• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jdarith.c
3  *
4  * Developed 1997-2009 by Guido Vollbeding.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains portable arithmetic entropy decoding routines for JPEG
9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10  *
11  * Both sequential and progressive modes are supported in this single module.
12  *
13  * Suspension is not currently supported in this module.
14  */
15 
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19 
20 
21 /* Expanded entropy decoder object for arithmetic decoding. */
22 
23 typedef struct {
24   struct jpeg_entropy_decoder pub; /* public fields */
25 
26   INT32 c;       /* C register, base of coding interval + input bit buffer */
27   INT32 a;               /* A register, normalized size of coding interval */
28   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
29                                                          /* init: ct = -16 */
30                                                          /* run: ct = 0..7 */
31                                                          /* error: ct = -1 */
32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
34 
35   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
36 
37   /* Pointers to statistics areas (these workspaces have image lifespan) */
38   unsigned char * dc_stats[NUM_ARITH_TBLS];
39   unsigned char * ac_stats[NUM_ARITH_TBLS];
40 
41   /* Statistics bin for coding with fixed probability 0.5 */
42   unsigned char fixed_bin[4];
43 } arith_entropy_decoder;
44 
45 typedef arith_entropy_decoder * arith_entropy_ptr;
46 
47 /* The following two definitions specify the allocation chunk size
48  * for the statistics area.
49  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
51  *
52  * We use a compact representation with 1 byte per statistics bin,
53  * thus the numbers directly represent byte sizes.
54  * This 1 byte per statistics bin contains the meaning of the MPS
55  * (more probable symbol) in the highest bit (mask 0x80), and the
56  * index into the probability estimation state machine table
57  * in the lower bits (mask 0x7F).
58  */
59 
60 #define DC_STAT_BINS 64
61 #define AC_STAT_BINS 256
62 
63 
64 LOCAL(int)
get_byte(j_decompress_ptr cinfo)65 get_byte (j_decompress_ptr cinfo)
66 /* Read next input byte; we do not support suspension in this module. */
67 {
68   struct jpeg_source_mgr * src = cinfo->src;
69 
70   if (src->bytes_in_buffer == 0)
71     if (! (*src->fill_input_buffer) (cinfo))
72       ERREXIT(cinfo, JERR_CANT_SUSPEND);
73   src->bytes_in_buffer--;
74   return GETJOCTET(*src->next_input_byte++);
75 }
76 
77 
78 /*
79  * The core arithmetic decoding routine (common in JPEG and JBIG).
80  * This needs to go as fast as possible.
81  * Machine-dependent optimization facilities
82  * are not utilized in this portable implementation.
83  * However, this code should be fairly efficient and
84  * may be a good base for further optimizations anyway.
85  *
86  * Return value is 0 or 1 (binary decision).
87  *
88  * Note: I've changed the handling of the code base & bit
89  * buffer register C compared to other implementations
90  * based on the standards layout & procedures.
91  * While it also contains both the actual base of the
92  * coding interval (16 bits) and the next-bits buffer,
93  * the cut-point between these two parts is floating
94  * (instead of fixed) with the bit shift counter CT.
95  * Thus, we also need only one (variable instead of
96  * fixed size) shift for the LPS/MPS decision, and
97  * we can get away with any renormalization update
98  * of C (except for new data insertion, of course).
99  *
100  * I've also introduced a new scheme for accessing
101  * the probability estimation state machine table,
102  * derived from Markus Kuhn's JBIG implementation.
