1 /*
2 * jquant2.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains 2-pass color quantization (color mapping) routines.
11 * These routines provide selection of a custom color map for an image,
12 * followed by mapping of the image to that color map, with optional
13 * Floyd-Steinberg dithering.
14 * It is also possible to use just the second pass to map to an arbitrary
15 * externally-given color map.
16 *
17 * Note: ordered dithering is not supported, since there isn't any fast
18 * way to compute intercolor distances; it's unclear that ordered dither's
19 * fundamental assumptions even hold with an irregularly spaced color map.
20 */
21
22 #define JPEG_INTERNALS
23 #include "jinclude.h"
24 #include "jpeglib.h"
25
26 #ifdef QUANT_2PASS_SUPPORTED
27
28
29 /*
30 * This module implements the well-known Heckbert paradigm for color
31 * quantization. Most of the ideas used here can be traced back to
32 * Heckbert's seminal paper
33 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
34 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
35 *
36 * In the first pass over the image, we accumulate a histogram showing the
37 * usage count of each possible color. To keep the histogram to a reasonable
38 * size, we reduce the precision of the input; typical practice is to retain
39 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
40 * in the same histogram cell.
41 *
42 * Next, the color-selection step begins with a box representing the whole
43 * color space, and repeatedly splits the "largest" remaining box until we
44 * have as many boxes as desired colors. Then the mean color in each
45 * remaining box becomes one of the possible output colors.
46 *
47 * The second pass over the image maps each input pixel to the closest output
48 * color (optionally after applying a Floyd-Steinberg dithering correction).
49 * This mapping is logically trivial, but making it go fast enough requires
50 * considerable care.
51 *
52 * Heckbert-style quantizers vary a good deal in their policies for choosing
53 * the "largest" box and deciding where to cut it. The particular policies
54 * used here have proved out well in experimental comparisons, but better ones
55 * may yet be found.
56 *
57 * In earlier versions of the IJG code, this module quantized in YCbCr color
58 * space, processing the raw upsampled data without a color conversion step.
59 * This allowed the color conversion math to be done only once per colormap
60 * entry, not once per pixel. However, that optimization precluded other
61 * useful optimizations (such as merging color conversion with upsampling)
62 * and it also interfered with desired capabilities such as quantizing to an
63 * externally-supplied colormap. We have therefore abandoned that approach.
64 * The present code works in the post-conversion color space, typically RGB.
65 *
66 * To improve the visual quality of the results, we actually work in scaled
67 * RGB space, giving G distances more weight than R, and R in turn more than
68 * B. To do everything in integer math, we must use integer scale factors.
69 * The 2/3/1 scale factors used here correspond loosely to the relative
70 * weights of the colors in the NTSC grayscale equation.
71 * If you want to use this code to quantize a non-RGB color space, you'll
72 * probably need to change these scale factors.
73 */
74
75 #define R_SCALE 2 /* scale R distances by this much */
76 #define G_SCALE 3 /* scale G distances by this much */
77 #define B_SCALE 1 /* and B by this much */
78
79 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
80 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
81 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
82 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
83
84 /*
85 * First we have the histogram data structure and routines for creating it.
86 *
87 * The number of bits of precision can be adjusted by changing these symbols.
88 * We recommend keeping 6 bits for G and 5 each for R and B.
89 * If you have plenty of memory and cycles, 6 bits all around gives marginally
90 * better results; if you are short of memory, 5 bits all around will save
91 * some space but degrade the results.
92 * To maintain a fully accurate histogram, we'd need to allocate a "long"
93 * (preferably unsigned long) for each cell. In practice this is overkill;
94 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
95 * and clamping those that do overflow to the maximum value will give close-
96 * enough results. This reduces the recommended histogram size from 256Kb
97 * to 128Kb, which is a useful savings on PC-class machines.
98 * (In the second pass the histogram space is re-used for pixel mapping data;
99 * in that capacity, each cell must be able to store zero to the number of
100 * desired colors. 16 bits/cell is plenty for that too.)
101 * Since the JPEG code is intended to run in small memory model on 80x86
102 * machines, we can't just allocate the histogram in one chunk. Instead
103 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
104 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
105 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
106 * on 80x86 machines, the pointer row is in near memory but the actual
107 * arrays are in far memory (same arrangement as we use for image arrays).
