• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "cc/trees/layer_sorter.h"
6 
7 #include <algorithm>
8 #include <deque>
9 #include <limits>
10 #include <vector>
11 
12 #include "base/logging.h"
13 #include "cc/base/math_util.h"
14 #include "cc/layers/render_surface_impl.h"
15 #include "ui/gfx/transform.h"
16 
17 namespace cc {
18 
19 // This epsilon is used to determine if two layers are too close to each other
20 // to be able to tell which is in front of the other.  It's a relative epsilon
21 // so it is robust to changes in scene scale.  This value was chosen by picking
22 // a value near machine epsilon and then increasing it until the flickering on
23 // the test scene went away.
24 const float k_layer_epsilon = 1e-4f;
25 
PerpProduct(const gfx::Vector2dF & u,const gfx::Vector2dF & v)26 inline static float PerpProduct(const gfx::Vector2dF& u,
27                                 const gfx::Vector2dF& v) {
28   return u.x() * v.y() - u.y() * v.x();
29 }
30 
31 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
32 // Returns true and the point of intersection if they do and false otherwise.
EdgeEdgeTest(const gfx::PointF & a,const gfx::PointF & b,const gfx::PointF & c,const gfx::PointF & d,gfx::PointF * r)33 static bool EdgeEdgeTest(const gfx::PointF& a,
34                          const gfx::PointF& b,
35                          const gfx::PointF& c,
36                          const gfx::PointF& d,
37                          gfx::PointF* r) {
38   gfx::Vector2dF u = b - a;
39   gfx::Vector2dF v = d - c;
40   gfx::Vector2dF w = a - c;
41 
42   float denom = PerpProduct(u, v);
43 
44   // If denom == 0 then the edges are parallel. While they could be overlapping
45   // we don't bother to check here as the we'll find their intersections from
46   // the corner to quad tests.
47   if (!denom)
48     return false;
49 
50   float s = PerpProduct(v, w) / denom;
51   if (s < 0.f || s > 1.f)
52     return false;
53 
54   float t = PerpProduct(u, w) / denom;
55   if (t < 0.f || t > 1.f)
56     return false;
57 
58   u.Scale(s);
59   *r = a + u;
60   return true;
61 }
62 
GraphNode(LayerImpl * layer_impl)63 GraphNode::GraphNode(LayerImpl* layer_impl)
64     : layer(layer_impl),
65       incoming_edge_weight(0.f) {}
66 
~GraphNode()67 GraphNode::~GraphNode() {}
68 
LayerSorter()69 LayerSorter::LayerSorter()
70     : z_range_(0.f) {}
71 
~LayerSorter()72 LayerSorter::~LayerSorter() {}
73 
CheckFloatingPointNumericAccuracy(float a,float b)74 static float CheckFloatingPointNumericAccuracy(float a, float b) {
75   float abs_dif = std::abs(b - a);
76   float abs_max = std::max(std::abs(b), std::abs(a));
77   // Check to see if we've got a result with a reasonable amount of error.
78   return abs_dif / abs_max;
79 }
80 
81 // Checks whether layer "a" draws on top of layer "b". The weight value returned
82 // is an indication of the maximum z-depth difference between the layers or zero
83 // if the layers are found to be intesecting (some features are in front and
84 // some are behind).
CheckOverlap(LayerShape * a,LayerShape * b,float z_threshold,float * weight)85 LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a,
86                                                        LayerShape* b,
87                                                        float z_threshold,
88                                                        float* weight) {
89   *weight = 0.f;
90 
91   // Early out if the projected bounds don't overlap.
92   if (!a->projected_bounds.Intersects(b->projected_bounds))
93     return None;
94 
95   gfx::PointF aPoints[4] = { a->projected_quad.p1(),
96                              a->projected_quad.p2(),
97                              a->projected_quad.p3(),
98                              a->projected_quad.p4() };
99   gfx::PointF bPoints[4] = { b->projected_quad.p1(),
100                              b->projected_quad.p2(),
101                              b->projected_quad.p3(),
102                              b->projected_quad.p4() };
103 
104   // Make a list of points that inside both layer quad projections.
105   std::vector<gfx::PointF> overlap_points;
106 
107   // Check all four corners of one layer against the other layer's quad.
108   for (int i = 0; i < 4; ++i) {
109     if (a->projected_quad.Contains(bPoints[i]))
110       overlap_points.push_back(bPoints[i]);
111     if (b->projected_quad.Contains(aPoints[i]))
112       overlap_points.push_back(aPoints[i]);
113   }
114 
115   // Check all the edges of one layer for intersection with the other layer's
116   // edges.