103  */
104 
105 LOCAL(int)
arith_decode(j_decompress_ptr cinfo,unsigned char * st)106 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
107 {
108   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
109   register unsigned char nl, nm;
110   register INT32 qe, temp;
111   register int sv, data;
112 
113   /* Renormalization & data input per section D.2.6 */
114   while (e->a < 0x8000L) {
115     if (--e->ct < 0) {
116       /* Need to fetch next data byte */
117       if (cinfo->unread_marker)
118 	data = 0;		/* stuff zero data */
119       else {
120 	data = get_byte(cinfo);	/* read next input byte */
121 	if (data == 0xFF) {	/* zero stuff or marker code */
122 	  do data = get_byte(cinfo);
123 	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
124 	  if (data == 0)
125 	    data = 0xFF;	/* discard stuffed zero byte */
126 	  else {
127 	    /* Note: Different from the Huffman decoder, hitting
128 	     * a marker while processing the compressed data
129 	     * segment is legal in arithmetic coding.
130 	     * The convention is to supply zero data
131 	     * then until decoding is complete.
132 	     */
133 	    cinfo->unread_marker = data;
134 	    data = 0;
135 	  }
136 	}
137       }
138       e->c = (e->c << 8) | data; /* insert data into C register */
139       if ((e->ct += 8) < 0)	 /* update bit shift counter */
140 	/* Need more initial bytes */
141 	if (++e->ct == 0)
142 	  /* Got 2 initial bytes -> re-init A and exit loop */
143 	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
144     }
145     e->a <<= 1;
146   }
147 
148   /* Fetch values from our compact representation of Table D.2:
149    * Qe values and probability estimation state machine
150    */
151   sv = *st;
152   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
153   nl = (unsigned char) qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
154   nm = (unsigned char) qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
155 
156   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
157   temp = e->a - qe;
158   e->a = temp;
159   temp <<= e->ct;
160   if (e->c >= temp) {
161     e->c -= temp;
162     /* Conditional LPS (less probable symbol) exchange */
163     if (e->a < qe) {
164       e->a = qe;
165       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
166     } else {
167       e->a = qe;
168       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
169       sv ^= 0x80;		/* Exchange LPS/MPS */
170     }
171   } else if (e->a < 0x8000L) {
172     /* Conditional MPS (more probable symbol) exchange */
173     if (e->a < qe) {
174       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
175       sv ^= 0x80;		/* Exchange LPS/MPS */
176     } else {
177       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
178     }
179   }
180 
181   return sv >> 7;
182 }
183 
184 
185 /*
186  * Check for a restart marker & resynchronize decoder.
187  */
188 
189 LOCAL(void)
process_restart(j_decompress_ptr cinfo)190 process_restart (j_decompress_ptr cinfo)
191 {
192   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
193   int ci;
194   jpeg_component_info * compptr;
195 
196   /* Advance past the RSTn marker */
197   if (! (*cinfo->marker->read_restart_marker) (cinfo))
198     ERREXIT(cinfo, JERR_CANT_SUSPEND);
199 
200   /* Re-initialize statistics areas */
201   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202     compptr = cinfo->cur_comp_info[ci];
203     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
204       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
205       /* Reset DC predictions to 0 */
206       entropy->last_dc_val[ci] = 0;
207       entropy->dc_context[ci] = 0;
208     }
209     if (! cinfo->progressive_mode || cinfo->Ss) {
210       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
211     }
212   }
213 
214   /* Reset arithmetic decoding variables */
215   entropy->c = 0;
216   entropy->a = 0;
217   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
218 
219   /* Reset restart counter */
220   entropy->restarts_to_go = cinfo->restart_interval;
221 }
222 
223 
224 /*
225  * Arithmetic MCU decoding.
226  * Each of these routines decodes and returns one MCU's worth of
227  * arithmetic-compressed coefficients.
228  * The coefficients are reordered from zigzag order into natural array order,
229  * but are not dequantized.
230  *
231  * The i'th block of the MCU is stored into the block pointed to by
232  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
233  */
234 
235 /*
236  * MCU decoding for DC initial scan (either spectral selection,
237  * or first pass of successive approximation).