108 */
109
110 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
111
112 /* These will do the right thing for either R,G,B or B,G,R color order,
113 * but you may not like the results for other color orders.
114 */
115 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
116 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
117 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
118
119 /* Number of elements along histogram axes. */
120 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
121 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
122 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
123
124 /* These are the amounts to shift an input value to get a histogram index. */
125 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
126 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
127 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
128
129
130 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
131
132 typedef histcell FAR * histptr; /* for pointers to histogram cells */
133
134 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
135 typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
136 typedef hist2d * hist3d; /* type for top-level pointer */
137
138
139 /* Declarations for Floyd-Steinberg dithering.
140 *
141 * Errors are accumulated into the array fserrors[], at a resolution of
142 * 1/16th of a pixel count. The error at a given pixel is propagated
143 * to its not-yet-processed neighbors using the standard F-S fractions,
144 * ... (here) 7/16
145 * 3/16 5/16 1/16
146 * We work left-to-right on even rows, right-to-left on odd rows.
147 *
148 * We can get away with a single array (holding one row's worth of errors)
149 * by using it to store the current row's errors at pixel columns not yet
150 * processed, but the next row's errors at columns already processed. We
151 * need only a few extra variables to hold the errors immediately around the
152 * current column. (If we are lucky, those variables are in registers, but
153 * even if not, they're probably cheaper to access than array elements are.)
154 *
155 * The fserrors[] array has (#columns + 2) entries; the extra entry at
156 * each end saves us from special-casing the first and last pixels.
157 * Each entry is three values long, one value for each color component.
158 *
159 * Note: on a wide image, we might not have enough room in a PC's near data
160 * segment to hold the error array; so it is allocated with alloc_large.
161 */
162
163 #if BITS_IN_JSAMPLE == 8
164 typedef INT16 FSERROR; /* 16 bits should be enough */
165 typedef int LOCFSERROR; /* use 'int' for calculation temps */
166 #else
167 typedef INT32 FSERROR; /* may need more than 16 bits */
168 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
169 #endif
170
171 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
172
173
174 /* Private subobject */
175
176 typedef struct {
177 struct jpeg_color_quantizer pub; /* public fields */
178
179 /* Space for the eventually created colormap is stashed here */
180 JSAMPARRAY sv_colormap; /* colormap allocated at init time */
181 int desired; /* desired # of colors = size of colormap */
182
183 /* Variables for accumulating image statistics */
184 hist3d histogram; /* pointer to the histogram */
185
186 boolean needs_zeroed; /* TRUE if next pass must zero histogram */
187
188 /* Variables for Floyd-Steinberg dithering */
189 FSERRPTR fserrors; /* accumulated errors */
190 boolean on_odd_row; /* flag to remember which row we are on */
191 int * error_limiter; /* table for clamping the applied error */
192 } my_cquantizer;
193
194 typedef my_cquantizer * my_cquantize_ptr;
195
196
197 /*
198 * Prescan some rows of pixels.
199 * In this module the prescan simply updates the histogram, which has been
200 * initialized to zeroes by start_pass.
201 * An output_buf parameter is required by the method signature, but no data
202 * is actually output (in fact the buffer controller is probably passing a
203 * NULL pointer).
204 */
205
206 METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)207 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
208 JSAMPARRAY output_buf, int num_rows)
209 {
210 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
211 register JSAMPROW ptr;
212 register histptr histp;
213 register hist3d histogram = cquantize->histogram;
214 int row;
215 JDIMENSION col;
216 JDIMENSION width = cinfo->output_width;
217
218 for (row = 0; row < num_rows; row++) {
219 ptr = input_buf[row];
220 for (col = width; col > 0; col--) {
221 /* get pixel value and index into the histogram */
222 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
223 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
224 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
225 /* increment, check for overflow and undo increment if so. */
226 if (++(*histp) <= 0)
227 (*histp)--;
228 ptr += 3;
229 }
230 }
231 }
232
233
234 /*
235 * Next we have the really interesting routines: selection of a colormap
236 * given the completed histogram.
237 * These routines work with a list of "boxes", each representing a rectangular
238 * subset of the input color space (to histogram precision).
