
753 while (*end >= '0' && *end <= '9')
754 end++;
755 if (rest == end) /* no digits here */
756 break;
757
758 if ((end - rest) == 4)
759 /* offset in HHMM */
760 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
761 (((rest[2]-'0')*10) + (rest[3]-'0')));
762 else if ((end - rest) == 2)
763 /* offset in hours */
764 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
765 else if ((end - rest) == 1)
766 /* offset in hours */
767 zone_offset = (rest[0]-'0') * 60;
768 else
769 /* 3 or >4 */
770 break;
771
772 zone_offset *= sign;
773 zone = TT_GMT;
774 break;
775 }
776
777 case '0': case '1': case '2': case '3': case '4':
778 case '5': case '6': case '7': case '8': case '9':
779 {
780 int tmp_hour = -1;
781 int tmp_min = -1;
782 int tmp_sec = -1;
783 int tmp_usec = -1;
784 const char *end = rest + 1;
785 while (*end >= '0' && *end <= '9')
786 end++;
787
788 /* end is now the first character after a range of digits. */
789
790 if (*end == ':')
791 {
792 if (hour >= 0 && min >= 0) /* already got it */
793 break;
794
795 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
796 if ((end - rest) > 2)
797 /* it is [0-9][0-9][0-9]+: */
798 break;
799 else if ((end - rest) == 2)
800 tmp_hour = ((rest[0]-'0')*10 +
801 (rest[1]-'0'));
802 else
803 tmp_hour = (rest[0]-'0');
804
805 /* move over the colon, and parse minutes */
806
807 rest = ++end;
808 while (*end >= '0' && *end <= '9')
809 end++;
810
811 if (end == rest)
812 /* no digits after first colon? */
813 break;
814 else if ((end - rest) > 2)
815 /* it is [0-9][0-9][0-9]+: */
816 break;
817 else if ((end - rest) == 2)
818 tmp_min = ((rest[0]-'0')*10 +
819 (rest[1]-'0'));
820 else
821 tmp_min = (rest[0]-'0');
822
823 /* now go for seconds */
824 rest = end;
825 if (*rest == ':')
826 rest++;
827 end = rest;
828 while (*end >= '0' && *end <= '9')
829 end++;
830
831 if (end == rest)
832 /* no digits after second colon - that's ok. */
833 ;
834 else if ((end - rest) > 2)
835 /* it is [0-9][0-9][0-9]+: */
836 break;
837 else if ((end - rest) == 2)
838 tmp_sec = ((rest[0]-'0')*10 +
839 (rest[1]-'0'));
840 else
841 tmp_sec = (rest[0]-'0');
842
843 /* fractional second */
844 rest = end;
845 if (*rest == '.')
846 {
847 rest++;
848 end++;
849 tmp_usec = 0;
850 /* use up to 6 digits, skip over the rest */
851 while (*end >= '0' && *end <= '9')
852 {
853 if (end - rest < 6)
854 tmp_usec = tmp_usec * 10 + *end - '0';
855 end++;
856 }
857 int ndigits = end - rest;
858 while (ndigits++ < 6)
859 tmp_usec *= 10;
860 rest = end;
861 }
862
863 if (*rest == 'Z')
864 {
865 zone = TT_GMT;
866 rest++;
867 }
868 else if (tmp_hour <= 12)
869 {
870 /* If we made it here, we've parsed hour and min,
871 and possibly sec, so the current token is a time.
872 Now skip over whitespace and see if there's an AM
873 or PM directly following the time.
874 */
875 const char *s = end;
876 while (*s && (*s == ' ' || *s == '\t'))
877 s++;
878 if ((s[0] == 'p' || s[0] == 'P') &&
879 (s[1] == 'm' || s[1] == 'M'))
880 /* 10:05pm == 22:05, and 12:05pm == 12:05 */
881 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
882 else if (tmp_hour == 12 &&
883 (s[0] == 'a' || s[0] == 'A') &&
884 (s[1] == 'm' || s[1] == 'M'))
885 /* 12:05am == 00:05 */
886 tmp_hour = 0;
887 }
888
889 hour = tmp_hour;
890 min = tmp_min;
891 sec = tmp_sec;
892 usec = tmp_usec;
893 rest = end;
894 break;
895 }
896 else if ((*end == '/' || *end == '-') &&
897 end[1] >= '0' && end[1] <= '9')
898 {
899 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
900 or even 95-06-05 or 1995-06-22.