238  */
239 
240 METHODDEF(boolean)
decode_mcu_DC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)241 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
242 {
243   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
244   JBLOCKROW block;
245   unsigned char *st;
246   int blkn, ci, tbl, sign;
247   int v, m;
248 
249   /* Process restart marker if needed */
250   if (cinfo->restart_interval) {
251     if (entropy->restarts_to_go == 0)
252       process_restart(cinfo);
253     entropy->restarts_to_go--;
254   }
255 
256   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
257 
258   /* Outer loop handles each block in the MCU */
259 
260   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
261     block = MCU_data[blkn];
262     ci = cinfo->MCU_membership[blkn];
263     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
264 
265     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
266 
267     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
268     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
269 
270     /* Figure F.19: Decode_DC_DIFF */
271     if (arith_decode(cinfo, st) == 0)
272       entropy->dc_context[ci] = 0;
273     else {
274       /* Figure F.21: Decoding nonzero value v */
275       /* Figure F.22: Decoding the sign of v */
276       sign = arith_decode(cinfo, st + 1);
277       st += 2; st += sign;
278       /* Figure F.23: Decoding the magnitude category of v */
279       if ((m = arith_decode(cinfo, st)) != 0) {
280 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
281 	while (arith_decode(cinfo, st)) {
282 	  if ((m <<= 1) == 0x8000) {
283 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
284 	    entropy->ct = -1;			/* magnitude overflow */
285 	    return TRUE;
286 	  }
287 	  st += 1;
288 	}
289       }
290       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
291       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
292 	entropy->dc_context[ci] = 0;		   /* zero diff category */
293       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
294 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
295       else
296 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
297       v = m;
298       /* Figure F.24: Decoding the magnitude bit pattern of v */
299       st += 14;
300       while (m >>= 1)
301 	if (arith_decode(cinfo, st)) v |= m;
302       v += 1; if (sign) v = -v;
303       entropy->last_dc_val[ci] += v;
304     }
305 
306     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
307     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
308   }
309 
310   return TRUE;
311 }
312 
313 
314 /*
315  * MCU decoding for AC initial scan (either spectral selection,
316  * or first pass of successive approximation).
317  */
318 
319 METHODDEF(boolean)
decode_mcu_AC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)320 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
321 {
322   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
323   JBLOCKROW block;
324   unsigned char *st;
325   int tbl, sign, k;
326   int v, m;
327 
328   /* Process restart marker if needed */
329   if (cinfo->restart_interval) {
330     if (entropy->restarts_to_go == 0)
331       process_restart(cinfo);
332     entropy->restarts_to_go--;
333   }
334 
335   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
336 
337   /* There is always only one block per MCU */
338   block = MCU_data[0];
339   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
340 
341   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
342 
343   /* Figure F.20: Decode_AC_coefficients */
344   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
345     st = entropy->ac_stats[tbl] + 3 * (k - 1);
346     if (arith_decode(cinfo, st)) break;		/* EOB flag */
347     while (arith_decode(cinfo, st + 1) == 0) {
348       st += 3; k++;
349       if (k > cinfo->Se) {
350 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
351 	entropy->ct = -1;			/* spectral overflow */
352 	return TRUE;
353       }
354     }
355     /* Figure F.21: Decoding nonzero value v */
356     /* Figure F.22: Decoding the sign of v */
357     sign = arith_decode(cinfo, entropy->fixed_bin);
358     st += 2;
359     /* Figure F.23: Decoding the magnitude category of v */
360     if ((m = arith_decode(cinfo, st)) != 0) {
361       if (arith_decode(cinfo, st)) {
362 	m <<= 1;
363 	st = entropy->ac_stats[tbl] +
364 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
365 	while (arith_decode(cinfo, st)) {
366 	  if ((m <<= 1) == 0x8000) {
367 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
368 	    entropy->ct = -1;			/* magnitude overflow */
369 	    return TRUE;
370 	  }
371 	  st += 1;
372 	}
373       }
374     }
375     v = m;
376     /* Figure F.24: Decoding the magnitude bit pattern of v */
377     st += 14;
378     while (m >>= 1)
379       if (arith_decode(cinfo, st)) v |= m;
380     v += 1; if (sign) v = -v;
381     /* Scale and output coefficient in natural (dezigzagged) order */
382     (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
383   }
384 
385   return TRUE;
386 }
387 
388 
389 /*
390  * MCU decoding for DC successive approximation refinement scan.