239 */
240
241 typedef struct {
242 /* The bounds of the box (inclusive); expressed as histogram indexes */
243 int c0min, c0max;
244 int c1min, c1max;
245 int c2min, c2max;
246 /* The volume (actually 2-norm) of the box */
247 INT32 volume;
248 /* The number of nonzero histogram cells within this box */
249 long colorcount;
250 } box;
251
252 typedef box * boxptr;
253
254
255 LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)256 find_biggest_color_pop (boxptr boxlist, int numboxes)
257 /* Find the splittable box with the largest color population */
258 /* Returns NULL if no splittable boxes remain */
259 {
260 register boxptr boxp;
261 register int i;
262 register long maxc = 0;
263 boxptr which = NULL;
264
265 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
266 if (boxp->colorcount > maxc && boxp->volume > 0) {
267 which = boxp;
268 maxc = boxp->colorcount;
269 }
270 }
271 return which;
272 }
273
274
275 LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)276 find_biggest_volume (boxptr boxlist, int numboxes)
277 /* Find the splittable box with the largest (scaled) volume */
278 /* Returns NULL if no splittable boxes remain */
279 {
280 register boxptr boxp;
281 register int i;
282 register INT32 maxv = 0;
283 boxptr which = NULL;
284
285 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
286 if (boxp->volume > maxv) {
287 which = boxp;
288 maxv = boxp->volume;
289 }
290 }
291 return which;
292 }
293
294
295 LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)296 update_box (j_decompress_ptr cinfo, boxptr boxp)
297 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
298 /* and recompute its volume and population */
299 {
300 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
301 hist3d histogram = cquantize->histogram;
302 histptr histp;
303 int c0,c1,c2;
304 int c0min,c0max,c1min,c1max,c2min,c2max;
305 INT32 dist0,dist1,dist2;
306 long ccount;
307
308 c0min = boxp->c0min; c0max = boxp->c0max;
309 c1min = boxp->c1min; c1max = boxp->c1max;
310 c2min = boxp->c2min; c2max = boxp->c2max;
311
312 if (c0max > c0min)
313 for (c0 = c0min; c0 <= c0max; c0++)
314 for (c1 = c1min; c1 <= c1max; c1++) {
315 histp = & histogram[c0][c1][c2min];
316 for (c2 = c2min; c2 <= c2max; c2++)
317 if (*histp++ != 0) {
318 boxp->c0min = c0min = c0;
319 goto have_c0min;
320 }
321 }
322 have_c0min:
323 if (c0max > c0min)
324 for (c0 = c0max; c0 >= c0min; c0--)
325 for (c1 = c1min; c1 <= c1max; c1++) {
326 histp = & histogram[c0][c1][c2min];
327 for (c2 = c2min; c2 <= c2max; c2++)
328 if (*histp++ != 0) {
329 boxp->c0max = c0max = c0;
330 goto have_c0max;
331 }
332 }
333 have_c0max:
334 if (c1max > c1min)
335 for (c1 = c1min; c1 <= c1max; c1++)
336 for (c0 = c0min; c0 <= c0max; c0++) {
337 histp = & histogram[c0][c1][c2min];
338 for (c2 = c2min; c2 <= c2max; c2++)
339 if (*histp++ != 0) {
340 boxp->c1min = c1min = c1;
341 goto have_c1min;
342 }
343 }
344 have_c1min:
345 if (c1max > c1min)
346 for (c1 = c1max; c1 >= c1min; c1--)
347 for (c0 = c0min; c0 <= c0max; c0++) {
348 histp = & histogram[c0][c1][c2min];
349 for (c2 = c2min; c2 <= c2max; c2++)
350 if (*histp++ != 0) {
351 boxp->c1max = c1max = c1;
352 goto have_c1max;
353 }
354 }
355 have_c1max:
356 if (c2max > c2min)
357 for (c2 = c2min; c2 <= c2max; c2++)
358 for (c0 = c0min; c0 <= c0max; c0++) {
359 histp = & histogram[c0][c1min][c2];
360 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
361 if (*histp != 0) {
362 boxp->c2min = c2min = c2;
363 goto have_c2min;
364 }
365 }
366 have_c2min:
367 if (c2max > c2min)
368 for (c2 = c2max; c2 >= c2min; c2--)
369 for (c0 = c0min; c0 <= c0max; c0++) {
370 histp = & histogram[c0][c1min][c2];
371 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
372 if (*histp != 0) {
373 boxp->c2max = c2max = c2;
374 goto have_c2max;
375 }
376 }
377 have_c2max:
378
379 /* Update box volume.