901 */
902 int n1, n2, n3;
903 const char *s;
904
905 if (month != TT_UNKNOWN)
906 /* if we saw a month name, this can't be. */
907 break;
908
909 s = rest;
910
911 n1 = (*s++ - '0'); /* first 1, 2 or 4 digits */
912 if (*s >= '0' && *s <= '9')
913 {
914 n1 = n1*10 + (*s++ - '0');
915
916 if (*s >= '0' && *s <= '9') /* optional digits 3 and 4 */
917 {
918 n1 = n1*10 + (*s++ - '0');
919 if (*s < '0' || *s > '9')
920 break;
921 n1 = n1*10 + (*s++ - '0');
922 }
923 }
924
925 if (*s != '/' && *s != '-') /* slash */
926 break;
927 s++;
928
929 if (*s < '0' || *s > '9') /* second 1 or 2 digits */
930 break;
931 n2 = (*s++ - '0');
932 if (*s >= '0' && *s <= '9')
933 n2 = n2*10 + (*s++ - '0');
934
935 if (*s != '/' && *s != '-') /* slash */
936 break;
937 s++;
938
939 if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */
940 break;
941 n3 = (*s++ - '0');
942 if (*s >= '0' && *s <= '9')
943 n3 = n3*10 + (*s++ - '0');
944
945 if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
946 {
947 n3 = n3*10 + (*s++ - '0');
948 if (*s < '0' || *s > '9')
949 break;
950 n3 = n3*10 + (*s++ - '0');
951 if (*s >= '0' && *s <= '9')
952 n3 = n3*10 + (*s++ - '0');
953 }
954
955 if (*s == 'T' && s[1] >= '0' && s[1] <= '9')
956 /* followed by ISO 8601 T delimiter and number is ok */
957 ;
958 else if ((*s >= '0' && *s <= '9') ||
959 (*s >= 'A' && *s <= 'Z') ||
960 (*s >= 'a' && *s <= 'z'))
961 /* but other alphanumerics are not ok */
962 break;
963
964 /* Ok, we parsed three multi-digit numbers, with / or -
965 between them. Now decide what the hell they are
966 (DD/MM/YY or MM/DD/YY or [YY]YY/MM/DD.)
967 */
968
969 if (n1 > 31 || n1 == 0) /* must be [YY]YY/MM/DD */
970 {
971 if (n2 > 12) break;
972 if (n3 > 31) break;
973 year = n1;
974 if (year < 70)
975 year += 2000;
976 else if (year < 100)
977 year += 1900;
978 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
979 date = n3;
980 rest = s;
981 break;
982 }
983
984 if (n1 > 12 && n2 > 12) /* illegal */
985 {
986 rest = s;
987 break;
988 }
989
990 if (n3 < 70)
991 n3 += 2000;
992 else if (n3 < 100)
993 n3 += 1900;
994
995 if (n1 > 12) /* must be DD/MM/YY */
996 {
997 date = n1;
998 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
999 year = n3;
1000 }
1001 else /* assume MM/DD/YY */
1002 {
1003 /* #### In the ambiguous case, should we consult the
1004 locale to find out the local default? */
1005 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
1006 date = n2;
1007 year = n3;
1008 }
1009 rest = s;
1010 }
1011 else if ((*end >= 'A' && *end <= 'Z') ||
1012 (*end >= 'a' && *end <= 'z'))
1013 /* Digits followed by non-punctuation - what's that? */
1014 ;
1015 else if ((end - rest) == 5) /* five digits is a year */
1016 year = (year < 0
1017 ? ((rest[0]-'0')*10000L +
1018 (rest[1]-'0')*1000L +
1019 (rest[2]-'0')*100L +
1020 (rest[3]-'0')*10L +
1021 (rest[4]-'0'))
1022 : year);
1023 else if ((end - rest) == 4) /* four digits is a year */
1024 year = (year < 0
1025 ? ((rest[0]-'0')*1000L +
1026 (rest[1]-'0')*100L +
1027 (rest[2]-'0')*10L +
1028 (rest[3]-'0'))
1029 : year);
1030 else if ((end - rest) == 2) /* two digits - date or year */
1031 {
1032 int n = ((rest[0]-'0')*10 +
1033 (rest[1]-'0'));
1034 /* If we don't have a date (day of the month) and we see a number
1035 less than 32, then assume that is the date.