391  */
392 
393 METHODDEF(boolean)
decode_mcu_DC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)394 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
395 {
396   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
397   unsigned char *st;
398   int p1, blkn;
399 
400   /* Process restart marker if needed */
401   if (cinfo->restart_interval) {
402     if (entropy->restarts_to_go == 0)
403       process_restart(cinfo);
404     entropy->restarts_to_go--;
405   }
406 
407   st = entropy->fixed_bin;	/* use fixed probability estimation */
408   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
409 
410   /* Outer loop handles each block in the MCU */
411 
412   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
413     /* Encoded data is simply the next bit of the two's-complement DC value */
414     if (arith_decode(cinfo, st))
415       MCU_data[blkn][0][0] |= p1;
416   }
417 
418   return TRUE;
419 }
420 
421 
422 /*
423  * MCU decoding for AC successive approximation refinement scan.
424  */
425 
426 METHODDEF(boolean)
decode_mcu_AC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)427 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
428 {
429   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
430   JBLOCKROW block;
431   JCOEFPTR thiscoef;
432   unsigned char *st;
433   int tbl, k, kex;
434   int p1, m1;
435 
436   /* Process restart marker if needed */
437   if (cinfo->restart_interval) {
438     if (entropy->restarts_to_go == 0)
439       process_restart(cinfo);
440     entropy->restarts_to_go--;
441   }
442 
443   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
444 
445   /* There is always only one block per MCU */
446   block = MCU_data[0];
447   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
448 
449   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
450   m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
451 
452   /* Establish EOBx (previous stage end-of-block) index */
453   for (kex = cinfo->Se; kex > 0; kex--)
454     if ((*block)[jpeg_natural_order[kex]]) break;
455 
456   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
457     st = entropy->ac_stats[tbl] + 3 * (k - 1);
458     if (k > kex)
459       if (arith_decode(cinfo, st)) break;	/* EOB flag */
460     for (;;) {
461       thiscoef = *block + jpeg_natural_order[k];
462       if (*thiscoef) {				/* previously nonzero coef */
463 	if (arith_decode(cinfo, st + 2)) {
464 	  if (*thiscoef < 0)
465 	    *thiscoef += m1;
466 	  else
467 	    *thiscoef += p1;
468 	}
469 	break;
470       }
471       if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
472 	if (arith_decode(cinfo, entropy->fixed_bin))
473 	  *thiscoef = m1;
474 	else
475 	  *thiscoef = p1;
476 	break;
477       }
478       st += 3; k++;
479       if (k > cinfo->Se) {
480 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
481 	entropy->ct = -1;			/* spectral overflow */
482 	return TRUE;
483       }
484     }
485   }
486 
487   return TRUE;
488 }
489 
490 
491 /*
492  * Decode one MCU's worth of arithmetic-compressed coefficients.