117   gfx::PointF r;
118   for (int ea = 0; ea < 4; ++ea)
119     for (int eb = 0; eb < 4; ++eb)
120       if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4],
121                        bPoints[eb], bPoints[(eb + 1) % 4],
122                        &r))
123         overlap_points.push_back(r);
124 
125   if (overlap_points.empty())
126     return None;
127 
128   // Check the corresponding layer depth value for all overlap points to
129   // determine which layer is in front.
130   float max_positive = 0.f;
131   float max_negative = 0.f;
132 
133   // This flag tracks the existance of a numerically accurate seperation
134   // between two layers.  If there is no accurate seperation, the layers
135   // cannot be effectively sorted.
136   bool accurate = false;
137 
138   for (size_t o = 0; o < overlap_points.size(); o++) {
139     float za = a->LayerZFromProjectedPoint(overlap_points[o]);
140     float zb = b->LayerZFromProjectedPoint(overlap_points[o]);
141 
142     // Here we attempt to avoid numeric issues with layers that are too
143     // close together.  If we have 2-sided quads that are very close
144     // together then we will draw them in document order to avoid
145     // flickering.  The correct solution is for the content maker to turn
146     // on back-face culling or move the quads apart (if they're not two
147     // sides of one object).
148     if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon)
149       accurate = true;
150 
151     float diff = za - zb;
152     if (diff > max_positive)
153       max_positive = diff;
154     if (diff < max_negative)
155       max_negative = diff;
156   }
157 
158   // If we can't tell which should come first, we use document order.
159   if (!accurate)
160     return ABeforeB;
161 
162   float max_diff =
163       std::abs(max_positive) > std::abs(max_negative) ?
164           max_positive : max_negative;
165 
166   // If the results are inconsistent (and the z difference substantial to rule
167   // out numerical errors) then the layers are intersecting. We will still
168   // return an order based on the maximum depth difference but with an edge
169   // weight of zero these layers will get priority if a graph cycle is present
170   // and needs to be broken.
171   if (max_positive > z_threshold && max_negative < -z_threshold)
172     *weight = 0.f;
173   else
174     *weight = std::abs(max_diff);
175 
176   // Maintain relative order if the layers have the same depth at all
177   // intersection points.
178   if (max_diff <= 0.f)
179     return ABeforeB;
180 
181   return BBeforeA;
182 }
183 
LayerShape()184 LayerShape::LayerShape() {}
185 
LayerShape(float width,float height,const gfx::Transform & draw_transform)186 LayerShape::LayerShape(float width,
187                        float height,
188                        const gfx::Transform& draw_transform) {
189   gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height));
190 
191   // Compute the projection of the layer quad onto the z = 0 plane.
192 
193   gfx::PointF clipped_quad[8];
194   int num_vertices_in_clipped_quad;
195   MathUtil::MapClippedQuad(draw_transform,
196                            layer_quad,
197                            clipped_quad,
198                            &num_vertices_in_clipped_quad);
199 
200   if (num_vertices_in_clipped_quad < 3) {
201     projected_bounds = gfx::RectF();
202     return;
203   }
204 
205   projected_bounds =
206       MathUtil::ComputeEnclosingRectOfVertices(clipped_quad,
207                                                num_vertices_in_clipped_quad);
208 
209   // NOTE: it will require very significant refactoring and overhead to deal
210   // with generalized polygons or multiple quads per layer here. For the sake of
211   // layer sorting it is equally correct to take a subsection of the polygon
212   // that can be made into a quad. This will only be incorrect in the case of
213   // intersecting layers, which are not supported yet anyway.
214   projected_quad.set_p1(clipped_quad[0]);
215   projected_quad.set_p2(clipped_quad[1]);
216   projected_quad.set_p3(clipped_quad[2]);
217   if (num_vertices_in_clipped_quad >= 4) {
218     projected_quad.set_p4(clipped_quad[3]);
219   } else {
220     // This will be a degenerate quad that is actually a triangle.
221     projected_quad.set_p4(clipped_quad[2]);
222   }
223 
224   // Compute the normal of the layer's plane.
225   bool clipped = false;
226   gfx::Point3F c1 =
227       MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped);
228   gfx::Point3F c2 =
229       MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped);
230   gfx::Point3F c3 =
231       MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped);
232   // TODO(shawnsingh): Deal with clipping.
233   gfx::Vector3dF c12 = c2 - c1;
234   gfx::Vector3dF c13 = c3 - c1;
235   layer_normal = gfx::CrossProduct(c13, c12);
236 
237   transform_origin = c1;
238 }
239 
~LayerShape()240 LayerShape::~LayerShape() {}
241 
242 // Returns the Z coordinate of a point on the layer that projects
243 // to point p which lies on the z = 0 plane. It does it by computing the
244 // intersection of a line starting from p along the Z axis and the plane
245 // of the layer.