380 * We use 2-norm rather than real volume here; this biases the method
381 * against making long narrow boxes, and it has the side benefit that
382 * a box is splittable iff norm > 0.
383 * Since the differences are expressed in histogram-cell units,
384 * we have to shift back to JSAMPLE units to get consistent distances;
385 * after which, we scale according to the selected distance scale factors.
386 */
387 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
388 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
389 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
390 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
391
392 /* Now scan remaining volume of box and compute population */
393 ccount = 0;
394 for (c0 = c0min; c0 <= c0max; c0++)
395 for (c1 = c1min; c1 <= c1max; c1++) {
396 histp = & histogram[c0][c1][c2min];
397 for (c2 = c2min; c2 <= c2max; c2++, histp++)
398 if (*histp != 0) {
399 ccount++;
400 }
401 }
402 boxp->colorcount = ccount;
403 }
404
405
406 LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)407 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
408 int desired_colors)
409 /* Repeatedly select and split the largest box until we have enough boxes */
410 {
411 int n,lb;
412 int c0,c1,c2,cmax;
413 register boxptr b1,b2;
414
415 while (numboxes < desired_colors) {
416 /* Select box to split.
417 * Current algorithm: by population for first half, then by volume.
418 */
419 if (numboxes*2 <= desired_colors) {
420 b1 = find_biggest_color_pop(boxlist, numboxes);
421 } else {
422 b1 = find_biggest_volume(boxlist, numboxes);
423 }
424 if (b1 == NULL) /* no splittable boxes left! */
425 break;
426 b2 = &boxlist[numboxes]; /* where new box will go */
427 /* Copy the color bounds to the new box. */
428 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
429 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
430 /* Choose which axis to split the box on.
431 * Current algorithm: longest scaled axis.
432 * See notes in update_box about scaling distances.
433 */
434 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
435 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
436 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
437 /* We want to break any ties in favor of green, then red, blue last.
438 * This code does the right thing for R,G,B or B,G,R color orders only.
439 */
440 if (rgb_red[cinfo->out_color_space] == 0) {
441 cmax = c1; n = 1;
442 if (c0 > cmax) { cmax = c0; n = 0; }
443 if (c2 > cmax) { n = 2; }
444 }
445 else {
446 cmax = c1; n = 1;
447 if (c2 > cmax) { cmax = c2; n = 2; }
448 if (c0 > cmax) { n = 0; }
449 }
450 /* Choose split point along selected axis, and update box bounds.
451 * Current algorithm: split at halfway point.
452 * (Since the box has been shrunk to minimum volume,
453 * any split will produce two nonempty subboxes.)
454 * Note that lb value is max for lower box, so must be < old max.