1036
1037 Otherwise, if we have a date and not a year, assume this is the
1038 year. If it is less than 70, then assume it refers to the 21st
1039 century. If it is two digits (>= 70), assume it refers to this
1040 century. Otherwise, assume it refers to an unambiguous year.
1041
1042 The world will surely end soon.
1043 */
1044 if (date < 0 && n < 32)
1045 date = n;
1046 else if (year < 0)
1047 {
1048 if (n < 70)
1049 year = 2000 + n;
1050 else if (n < 100)
1051 year = 1900 + n;
1052 else
1053 year = n;
1054 }
1055 /* else what the hell is this. */
1056 }
1057 else if ((end - rest) == 1) /* one digit - date */
1058 date = (date < 0 ? (rest[0]-'0') : date);
1059 /* else, three or more than five digits - what's that? */
1060
1061 break;
1062 } /* case '0' .. '9' */
1063 } /* switch */
1064
1065 /* Skip to the end of this token, whether we parsed it or not.
1066 Tokens are delimited by whitespace, or ,;-+/()[] but explicitly not .:
1067 'T' is also treated as delimiter when followed by a digit (ISO 8601).
1068 */
1069 while (*rest &&
1070 *rest != ' ' && *rest != '\t' &&
1071 *rest != ',' && *rest != ';' &&
1072 *rest != '-' && *rest != '+' &&
1073 *rest != '/' &&
1074 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']' &&
1075 !(*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
1076 )
1077 rest++;
1078 /* skip over uninteresting chars. */
1079 SKIP_MORE:
1080 while (*rest == ' ' || *rest == '\t' ||
1081 *rest == ',' || *rest == ';' || *rest == '/' ||
1082 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')
1083 rest++;
1084
1085 /* "-" is ignored at the beginning of a token if we have not yet
1086 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
1087 the character after the dash is not a digit. */
1088 if (*rest == '-' && ((rest > string &&
1089 isalpha((unsigned char)rest[-1]) && year < 0) ||
1090 rest[1] < '0' || rest[1] > '9'))
1091 {
1092 rest++;
1093 goto SKIP_MORE;
1094 }
1095
1096 /* Skip T that may precede ISO 8601 time. */
1097 if (*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
1098 rest++;
1099 } /* while */
1100
1101 if (zone != TT_UNKNOWN && zone_offset == -1)
1102 {
1103 switch (zone)
1104 {
1105 case TT_PST: zone_offset = -8 * 60; break;
1106 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
1107 case TT_MST: zone_offset = -7 * 60; break;
1108 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
1109 case TT_CST: zone_offset = -6 * 60; break;
1110 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
1111 case TT_EST: zone_offset = -5 * 60; break;
1112 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
1113 case TT_AST: zone_offset = -4 * 60; break;
1114 case TT_NST: zone_offset = -3 * 60 - 30; break;
1115 case TT_GMT: zone_offset = 0 * 60; break;
1116 case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break;
1117 case TT_MET: zone_offset = 1 * 60; break;
1118 case TT_EET: zone_offset = 2 * 60; break;
1119 case TT_JST: zone_offset = 9 * 60; break;
1120 default:
1121 PR_ASSERT (0);
1122 break;
1123 }
1124 }
1125
1126 /* If we didn't find a year, month, or day-of-the-month, we can't
1127 possibly parse this, and in fact, mktime() will do something random
1128 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
1129 a numerologically significant date... */
1130 if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX)
1131 return PR_FAILURE;
1132
1133 memset(result, 0, sizeof(*result));
1134 if (usec != -1)
1135 result->tm_usec = usec;
1136 if (sec != -1)
1137 result->tm_sec = sec;
1138 if (min != -1)
1139 result->tm_min = min;
1140 if (hour != -1)
1141 result->tm_hour = hour;
1142 if (date != -1)
1143 result->tm_mday = date;
1144 if (month != TT_UNKNOWN)
1145 result->tm_month = (((int)month) - ((int)TT_JAN));
1146 if (year != -1)
1147 result->tm_year = static_cast<PRInt16>(year);
1148 if (dotw != TT_UNKNOWN)
1149 result->tm_wday = static_cast<PRInt8>(((int)dotw) - ((int)TT_SUN));
1150 /*
1151 * Mainly to compute wday and yday, but normalized time is also required
1152 * by the check below that works around a Visual C++ 2005 mktime problem.