LayerZFromProjectedPoint(const gfx::PointF & p) const246 float LayerShape::LayerZFromProjectedPoint(const gfx::PointF& p) const {
247   gfx::Vector3dF z_axis(0.f, 0.f, 1.f);
248   gfx::Vector3dF w = gfx::Point3F(p) - transform_origin;
249 
250   float d = gfx::DotProduct(layer_normal, z_axis);
251   float n = -gfx::DotProduct(layer_normal, w);
252 
253   // Check if layer is parallel to the z = 0 axis which will make it
254   // invisible and hence returning zero is fine.
255   if (!d)
256     return 0.f;
257 
258   // The intersection point would be given by:
259   // p + (n / d) * u  but since we are only interested in the
260   // z coordinate and p's z coord is zero, all we need is the value of n/d.
261   return n / d;
262 }
263 
CreateGraphNodes(LayerImplList::iterator first,LayerImplList::iterator last)264 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first,
265                                    LayerImplList::iterator last) {
266   DVLOG(2) << "Creating graph nodes:";
267   float min_z = FLT_MAX;
268   float max_z = -FLT_MAX;
269   for (LayerImplList::const_iterator it = first; it < last; it++) {
270     nodes_.push_back(GraphNode(*it));
271     GraphNode& node = nodes_.at(nodes_.size() - 1);
272     RenderSurfaceImpl* render_surface = node.layer->render_surface();
273     if (!node.layer->DrawsContent() && !render_surface)
274       continue;
275 
276     DVLOG(2) << "Layer " << node.layer->id() <<
277         " (" << node.layer->bounds().width() <<
278         " x " << node.layer->bounds().height() << ")";
279 
280     gfx::Transform draw_transform;
281     float layer_width, layer_height;
282     if (render_surface) {
283       draw_transform = render_surface->draw_transform();
284       layer_width = render_surface->content_rect().width();
285       layer_height = render_surface->content_rect().height();
286     } else {
287       draw_transform = node.layer->draw_transform();
288       layer_width = node.layer->content_bounds().width();
289       layer_height = node.layer->content_bounds().height();
290     }
291 
292     node.shape = LayerShape(layer_width, layer_height, draw_transform);
293 
294     max_z = std::max(max_z, node.shape.transform_origin.z());
295     min_z = std::min(min_z, node.shape.transform_origin.z());
296   }
297 
298   z_range_ = std::abs(max_z - min_z);
299 }
300 
CreateGraphEdges()301 void LayerSorter::CreateGraphEdges() {
302   DVLOG(2) << "Edges:";
303   // Fraction of the total z_range below which z differences
304   // are not considered reliable.
305   const float z_threshold_factor = 0.01f;
306   float z_threshold = z_range_ * z_threshold_factor;
307 
308   for (size_t na = 0; na < nodes_.size(); na++) {
309     GraphNode& node_a = nodes_[na];
310     if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface())
311       continue;
312     for (size_t nb = na + 1; nb < nodes_.size(); nb++) {
313       GraphNode& node_b = nodes_[nb];
314       if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface())
315         continue;
316       float weight = 0.f;
317       ABCompareResult overlap_result = CheckOverlap(&node_a.shape,
318                                                     &node_b.shape,
319                                                     z_threshold,
320                                                     &weight);
321       GraphNode* start_node = NULL;
322       GraphNode* end_node = NULL;
323       if (overlap_result == ABeforeB) {
324         start_node = &node_a;
325         end_node = &node_b;
326       } else if (overlap_result == BBeforeA) {
327         start_node = &node_b;
328         end_node = &node_a;
329       }
330 
331       if (start_node) {
332         DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id();
333         edges_.push_back(GraphEdge(start_node, end_node, weight));
334       }
335     }
336   }
337 
338   for (size_t i = 0; i < edges_.size(); i++) {
339     GraphEdge& edge = edges_[i];
340     active_edges_[&edge] = &edge;
341     edge.from->outgoing.push_back(&edge);
342     edge.to->incoming.push_back(&edge);
343     edge.to->incoming_edge_weight += edge.weight;
344   }
345 }
346 
347 // Finds and removes an edge from the list by doing a swap with the
348 // last element of the list.
RemoveEdgeFromList(GraphEdge * edge,std::vector<GraphEdge * > * list)349 void LayerSorter::RemoveEdgeFromList(GraphEdge* edge,
350                                      std::vector<GraphEdge*>* list) {
351   std::vector<GraphEdge*>::iterator iter =
352       std::find(list->begin(), list->end(), edge);
353   DCHECK(iter != list->end());
354   list->erase(iter);
355 }
356 
357 // Sorts the given list of layers such that they can be painted in a
358 // back-to-front order. Sorting produces correct results for non-intersecting
359 // layers that don't have cyclical order dependencies. Cycles and intersections
360 // are broken (somewhat) aribtrarily. Sorting of layers is done via a
361 // topological sort of a directed graph whose nodes are the layers themselves.