455 */
456 switch (n) {
457 case 0:
458 lb = (b1->c0max + b1->c0min) / 2;
459 b1->c0max = lb;
460 b2->c0min = lb+1;
461 break;
462 case 1:
463 lb = (b1->c1max + b1->c1min) / 2;
464 b1->c1max = lb;
465 b2->c1min = lb+1;
466 break;
467 case 2:
468 lb = (b1->c2max + b1->c2min) / 2;
469 b1->c2max = lb;
470 b2->c2min = lb+1;
471 break;
472 }
473 /* Update stats for boxes */
474 update_box(cinfo, b1);
475 update_box(cinfo, b2);
476 numboxes++;
477 }
478 return numboxes;
479 }
480
481
482 LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)483 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
484 /* Compute representative color for a box, put it in colormap[icolor] */
485 {
486 /* Current algorithm: mean weighted by pixels (not colors) */
487 /* Note it is important to get the rounding correct! */
488 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
489 hist3d histogram = cquantize->histogram;
490 histptr histp;
491 int c0,c1,c2;
492 int c0min,c0max,c1min,c1max,c2min,c2max;
493 long count;
494 long total = 0;
495 long c0total = 0;
496 long c1total = 0;
497 long c2total = 0;
498
499 c0min = boxp->c0min; c0max = boxp->c0max;
500 c1min = boxp->c1min; c1max = boxp->c1max;
501 c2min = boxp->c2min; c2max = boxp->c2max;
502
503 for (c0 = c0min; c0 <= c0max; c0++)
504 for (c1 = c1min; c1 <= c1max; c1++) {
505 histp = & histogram[c0][c1][c2min];
506 for (c2 = c2min; c2 <= c2max; c2++) {
507 if ((count = *histp++) != 0) {
508 total += count;
509 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
510 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
511 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
512 }
513 }
514 }
515
516 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
517 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
518 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
519 }
520
521
522 LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)523 select_colors (j_decompress_ptr cinfo, int desired_colors)
524 /* Master routine for color selection */
525 {
526 boxptr boxlist;
527 int numboxes;
528 int i;
529
530 /* Allocate workspace for box list */
531 boxlist = (boxptr) (*cinfo->mem->alloc_small)
532 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
533 /* Initialize one box containing whole space */
534 numboxes = 1;
535 boxlist[0].c0min = 0;
536 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
537 boxlist[0].c1min = 0;
538 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
539 boxlist[0].c2min = 0;
540 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
541 /* Shrink it to actually-used volume and set its statistics */
542 update_box(cinfo, & boxlist[0]);
543 /* Perform median-cut to produce final box list */
544 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
545 /* Compute the representative color for each box, fill colormap */
546 for (i = 0; i < numboxes; i++)
547 compute_color(cinfo, & boxlist[i], i);
548 cinfo->actual_number_of_colors = numboxes;
549 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
550 }
551
552
553 /*
554 * These routines are concerned with the time-critical task of mapping input
555 * colors to the nearest color in the selected colormap.
556 *
557 * We re-use the histogram space as an "inverse color map", essentially a
558 * cache for the results of nearest-color searches. All colors within a
559 * histogram cell will be mapped to the same colormap entry, namely the one
560 * closest to the cell's center. This may not be quite the closest entry to
561 * the actual input color, but it's almost as good. A zero in the cache
562 * indicates we haven't found the nearest color for that cell yet; the array
563 * is cleared to zeroes before starting the mapping pass. When we find the
564 * nearest color for a cell, its colormap index plus one is recorded in the
565 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
566 * when they need to use an unfilled entry in the cache.
567 *
568 * Our method of efficiently finding nearest colors is based on the "locally
569 * sorted search" idea described by Heckbert and on the incremental distance
570 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
571 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
572 * the distances from a given colormap entry to each cell of the histogram can
573 * be computed quickly using an incremental method: the differences between
574 * distances to adjacent cells themselves differ by a constant. This allows a
575 * fairly fast implementation of the "brute force" approach of computing the
576 * distance from every colormap entry to every histogram cell. Unfortunately,
577 * it needs a work array to hold the best-distance-so-far for each histogram
578 * cell (because the inner loop has to be over cells, not colormap entries).
579 * The work array elements have to be INT32s, so the work array would need
580 * 256Kb at our recommended precision. This is not feasible in DOS machines.
581 *
582 * To get around these problems, we apply Thomas' method to compute the
583 * nearest colors for only the cells within a small subbox of the histogram.
584 * The work array need be only as big as the subbox, so the memory usage
585 * problem is solved. Furthermore, we need not fill subboxes that are never
586 * referenced in pass2; many images use only part of the color gamut, so a
587 * fair amount of work is saved. An additional advantage of this
588 * approach is that we can apply Heckbert's locality criterion to quickly
589 * eliminate colormap entries that are far away from the subbox; typically
590 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
591 * and we need not compute their distances to individual cells in the subbox.
592 * The speed of this approach is heavily influenced by the subbox size: too
593 * small means too much overhead, too big loses because Heckbert's criterion
594 * can't eliminate as many colormap entries. Empirically the best subbox
595 * size seems to be about 1/512th of the histogram (1/8th in each direction).
596 *
597 * Thomas' article also describes a refined method which is asymptotically
598 * faster than the brute-force method, but it is also far more complex and
599 * cannot efficiently be applied to small subboxes. It is therefore not
600 * useful for programs intended to be portable to DOS machines. On machines
601 * with plenty of memory, filling the whole histogram in one shot with Thomas'
602 * refined method might be faster than the present code --- but then again,
603 * it might not be any faster, and it's certainly more complicated.