493  */
494 
495 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)496 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
497 {
498   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
499   jpeg_component_info * compptr;
500   JBLOCKROW block;
501   unsigned char *st;
502   int blkn, ci, tbl, sign, k;
503   int v, m;
504 
505   /* Process restart marker if needed */
506   if (cinfo->restart_interval) {
507     if (entropy->restarts_to_go == 0)
508       process_restart(cinfo);
509     entropy->restarts_to_go--;
510   }
511 
512   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
513 
514   /* Outer loop handles each block in the MCU */
515 
516   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
517     block = MCU_data[blkn];
518     ci = cinfo->MCU_membership[blkn];
519     compptr = cinfo->cur_comp_info[ci];
520 
521     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
522 
523     tbl = compptr->dc_tbl_no;
524 
525     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
526     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
527 
528     /* Figure F.19: Decode_DC_DIFF */
529     if (arith_decode(cinfo, st) == 0)
530       entropy->dc_context[ci] = 0;
531     else {
532       /* Figure F.21: Decoding nonzero value v */
533       /* Figure F.22: Decoding the sign of v */
534       sign = arith_decode(cinfo, st + 1);
535       st += 2; st += sign;
536       /* Figure F.23: Decoding the magnitude category of v */
537       if ((m = arith_decode(cinfo, st)) != 0) {
538 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
539 	while (arith_decode(cinfo, st)) {
540 	  if ((m <<= 1) == 0x8000) {
541 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
542 	    entropy->ct = -1;			/* magnitude overflow */
543 	    return TRUE;
544 	  }
545 	  st += 1;
546 	}
547       }
548       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
549       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
550 	entropy->dc_context[ci] = 0;		   /* zero diff category */
551       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
552 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
553       else
554 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
555       v = m;
556       /* Figure F.24: Decoding the magnitude bit pattern of v */
557       st += 14;
558       while (m >>= 1)
559 	if (arith_decode(cinfo, st)) v |= m;
560       v += 1; if (sign) v = -v;
561       entropy->last_dc_val[ci] += v;
562     }
563 
564     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
565 
566     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
567 
568     tbl = compptr->ac_tbl_no;
569 
570     /* Figure F.20: Decode_AC_coefficients */
571     for (k = 1; k <= DCTSIZE2 - 1; k++) {
572       st = entropy->ac_stats[tbl] + 3 * (k - 1);
573       if (arith_decode(cinfo, st)) break;	/* EOB flag */
574       while (arith_decode(cinfo, st + 1) == 0) {
575 	st += 3; k++;
576 	if (k > DCTSIZE2 - 1) {
577 	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
578 	  entropy->ct = -1;			/* spectral overflow */
579 	  return TRUE;
580 	}
581       }
582       /* Figure F.21: Decoding nonzero value v */
583       /* Figure F.22: Decoding the sign of v */
584       sign = arith_decode(cinfo, entropy->fixed_bin);
585       st += 2;
586       /* Figure F.23: Decoding the magnitude category of v */
587       if ((m = arith_decode(cinfo, st)) != 0) {
588 	if (arith_decode(cinfo, st)) {
589 	  m <<= 1;
590 	  st = entropy->ac_stats[tbl] +
591 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
592 	  while (arith_decode(cinfo, st)) {
593 	    if ((m <<= 1) == 0x8000) {
594 	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
595 	      entropy->ct = -1;			/* magnitude overflow */
596 	      return TRUE;
597 	    }
598 	    st += 1;
599 	  }
600 	}
601       }
602       v = m;
603       /* Figure F.24: Decoding the magnitude bit pattern of v */
604       st += 14;
605       while (m >>= 1)
606 	if (arith_decode(cinfo, st)) v |= m;
607       v += 1; if (sign) v = -v;
608       (*block)[jpeg_natural_order[k]] = (JCOEF) v;
609     }
610   }
611 
612   return TRUE;
613 }
614 
615 
616 /*
617  * Initialize for an arithmetic-compressed scan.
618  */
619 
620 METHODDEF(void)
start_pass(j_decompress_ptr cinfo)621 start_pass (j_decompress_ptr cinfo)
622 {
623   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
624   int ci, tbl;
625   jpeg_component_info * compptr;
626 
627   if (cinfo->progressive_mode) {
628     /* Validate progressive scan parameters */
629     if (cinfo->Ss == 0) {
630       if (cinfo->Se != 0)
631 	goto bad;
632     } else {
633       /* need not check Ss/Se < 0 since they came from unsigned bytes */
634       if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
635 	goto bad;
636       /* AC scans may have only one component */
637       if (cinfo->comps_in_scan != 1)
638 	goto bad;
639     }
640     if (cinfo->Ah != 0) {
641       /* Successive approximation refinement scan: must have Al = Ah-1. */
642       if (cinfo->Ah-1 != cinfo->Al)
643 	goto bad;
644     }
645     if (cinfo->Al > 13) {	/* need not check for < 0 */
646       bad:
647       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
648 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
649     }
650     /* Update progression status, and verify that scan order is legal.
