• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "cc/scheduler/delay_based_time_source.h"
6 
7 #include <algorithm>
8 #include <cmath>
9 #include <string>
10 
11 #include "base/bind.h"
12 #include "base/debug/trace_event.h"
13 #include "base/debug/trace_event_argument.h"
14 #include "base/location.h"
15 #include "base/logging.h"
16 #include "base/single_thread_task_runner.h"
17 
18 namespace cc {
19 
20 namespace {
21 
22 // kDoubleTickDivisor prevents ticks from running within the specified
23 // fraction of an interval.  This helps account for jitter in the timebase as
24 // well as quick timer reactivation.
25 static const int kDoubleTickDivisor = 2;
26 
27 // kIntervalChangeThreshold is the fraction of the interval that will trigger an
28 // immediate interval change.  kPhaseChangeThreshold is the fraction of the
29 // interval that will trigger an immediate phase change.  If the changes are
30 // within the thresholds, the change will take place on the next tick.  If
31 // either change is outside the thresholds, the next tick will be canceled and
32 // reissued immediately.
33 static const double kIntervalChangeThreshold = 0.25;
34 static const double kPhaseChangeThreshold = 0.25;
35 
36 }  // namespace
37 
38 // The following methods correspond to the DelayBasedTimeSource that uses
39 // the base::TimeTicks::HighResNow as the timebase.
Create(base::TimeDelta interval,base::SingleThreadTaskRunner * task_runner)40 scoped_refptr<DelayBasedTimeSourceHighRes> DelayBasedTimeSourceHighRes::Create(
41     base::TimeDelta interval,
42     base::SingleThreadTaskRunner* task_runner) {
43   return make_scoped_refptr(
44       new DelayBasedTimeSourceHighRes(interval, task_runner));
45 }
46 
DelayBasedTimeSourceHighRes(base::TimeDelta interval,base::SingleThreadTaskRunner * task_runner)47 DelayBasedTimeSourceHighRes::DelayBasedTimeSourceHighRes(
48     base::TimeDelta interval,
49     base::SingleThreadTaskRunner* task_runner)
50     : DelayBasedTimeSource(interval, task_runner) {
51 }
52 
~DelayBasedTimeSourceHighRes()53 DelayBasedTimeSourceHighRes::~DelayBasedTimeSourceHighRes() {}
54 
Now() const55 base::TimeTicks DelayBasedTimeSourceHighRes::Now() const {
56   return base::TimeTicks::HighResNow();
57 }
58 
59 // The following methods correspond to the DelayBasedTimeSource that uses
60 // the base::TimeTicks::Now as the timebase.
Create(base::TimeDelta interval,base::SingleThreadTaskRunner * task_runner)61 scoped_refptr<DelayBasedTimeSource> DelayBasedTimeSource::Create(
62     base::TimeDelta interval,
63     base::SingleThreadTaskRunner* task_runner) {
64   return make_scoped_refptr(new DelayBasedTimeSource(interval, task_runner));
65 }
66 
DelayBasedTimeSource(base::TimeDelta interval,base::SingleThreadTaskRunner * task_runner)67 DelayBasedTimeSource::DelayBasedTimeSource(
68     base::TimeDelta interval,
69     base::SingleThreadTaskRunner* task_runner)
70     : client_(NULL),
71       last_tick_time_(base::TimeTicks() - interval),
72       current_parameters_(interval, base::TimeTicks()),
73       next_parameters_(interval, base::TimeTicks()),
74       active_(false),
75       task_runner_(task_runner),
76       weak_factory_(this) {
77   DCHECK_GT(interval.ToInternalValue(), 0);
78 }
79 
~DelayBasedTimeSource()80 DelayBasedTimeSource::~DelayBasedTimeSource() {}
81 
SetActive(bool active)82 base::TimeTicks DelayBasedTimeSource::SetActive(bool active) {
83   TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active);
84   if (active == active_)
85     return base::TimeTicks();
86   active_ = active;
87 
88   if (!active_) {
89     weak_factory_.InvalidateWeakPtrs();
90     return base::TimeTicks();
91   }
92 
93   PostNextTickTask(Now());
94 
95   // Determine if there was a tick that was missed while not active.