362 // An edge from node A to node B signifies that layer A needs to be drawn before
363 // layer B. If A and B have no dependency between each other, then we preserve
364 // the ordering of those layers as they were in the original list.
365 //
366 // The draw order between two layers is determined by projecting the two
367 // triangles making up each layer quad to the Z = 0 plane, finding points of
368 // intersection between the triangles and backprojecting those points to the
369 // plane of the layer to determine the corresponding Z coordinate. The layer
370 // with the lower Z coordinate (farther from the eye) needs to be rendered
371 // first.
372 //
373 // If the layer projections don't intersect, then no edges (dependencies) are
374 // created between them in the graph. HOWEVER, in this case we still need to
375 // preserve the ordering of the original list of layers, since that list should
376 // already have proper z-index ordering of layers.
377 //
Sort(LayerImplList::iterator first,LayerImplList::iterator last)378 void LayerSorter::Sort(LayerImplList::iterator first,
379                        LayerImplList::iterator last) {
380   DVLOG(2) << "Sorting start ----";
381   CreateGraphNodes(first, last);
382 
383   CreateGraphEdges();
384 
385   std::vector<GraphNode*> sorted_list;
386   std::deque<GraphNode*> no_incoming_edge_node_list;
387 
388   // Find all the nodes that don't have incoming edges.
389   for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) {
390     if (!la->incoming.size())
391       no_incoming_edge_node_list.push_back(&(*la));
392   }
393 
394   DVLOG(2) << "Sorted list: ";
395   while (active_edges_.size() || no_incoming_edge_node_list.size()) {
396     while (no_incoming_edge_node_list.size()) {
397       // It is necessary to preserve the existing ordering of layers, when there
398       // are no explicit dependencies (because this existing ordering has
399       // correct z-index/layout ordering). To preserve this ordering, we process
400       // Nodes in the same order that they were added to the list.
401       GraphNode* from_node = no_incoming_edge_node_list.front();
402       no_incoming_edge_node_list.pop_front();
403 
404       // Add it to the final list.
405       sorted_list.push_back(from_node);
406 
407       DVLOG(2) << from_node->layer->id() << ", ";
408 
409       // Remove all its outgoing edges from the graph.
410       for (size_t i = 0; i < from_node->outgoing.size(); i++) {
411         GraphEdge* outgoing_edge = from_node->outgoing[i];
412 
413         active_edges_.erase(outgoing_edge);
414         RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming);
415         outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight;
416 
417         if (!outgoing_edge->to->incoming.size())
418           no_incoming_edge_node_list.push_back(outgoing_edge->to);
419       }
420       from_node->outgoing.clear();
421     }
422 
423     if (!active_edges_.size())
424       break;
425 
426     // If there are still active edges but the list of nodes without incoming
427     // edges is empty then we have run into a cycle. Break the cycle by finding
428     // the node with the smallest overall incoming edge weight and use it. This
429     // will favor nodes that have zero-weight incoming edges i.e. layers that
430     // are being occluded by a layer that intersects them.
431     float min_incoming_edge_weight = FLT_MAX;
432     GraphNode* next_node = NULL;
433     for (size_t i = 0; i < nodes_.size(); i++) {
434       if (nodes_[i].incoming.size() &&
435           nodes_[i].incoming_edge_weight < min_incoming_edge_weight) {
436         min_incoming_edge_weight = nodes_[i].incoming_edge_weight;
437         next_node = &nodes_[i];
438       }
439     }
440     DCHECK(next_node);
441     // Remove all its incoming edges.
442     for (size_t e = 0; e < next_node->incoming.size(); e++) {
443       GraphEdge* incoming_edge = next_node->incoming[e];
444 
445       active_edges_.erase(incoming_edge);
446       RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing);
447     }
448     next_node->incoming.clear();
449     next_node->incoming_edge_weight = 0.f;
450     no_incoming_edge_node_list.push_back(next_node);
451     DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
452         next_node->layer->id() <<
453         " (weight = " << min_incoming_edge_weight << ")";
454   }
455 
456   // Note: The original elements of the list are in no danger of having their
457   // ref count go to zero here as they are all nodes of the layer hierarchy and
458   // are kept alive by their parent nodes.
459   int count = 0;
460   for (LayerImplList::iterator it = first; it < last; it++)
461     *it = sorted_list[count++]->layer;
462 
463   DVLOG(2) << "Sorting end ----";
464 
465   nodes_.clear();
466   edges_.clear();
467   active_edges_.clear();
468 }
469 
470 }  // namespace cc
471