1153 */
1154 PR_NormalizeTime(result, PR_GMTParameters);
1155 /* The remaining work is to set the gmt and dst offsets in tm_params. */
1156
1157 if (zone == TT_UNKNOWN && default_to_gmt)
1158 {
1159 /* No zone was specified, so pretend the zone was GMT. */
1160 zone = TT_GMT;
1161 zone_offset = 0;
1162 }
1163
1164 if (zone_offset == -1)
1165 {
1166 /* no zone was specified, and we're to assume that everything
1167 is local. */
1168 struct tm localTime;
1169 time_t secs;
1170
1171 PR_ASSERT(result->tm_month > -1 &&
1172 result->tm_mday > 0 &&
1173 result->tm_hour > -1 &&
1174 result->tm_min > -1 &&
1175 result->tm_sec > -1);
1176
1177 /*
1178 * To obtain time_t from a tm structure representing the local
1179 * time, we call mktime(). However, we need to see if we are
1180 * on 1-Jan-1970 or before. If we are, we can't call mktime()
1181 * because mktime() will crash on win16. In that case, we
1182 * calculate zone_offset based on the zone offset at
1183 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
1184 * date we are parsing to transform the date to GMT. We also
1185 * do so if mktime() returns (time_t) -1 (time out of range).
1186 */
1187
1188 /* month, day, hours, mins and secs are always non-negative
1189 so we dont need to worry about them. */
1190 if (result->tm_year >= 1970)
1191 {
1192 localTime.tm_sec = result->tm_sec;
1193 localTime.tm_min = result->tm_min;
1194 localTime.tm_hour = result->tm_hour;
1195 localTime.tm_mday = result->tm_mday;
1196 localTime.tm_mon = result->tm_month;
1197 localTime.tm_year = result->tm_year - 1900;
1198 /* Set this to -1 to tell mktime "I don't care". If you set
1199 it to 0 or 1, you are making assertions about whether the
1200 date you are handing it is in daylight savings mode or not;
1201 and if you're wrong, it will "fix" it for you. */
1202 localTime.tm_isdst = -1;
1203
1204 #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
1205 /*
1206 * mktime will return (time_t) -1 if the input is a date
1207 * after 23:59:59, December 31, 3000, US Pacific Time (not
1208 * UTC as documented):
1209 * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
1210 * But if the year is 3001, mktime also invokes the invalid
1211 * parameter handler, causing the application to crash. This
1212 * problem has been reported in
1213 * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
1214 * We avoid this crash by not calling mktime if the date is
1215 * out of range. To use a simple test that works in any time
1216 * zone, we consider year 3000 out of range as well. (See
1217 * bug 480740.)
1218 */
1219 if (result->tm_year >= 3000) {
1220 /* Emulate what mktime would have done. */
1221 errno = EINVAL;
1222 secs = (time_t) -1;
1223 } else {
1224 secs = mktime(&localTime);
1225 }
1226 #else
1227 secs = mktime(&localTime);
1228 #endif
1229 if (secs != (time_t) -1)
1230 {
1231 *result_imploded = (PRInt64)secs * PR_USEC_PER_SEC;
1232 *result_imploded += result->tm_usec;
1233 return PR_SUCCESS;
1234 }
1235 }
1236
1237 /* So mktime() can't handle this case. We assume the
1238 zone_offset for the date we are parsing is the same as
1239 the zone offset on 00:00:00 2 Jan 1970 GMT. */
1240 secs = 86400;
1241 localtime_r(&secs, &localTime);
1242 zone_offset = localTime.tm_min
1243 + 60 * localTime.tm_hour
1244 + 1440 * (localTime.tm_mday - 2);
1245 }
1246
1247 result->tm_params.tp_gmt_offset = zone_offset * 60;
1248 result->tm_params.tp_dst_offset = dst_offset * 60;
1249
1250 *result_imploded = PR_ImplodeTime(result);
1251 return PR_SUCCESS;
1252 }
1253