96   base::TimeTicks last_tick_time_if_always_active =
97     current_parameters_.tick_target - current_parameters_.interval;
98   base::TimeTicks new_tick_time_threshold =
99     last_tick_time_ + current_parameters_.interval / kDoubleTickDivisor;
100   if (last_tick_time_if_always_active >  new_tick_time_threshold) {
101     last_tick_time_ = last_tick_time_if_always_active;
102     return last_tick_time_;
103   }
104 
105   return base::TimeTicks();
106 }
107 
Active() const108 bool DelayBasedTimeSource::Active() const { return active_; }
109 
LastTickTime() const110 base::TimeTicks DelayBasedTimeSource::LastTickTime() const {
111   return last_tick_time_;
112 }
113 
NextTickTime() const114 base::TimeTicks DelayBasedTimeSource::NextTickTime() const {
115   return Active() ? current_parameters_.tick_target : base::TimeTicks();
116 }
117 
OnTimerFired()118 void DelayBasedTimeSource::OnTimerFired() {
119   DCHECK(active_);
120 
121   last_tick_time_ = current_parameters_.tick_target;
122 
123   PostNextTickTask(Now());
124 
125   // Fire the tick.
126   if (client_)
127     client_->OnTimerTick();
128 }
129 
SetClient(TimeSourceClient * client)130 void DelayBasedTimeSource::SetClient(TimeSourceClient* client) {
131   client_ = client;
132 }
133 
SetTimebaseAndInterval(base::TimeTicks timebase,base::TimeDelta interval)134 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase,
135                                                   base::TimeDelta interval) {
136   DCHECK_GT(interval.ToInternalValue(), 0);
137   next_parameters_.interval = interval;
138   next_parameters_.tick_target = timebase;
139 
140   if (!active_) {
141     // If we aren't active, there's no need to reset the timer.
142     return;
143   }
144 
145   // If the change in interval is larger than the change threshold,
146   // request an immediate reset.
147   double interval_delta =
148       std::abs((interval - current_parameters_.interval).InSecondsF());
149   double interval_change = interval_delta / interval.InSecondsF();
150   if (interval_change > kIntervalChangeThreshold) {
151     TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged",
152                          TRACE_EVENT_SCOPE_THREAD);
153     SetActive(false);
154     SetActive(true);
155     return;
156   }
157 
158   // If the change in phase is greater than the change threshold in either
159   // direction, request an immediate reset. This logic might result in a false
160   // negative if there is a simultaneous small change in the interval and the
161   // fmod just happens to return something near zero. Assuming the timebase
162   // is very recent though, which it should be, we'll still be ok because the
163   // old clock and new clock just happen to line up.
164   double target_delta =
165       std::abs((timebase - current_parameters_.tick_target).InSecondsF());
166   double phase_change =
167       fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF();
168   if (phase_change > kPhaseChangeThreshold &&
169       phase_change < (1.0 - kPhaseChangeThreshold)) {
170     TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged",
171                          TRACE_EVENT_SCOPE_THREAD);
172     SetActive(false);
173     SetActive(true);
174     return;
175   }
176 }
177 
Now() const178 base::TimeTicks DelayBasedTimeSource::Now() const {
179   return base::TimeTicks::Now();
180 }
181 
182 // This code tries to achieve an average tick rate as close to interval_ as
183 // possible.  To do this, it has to deal with a few basic issues:
184 //   1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666
185 //   has to posted as 16 or 17.
186 //   2. A delayed task may come back a bit late (a few ms), or really late
187 //   (frames later)
188 //
189 // The basic idea with this scheduler here is to keep track of where we *want*
190 // to run in tick_target_. We update this with the exact interval.
191 //
192 // Then, when we post our task, we take the floor of (tick_target_ and Now()).
193 // If we started at now=0, and 60FPs (all times in milliseconds):
194 //      now=0    target=16.667   PostDelayedTask(16)
195 //
196 // When our callback runs, we figure out how far off we were from that goal.
197 // Because of the flooring operation, and assuming our timer runs exactly when
198 // it should, this yields:
199 //      now=16   target=16.667
200 //
201 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a
202 // tick. Then, we update target to be 33.333. We now post another task based on
203 // the difference between our target and now:
204 //      now=16   tick_target=16.667  new_target=33.333   -->
205 //          PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17)
206 //
207 // Over time, with no late tasks, this leads to us posting tasks like this:
208 //      now=0    tick_target=0       new_target=16.667   -->
209 //          tick(), PostDelayedTask(16)
210 //      now=16   tick_target=16.667  new_target=33.333   -->
211 //          tick(), PostDelayedTask(17)
212 //      now=33   tick_target=33.333  new_target=50.000   -->
213 //          tick(), PostDelayedTask(17)
214 //      now=50   tick_target=50.000  new_target=66.667   -->
215 //          tick(), PostDelayedTask(16)
216 //
217 // We treat delays in tasks differently depending on the amount of delay we
218 // encounter. Suppose we posted a task with a target=16.667:
219 //   Case 1: late but not unrecoverably-so
220 //      now=18 tick_target=16.667
221 //
222 //   Case 2: so late we obviously missed the tick
223 //      now=25.0 tick_target=16.667
224 //
225 // We treat the first case as a tick anyway, and assume the delay was unusual.
