• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_
29 #define DOUBLE_CONVERSION_DOUBLE_H_
30 
31 #include "diy-fp.h"
32 
33 namespace WTF {
34 
35 namespace double_conversion {
36 
37     // We assume that doubles and uint64_t have the same endianness.
double_to_uint64(double d)38     static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
uint64_to_double(uint64_t d64)39     static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
40 
41     // Helper functions for doubles.
42     class Double {
43     public:
44         static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
45         static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
46         static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
47         static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
48         static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
49         static const int kSignificandSize = 53;
50 
Double()51         Double() : d64_(0) {}
Double(double d)52         explicit Double(double d) : d64_(double_to_uint64(d)) {}
Double(uint64_t d64)53         explicit Double(uint64_t d64) : d64_(d64) {}
Double(DiyFp diy_fp)54         explicit Double(DiyFp diy_fp)
55         : d64_(DiyFpToUint64(diy_fp)) {}
56 
57         // The value encoded by this Double must be greater or equal to +0.0.
58         // It must not be special (infinity, or NaN).
AsDiyFp()59         DiyFp AsDiyFp() const {
60             ASSERT(Sign() > 0);
61             ASSERT(!IsSpecial());
62             return DiyFp(Significand(), Exponent());
63         }
64 
65         // The value encoded by this Double must be strictly greater than 0.
AsNormalizedDiyFp()66         DiyFp AsNormalizedDiyFp() const {
67             ASSERT(value() > 0.0);
68             uint64_t f = Significand();
69             int e = Exponent();
70 
71             // The current double could be a denormal.
72             while ((f & kHiddenBit) == 0) {
73                 f <<= 1;
74                 e--;
75             }
76             // Do the final shifts in one go.
77             f <<= DiyFp::kSignificandSize - kSignificandSize;
78             e -= DiyFp::kSignificandSize - kSignificandSize;
79             return DiyFp(f, e);
80         }
81 
82         // Returns the double's bit as uint64.
AsUint64()83         uint64_t AsUint64() const {
84             return d64_;
85         }
86 
87         // Returns the next greater double. Returns +infinity on input +infinity.
NextDouble()88         double NextDouble() const {
89             if (d64_ == kInfinity) return Double(kInfinity).value();
90             if (Sign() < 0 && Significand() == 0) {
91                 // -0.0
92                 return 0.0;
93             }
94             if (Sign() < 0) {
95                 return Double(d64_ - 1).value();
96             } else {
97                 return Double(d64_ + 1).value();
98             }
99         }
100 
Exponent()101         int Exponent() const {
102             if (IsDenormal()) return kDenormalExponent;
103 
104             uint64_t d64 = AsUint64();
105             int biased_e =
106             static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
107             return biased_e - kExponentBias;
108         }
109 
Significand()110         uint64_t Significand() const {
111             uint64_t d64 = AsUint64();
112             uint64_t significand = d64 & kSignificandMask;
113             if (!IsDenormal()) {
114                 return significand + kHiddenBit;
115             } else {
116                 return significand;
117             }
118         }
119 
120         // Returns true if the double is a denormal.
IsDenormal()121         bool IsDenormal() const {
122             uint64_t d64 = AsUint64();
123             return (d64 & kExponentMask) == 0;
124         }
125 
126         // We consider denormals not to be special.
127         // Hence only Infinity and NaN are special.
IsSpecial()128         bool IsSpecial() const {
129             uint64_t d64 = AsUint64();
130             return (d64 & kExponentMask) == kExponentMask;
131         }
132 
IsNan()133         bool IsNan() const {
134             uint64_t d64 = AsUint64();
135             return ((d64 & kExponentMask) == kExponentMask) &&
136             ((d64 & kSignificandMask) != 0);
137         }
138 
IsInfinite()139         bool IsInfinite() const {
140             uint64_t d64 = AsUint64();
141             return ((d64 & kExponentMask) == kExponentMask) &&
142             ((d64 & kSignificandMask) == 0);
143         }
144 
Sign()145         int Sign() const {
146             uint64_t d64 = AsUint64();
147             return (d64 & kSignMask) == 0? 1: -1;
148         }
149 
150         // Precondition: the value encoded by this Double must be greater or equal
151         // than +0.0.
UpperBoundary()152         DiyFp UpperBoundary() const {
153             ASSERT(Sign() > 0);
154             return DiyFp(Significand() * 2 + 1, Exponent() - 1);
155         }
156 
157         // Computes the two boundaries of this.
158         // The bigger boundary (m_plus) is normalized. The lower boundary has the same
159         // exponent as m_plus.
160         // Precondition: the value encoded by this Double must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)161         void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
162             ASSERT(value() > 0.0);
163             DiyFp v = this->AsDiyFp();
164             bool significand_is_zero = (v.f() == kHiddenBit);
165             DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
166             DiyFp m_minus;
167             if (significand_is_zero && v.e() != kDenormalExponent) {
168                 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
169                 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
170                 // at a distance of 1e8.
171                 // The only exception is for the smallest normal: the largest denormal is
172                 // at the same distance as its successor.
173                 // Note: denormals have the same exponent as the smallest normals.
174                 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
175             } else {
176                 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
177             }
178             m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
179             m_minus.set_e(m_plus.e());
180             *out_m_plus = m_plus;
181             *out_m_minus = m_minus;
182         }
183 
value()184         double value() const { return uint64_to_double(d64_); }
185 
186         // Returns the significand size for a given order of magnitude.
187         // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
188         // This function returns the number of significant binary digits v will have
189         // once it's encoded into a double. In almost all cases this is equal to
190         // kSignificandSize. The only exceptions are denormals. They start with
191         // leading zeroes and their effective significand-size is hence smaller.
SignificandSizeForOrderOfMagnitude(int order)192         static int SignificandSizeForOrderOfMagnitude(int order) {
193             if (order >= (kDenormalExponent + kSignificandSize)) {
194                 return kSignificandSize;
195             }
196             if (order <= kDenormalExponent) return 0;
197             return order - kDenormalExponent;
198         }
199 
Infinity()200         static double Infinity() {
201             return Double(kInfinity).value();
202         }
203 
NaN()204         static double NaN() {
205             return Double(kNaN).value();
206         }
207 
208     private:
209         static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
210         static const int kDenormalExponent = -kExponentBias + 1;
211         static const int kMaxExponent = 0x7FF - kExponentBias;
212         static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
213         static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
214 
215         const uint64_t d64_;
216 
DiyFpToUint64(DiyFp diy_fp)217         static uint64_t DiyFpToUint64(DiyFp diy_fp) {
218             uint64_t significand = diy_fp.f();
219             int exponent = diy_fp.e();
220             while (significand > kHiddenBit + kSignificandMask) {
221                 significand >>= 1;
222                 exponent++;
223             }
224             if (exponent >= kMaxExponent) {
225                 return kInfinity;
226             }
227             if (exponent < kDenormalExponent) {
228                 return 0;
229             }
230             while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
231                 significand <<= 1;
232                 exponent--;
233             }
234             uint64_t biased_exponent;
235             if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
236                 biased_exponent = 0;
237             } else {
238                 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
239             }
240             return (significand & kSignificandMask) |
241             (biased_exponent << kPhysicalSignificandSize);
242         }
243     };
244 
245 }  // namespace double_conversion
246 
247 } // namespace WTF
248 
249 #endif  // DOUBLE_CONVERSION_DOUBLE_H_
250