• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_SCOPED_PTR_H__
6 #define BASE_SCOPED_PTR_H__
7 
8 //  This is an implementation designed to match the anticipated future TR2
9 //  implementation of the scoped_ptr class, and its closely-related brethren,
10 //  scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
11 //
12 //  See http://wiki/Main/ScopedPointerInterface for the spec that drove this
13 //  file.
14 
15 #include <assert.h>
16 #include <stdlib.h>
17 #include <cstddef>
18 
19 #ifdef OS_EMBEDDED_QNX
20 // NOTE(akirmse):
21 // The C++ standard says that <stdlib.h> declares both ::foo and std::foo
22 // But this isn't done in QNX version 6.3.2 200709062316.
23 using std::free;
24 using std::malloc;
25 using std::realloc;
26 #endif
27 
28 template <class C> class scoped_ptr;
29 template <class C, class Free> class scoped_ptr_malloc;
30 template <class C> class scoped_array;
31 
32 template <class C>
33 scoped_ptr<C> make_scoped_ptr(C *);
34 
35 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
36 // automatically deletes the pointer it holds (if any).
37 // That is, scoped_ptr<T> owns the T object that it points to.
38 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
39 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
40 // dereference it, you get the threadsafety guarantees of T.
41 //
42 // The size of a scoped_ptr is small:
43 // sizeof(scoped_ptr<C>) == sizeof(C*)
44 template <class C>
45 class scoped_ptr {
46  public:
47 
48   // The element type
49   typedef C element_type;
50 
51   // Constructor.  Defaults to intializing with NULL.
52   // There is no way to create an uninitialized scoped_ptr.
53   // The input parameter must be allocated with new.
ptr_(p)54   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
55 
56   // Destructor.  If there is a C object, delete it.
57   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr()58   ~scoped_ptr() {
59     enum { type_must_be_complete = sizeof(C) };
60     delete ptr_;
61   }
62 
63   // Reset.  Deletes the current owned object, if any.
64   // Then takes ownership of a new object, if given.
65   // this->reset(this->get()) works.
66   void reset(C* p = NULL) {
67     if (p != ptr_) {
68       enum { type_must_be_complete = sizeof(C) };
69       delete ptr_;
70       ptr_ = p;
71     }
72   }
73 
74   // Accessors to get the owned object.
75   // operator* and operator-> will assert() if there is no current object.
76   C& operator*() const {
77     assert(ptr_ != NULL);
78     return *ptr_;
79   }
80   C* operator->() const  {
81     assert(ptr_ != NULL);
82     return ptr_;
83   }
get()84   C* get() const { return ptr_; }
85 
86   // Comparison operators.
87   // These return whether a scoped_ptr and a raw pointer refer to
88   // the same object, not just to two different but equal objects.
89   bool operator==(const C* p) const { return ptr_ == p; }
90   bool operator!=(const C* p) const { return ptr_ != p; }
91 
92   // Swap two scoped pointers.
swap(scoped_ptr & p2)93   void swap(scoped_ptr& p2) {
94     C* tmp = ptr_;
95     ptr_ = p2.ptr_;
96     p2.ptr_ = tmp;
97   }
98 
99   // Release a pointer.
100   // The return value is the current pointer held by this object.
101   // If this object holds a NULL pointer, the return value is NULL.
102   // After this operation, this object will hold a NULL pointer,
103   // and will not own the object any more.
release()104   C* release() {
105     C* retVal = ptr_;
106     ptr_ = NULL;
107     return retVal;
108   }
109 
110  private:
111   C* ptr_;
112 
113   // google3 friend class that can access copy ctor (although if it actually
114   // calls a copy ctor, there will be a problem) see below
115   friend scoped_ptr<C> make_scoped_ptr<C>(C *p);
116 
117   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
118   // make sense, and if C2 == C, it still doesn't make sense because you should
119   // never have the same object owned by two different scoped_ptrs.