226 // Thus, we compute the new_target based on the old timebase:
227 //      now=18   tick_target=16.667  new_target=33.333   -->
228 //          tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15)
229 // This brings us back to 18+15 = 33, which was where we would have been if the
230 // task hadn't been late.
231 //
232 // For the really late delay, we we move to the next logical tick. The timebase
233 // is not reset.
234 //      now=37   tick_target=16.667  new_target=50.000  -->
235 //          tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13)
NextTickTarget(base::TimeTicks now)236 base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) {
237   base::TimeDelta new_interval = next_parameters_.interval;
238 
239   // |interval_offset| is the offset from |now| to the next multiple of
240   // |interval| after |tick_target|, possibly negative if in the past.
241   base::TimeDelta interval_offset = base::TimeDelta::FromInternalValue(
242       (next_parameters_.tick_target - now).ToInternalValue() %
243       new_interval.ToInternalValue());
244   // If |now| is exactly on the interval (i.e. offset==0), don't adjust.
245   // Otherwise, if |tick_target| was in the past, adjust forward to the next
246   // tick after |now|.
247   if (interval_offset.ToInternalValue() != 0 &&
248       next_parameters_.tick_target < now) {
249     interval_offset += new_interval;
250   }
251 
252   base::TimeTicks new_tick_target = now + interval_offset;
253   DCHECK(now <= new_tick_target)
254       << "now = " << now.ToInternalValue()
255       << "; new_tick_target = " << new_tick_target.ToInternalValue()
256       << "; new_interval = " << new_interval.InMicroseconds()
257       << "; tick_target = " << next_parameters_.tick_target.ToInternalValue()
258       << "; interval_offset = " << interval_offset.ToInternalValue();
259 
260   // Avoid double ticks when:
261   // 1) Turning off the timer and turning it right back on.
262   // 2) Jittery data is passed to SetTimebaseAndInterval().
263   if (new_tick_target - last_tick_time_ <= new_interval / kDoubleTickDivisor)
264     new_tick_target += new_interval;
265 
266   return new_tick_target;
267 }
268 
PostNextTickTask(base::TimeTicks now)269 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) {
270   base::TimeTicks new_tick_target = NextTickTarget(now);
271 
272   // Post another task *before* the tick and update state
273   base::TimeDelta delay;
274   if (now <= new_tick_target)
275     delay = new_tick_target - now;
276   task_runner_->PostDelayedTask(FROM_HERE,
277                                 base::Bind(&DelayBasedTimeSource::OnTimerFired,
278                                            weak_factory_.GetWeakPtr()),
279                                 delay);
280 
281   next_parameters_.tick_target = new_tick_target;
282   current_parameters_ = next_parameters_;
283 }
284 
TypeString() const285 std::string DelayBasedTimeSource::TypeString() const {
286   return "DelayBasedTimeSource";
287 }
288 
TypeString() const289 std::string DelayBasedTimeSourceHighRes::TypeString() const {
290   return "DelayBasedTimeSourceHighRes";
291 }
292 
AsValueInto(base::debug::TracedValue * state) const293 void DelayBasedTimeSource::AsValueInto(base::debug::TracedValue* state) const {
294   state->SetString("type", TypeString());
295   state->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue());
296   state->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue());
297 
298   state->BeginDictionary("current_parameters");
299   state->SetDouble("interval_us",
300                    current_parameters_.interval.InMicroseconds());
301   state->SetDouble("tick_target_us",
302                    current_parameters_.tick_target.ToInternalValue());
303   state->EndDictionary();
304 
305   state->BeginDictionary("next_parameters");
306   state->SetDouble("interval_us", next_parameters_.interval.InMicroseconds());
307   state->SetDouble("tick_target_us",
308                    next_parameters_.tick_target.ToInternalValue());
309   state->EndDictionary();
310 
311   state->SetBoolean("active", active_);
312 }
313 
314 }  // namespace cc
315