651      * Note that inter-scan inconsistencies are treated as warnings
652      * not fatal errors ... not clear if this is right way to behave.
653      */
654     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
655       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
656       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
657       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
658 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
659       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
660 	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
661 	if (cinfo->Ah != expected)
662 	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
663 	coef_bit_ptr[coefi] = cinfo->Al;
664       }
665     }
666     /* Select MCU decoding routine */
667     if (cinfo->Ah == 0) {
668       if (cinfo->Ss == 0)
669 	entropy->pub.decode_mcu = decode_mcu_DC_first;
670       else
671 	entropy->pub.decode_mcu = decode_mcu_AC_first;
672     } else {
673       if (cinfo->Ss == 0)
674 	entropy->pub.decode_mcu = decode_mcu_DC_refine;
675       else
676 	entropy->pub.decode_mcu = decode_mcu_AC_refine;
677     }
678   } else {
679     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
680      * This ought to be an error condition, but we make it a warning.
681      */
682     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
683 	(cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
684       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
685     /* Select MCU decoding routine */
686     entropy->pub.decode_mcu = decode_mcu;
687   }
688 
689   /* Allocate & initialize requested statistics areas */
690   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
691     compptr = cinfo->cur_comp_info[ci];
692     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
693       tbl = compptr->dc_tbl_no;
694       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
695 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
696       if (entropy->dc_stats[tbl] == NULL)
697 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
698 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
699       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
700       /* Initialize DC predictions to 0 */
701       entropy->last_dc_val[ci] = 0;
702       entropy->dc_context[ci] = 0;
703     }
704     if (! cinfo->progressive_mode || cinfo->Ss) {
705       tbl = compptr->ac_tbl_no;
706       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
707 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
708       if (entropy->ac_stats[tbl] == NULL)
709 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
710 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
711       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
712     }
713   }
714 
715   /* Initialize arithmetic decoding variables */
716   entropy->c = 0;
717   entropy->a = 0;
718   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
719 
720   /* Initialize restart counter */
721   entropy->restarts_to_go = cinfo->restart_interval;
722 }
723 
724 
725 /*
726  * Module initialization routine for arithmetic entropy decoding.
727  */
728 
729 GLOBAL(void)
jinit_arith_decoder(j_decompress_ptr cinfo)730 jinit_arith_decoder (j_decompress_ptr cinfo)
731 {
732   arith_entropy_ptr entropy;
733   int i;
734 
735   entropy = (arith_entropy_ptr)
736     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
737 				SIZEOF(arith_entropy_decoder));
738   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
739   entropy->pub.start_pass = start_pass;
740 
741   /* Mark tables unallocated */
742   for (i = 0; i < NUM_ARITH_TBLS; i++) {
743     entropy->dc_stats[i] = NULL;
744     entropy->ac_stats[i] = NULL;
745   }
746 
747   /* Initialize index for fixed probability estimation */
748   entropy->fixed_bin[0] = 113;
749 
750   if (cinfo->progressive_mode) {
751     /* Create progression status table */
752     int *coef_bit_ptr, ci;
753     cinfo->coef_bits = (int (*)[DCTSIZE2])
754       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
755 				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
756     coef_bit_ptr = & cinfo->coef_bits[0][0];
757     for (ci = 0; ci < cinfo->num_components; ci++)
758       for (i = 0; i < DCTSIZE2; i++)
759 	*coef_bit_ptr++ = -1;
760   }
761 }
762