120   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
121   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
122 
123   // Disallow evil constructors
124   scoped_ptr(const scoped_ptr&);
125   void operator=(const scoped_ptr&);
126 };
127 
128 // Free functions
129 template <class C>
swap(scoped_ptr<C> & p1,scoped_ptr<C> & p2)130 inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
131   p1.swap(p2);
132 }
133 
134 template <class C>
135 inline bool operator==(const C* p1, const scoped_ptr<C>& p2) {
136   return p1 == p2.get();
137 }
138 
139 template <class C>
140 inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) {
141   return p1 == p2.get();
142 }
143 
144 template <class C>
145 inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) {
146   return p1 != p2.get();
147 }
148 
149 template <class C>
150 inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) {
151   return p1 != p2.get();
152 }
153 
154 template <class C>
make_scoped_ptr(C * p)155 scoped_ptr<C> make_scoped_ptr(C *p) {
156   // This does nothing but to return a scoped_ptr of the type that the passed
157   // pointer is of.  (This eliminates the need to specify the name of T when
158   // making a scoped_ptr that is used anonymously/temporarily.)  From an
159   // access control point of view, we construct an unnamed scoped_ptr here
160   // which we return and thus copy-construct.  Hence, we need to have access
161   // to scoped_ptr::scoped_ptr(scoped_ptr const &).  However, it is guaranteed
162   // that we never actually call the copy constructor, which is a good thing
163   // as we would call the temporary's object destructor (and thus delete p)
164   // if we actually did copy some object, here.
165   return scoped_ptr<C>(p);
166 }
167 
168 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
169 // with new [] and the destructor deletes objects with delete [].
170 //
171 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
172 // or is NULL.  A scoped_array<C> owns the object that it points to.
173 // scoped_array<T> is thread-compatible, and once you index into it,
174 // the returned objects have only the threadsafety guarantees of T.
175 //
176 // Size: sizeof(scoped_array<C>) == sizeof(C*)
177 template <class C>
178 class scoped_array {
179  public:
180 
181   // The element type
182   typedef C element_type;
183 
184   // Constructor.  Defaults to intializing with NULL.
185   // There is no way to create an uninitialized scoped_array.
186   // The input parameter must be allocated with new [].
array_(p)187   explicit scoped_array(C* p = NULL) : array_(p) { }
188 
189   // Destructor.  If there is a C object, delete it.
190   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array()191   ~scoped_array() {
192     enum { type_must_be_complete = sizeof(C) };
193     delete[] array_;
194   }
195 
196   // Reset.  Deletes the current owned object, if any.
197   // Then takes ownership of a new object, if given.
198   // this->reset(this->get()) works.
199   void reset(C* p = NULL) {
200     if (p != array_) {
201       enum { type_must_be_complete = sizeof(C) };
202       delete[] array_;
203       array_ = p;
204     }
205   }
206 
207   // Get one element of the current object.
208   // Will assert() if there is no current object, or index i is negative.
209   C& operator[](std::ptrdiff_t i) const {
210     assert(i >= 0);
211     assert(array_ != NULL);
212     return array_[i];
213   }
214 
215   // Get a pointer to the zeroth element of the current object.
216   // If there is no current object, return NULL.
get()217   C* get() const {
218     return array_;
219   }
220 
221   // Comparison operators.
222   // These return whether a scoped_array and a raw pointer refer to
223   // the same array, not just to two different but equal arrays.
224   bool operator==(const C* p) const { return array_ == p; }
225   bool operator!=(const C* p) const { return array_ != p; }
226 
227   // Swap two scoped arrays.
swap(scoped_array & p2)228   void swap(scoped_array& p2) {
229     C* tmp = array_;
230     array_ = p2.array_;
231     p2.array_ = tmp;
232   }
233 
234   // Release an array.
235   // The return value is the current pointer held by this object.
236   // If this object holds a NULL pointer, the return value is NULL.
237   // After this operation, this object will hold a NULL pointer,
238   // and will not own the object any more.
release()239   C* release() {
240     C* retVal = array_;
241     array_ = NULL;
242     return retVal;
243   }
244 
245  private:
246   C* array_;
247 
248   // Forbid comparison of different scoped_array types.
249   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
250   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
251 
252   // Disallow evil constructors
253   scoped_array(const scoped_array&);
254   void operator=(const scoped_array&);
255 };
256 
257 // Free functions
258 template <class C>
swap(scoped_array<C> & p1,scoped_array<C> & p2)259 inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
260   p1.swap(p2);
261 }
262 
263 template <class C>
264 inline bool operator==(const C* p1, const scoped_array<C>& p2) {
265   return p1 == p2.get();
266 }
267 
268 template <class C>
269 inline bool operator==(const C* p1, const scoped_array<const C>& p2) {
270   return p1 == p2.get();
271 }
272 
273 template <class C>
274 inline bool operator!=(const C* p1, const scoped_array<C>& p2) {
275   return p1 != p2.get();
276 }
277 
278 template <class C>
279 inline bool operator!=(const C* p1, const scoped_array<const C>& p2) {
280   return p1 != p2.get();
281 }
282 
283 // This class wraps the c library function free() in a class that can be
284 // passed as a template argument to scoped_ptr_malloc below.
285 class ScopedPtrMallocFree {
286  public:
operator()287   inline void operator()(void* x) const {
288     free(x);
289   }
290 };
291 
292 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
293 // second template argument, the functor used to free the object.
294 
295 template<class C, class FreeProc = ScopedPtrMallocFree>
296 class scoped_ptr_malloc {
297  public:
298 
299   // The element type
300   typedef C element_type;
301 
302   // Construction with no arguments sets ptr_ to NULL.
303   // There is no way to create an uninitialized scoped_ptr.
304   // The input parameter must be allocated with an allocator that matches the
305   // Free functor.  For the default Free functor, this is malloc, calloc, or
306   // realloc.
scoped_ptr_malloc()307   explicit scoped_ptr_malloc(): ptr_(NULL) { }
308 
309   // Construct with a C*, and provides an error with a D*.
310   template<class must_be_C>
scoped_ptr_malloc(must_be_C * p)311   explicit scoped_ptr_malloc(must_be_C* p): ptr_(p) { }
312 
313   // Construct with a void*, such as you get from malloc.
scoped_ptr_malloc(void * p)314   explicit scoped_ptr_malloc(void *p): ptr_(static_cast<C*>(p)) { }
315 
316   // Destructor.  If there is a C object, call the Free functor.
~scoped_ptr_malloc()317   ~scoped_ptr_malloc() {
318     free_(ptr_);
319   }
320 
321   // Reset.  Calls the Free functor on the current owned object, if any.
322   // Then takes ownership of a new object, if given.
323   // this->reset(this->get()) works.
324   void reset(C* p = NULL) {
325     if (ptr_ != p) {
326       free_(ptr_);
327       ptr_ = p;
328     }
329   }
330 
331   // Reallocates the existing pointer, and returns 'true' if
332   // the reallcation is succesfull.  If the reallocation failed, then
333   // the pointer remains in its previous state.
334   //
335   // Note: this calls realloc() directly, even if an alternate 'free'
336   // functor is provided in the template instantiation.
try_realloc(size_t new_size)337   bool try_realloc(size_t new_size) {
338     C* new_ptr = static_cast<C*>(realloc(ptr_, new_size));
339     if (new_ptr == NULL) {
340       return false;
341     }
342     ptr_ = new_ptr;
343     return true;
344   }
345 
346   // Get the current object.
347   // operator* and operator-> will cause an assert() failure if there is
348   // no current object.
349   C& operator*() const {
350     assert(ptr_ != NULL);
351     return *ptr_;
352   }
353 
354   C* operator->() const {
355     assert(ptr_ != NULL);
356     return ptr_;
357   }
358 
get()359   C* get() const {
360     return ptr_;
361   }
362 
363   // Comparison operators.
364   // These return whether a scoped_ptr_malloc and a plain pointer refer
365   // to the same object, not just to two different but equal objects.
366   // For compatibility with the boost-derived implementation, these
367   // take non-const arguments.
368   bool operator==(C* p) const {
369     return ptr_ == p;
370   }
371 
372   bool operator!=(C* p) const {
373     return ptr_ != p;
374   }
375 
376   // Swap two scoped pointers.
swap(scoped_ptr_malloc & b)377   void swap(scoped_ptr_malloc & b) {
378     C* tmp = b.ptr_;
379     b.ptr_ = ptr_;
380     ptr_ = tmp;
381   }
382 
383   // Release a pointer.
384   // The return value is the current pointer held by this object.
385   // If this object holds a NULL pointer, the return value is NULL.
386   // After this operation, this object will hold a NULL pointer,
387   // and will not own the object any more.
release()388   C* release() {
389     C* tmp = ptr_;
390     ptr_ = NULL;
391     return tmp;
392   }
393 
394  private:
395   C* ptr_;
396 
397   // no reason to use these: each scoped_ptr_malloc should have its own object
398   template <class C2, class GP>
399   bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
400   template <class C2, class GP>
401   bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
402 
403   static FreeProc const free_;
404 
405   // Disallow evil constructors
406   scoped_ptr_malloc(const scoped_ptr_malloc&);
407   void operator=(const scoped_ptr_malloc&);
408 };
409 
410 template<class C, class FP>
411 FP const scoped_ptr_malloc<C, FP>::free_ = FP();
412 
413 template<class C, class FP> inline
swap(scoped_ptr_malloc<C,FP> & a,scoped_ptr_malloc<C,FP> & b)414 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
415   a.swap(b);
416 }
417 
418 template<class C, class FP> inline
419 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
420   return p == b.get();
421 }
422 
423 template<class C, class FP> inline
424 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
425   return p != b.get();
426 }
427 
428 #endif  // BASE_SCOPED_PTR_H__
429