604 */
605
606
607 /* log2(histogram cells in update box) for each axis; this can be adjusted */
608 #define BOX_C0_LOG (HIST_C0_BITS-3)
609 #define BOX_C1_LOG (HIST_C1_BITS-3)
610 #define BOX_C2_LOG (HIST_C2_BITS-3)
611
612 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
613 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
614 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
615
616 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
617 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
618 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
619
620
621 /*
622 * The next three routines implement inverse colormap filling. They could
623 * all be folded into one big routine, but splitting them up this way saves
624 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
625 * and may allow some compilers to produce better code by registerizing more
626 * inner-loop variables.
627 */
628
629 LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])630 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
631 JSAMPLE colorlist[])
632 /* Locate the colormap entries close enough to an update box to be candidates
633 * for the nearest entry to some cell(s) in the update box. The update box
634 * is specified by the center coordinates of its first cell. The number of
635 * candidate colormap entries is returned, and their colormap indexes are
636 * placed in colorlist[].
637 * This routine uses Heckbert's "locally sorted search" criterion to select
638 * the colors that need further consideration.
639 */
640 {
641 int numcolors = cinfo->actual_number_of_colors;
642 int maxc0, maxc1, maxc2;
643 int centerc0, centerc1, centerc2;
644 int i, x, ncolors;
645 INT32 minmaxdist, min_dist, max_dist, tdist;
646 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
647
648 /* Compute true coordinates of update box's upper corner and center.
649 * Actually we compute the coordinates of the center of the upper-corner
650 * histogram cell, which are the upper bounds of the volume we care about.
651 * Note that since ">>" rounds down, the "center" values may be closer to
652 * min than to max; hence comparisons to them must be "<=", not "<".
653 */
654 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
655 centerc0 = (minc0 + maxc0) >> 1;
656 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
657 centerc1 = (minc1 + maxc1) >> 1;
658 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
659 centerc2 = (minc2 + maxc2) >> 1;
660
661 /* For each color in colormap, find:
662 * 1. its minimum squared-distance to any point in the update box
663 * (zero if color is within update box);
664 * 2. its maximum squared-distance to any point in the update box.
665 * Both of these can be found by considering only the corners of the box.
666 * We save the minimum distance for each color in mindist[];
667 * only the smallest maximum distance is of interest.
668 */
669 minmaxdist = 0x7FFFFFFFL;
670
671 for (i = 0; i < numcolors; i++) {
672 /* We compute the squared-c0-distance term, then add in the other two. */
673 x = GETJSAMPLE(cinfo->colormap[0][i]);
674 if (x < minc0) {
675 tdist = (x - minc0) * C0_SCALE;
676 min_dist = tdist*tdist;
677 tdist = (x - maxc0) * C0_SCALE;
678 max_dist = tdist*tdist;
679 } else if (x > maxc0) {
680 tdist = (x - maxc0) * C0_SCALE;
681 min_dist = tdist*tdist;
682 tdist = (x - minc0) * C0_SCALE;
683 max_dist = tdist*tdist;
684 } else {
685 /* within cell range so no contribution to min_dist */
686 min_dist = 0;
687 if (x <= centerc0) {
688 tdist = (x - maxc0) * C0_SCALE;
689 max_dist = tdist*tdist;
690 } else {
691 tdist = (x - minc0) * C0_SCALE;
692 max_dist = tdist*tdist;
693 }
694 }
695
696 x = GETJSAMPLE(cinfo->colormap[1][i]);
697 if (x < minc1) {
698 tdist = (x - minc1) * C1_SCALE;
699 min_dist += tdist*tdist;
700 tdist = (x - maxc1) * C1_SCALE;
701 max_dist += tdist*tdist;
702 } else if (x > maxc1) {
703 tdist = (x - maxc1) * C1_SCALE;
704 min_dist += tdist*tdist;
705 tdist = (x - minc1) * C1_SCALE;
706 max_dist += tdist*tdist;
707 } else {
708 /* within cell range so no contribution to min_dist */
709 if (x <= centerc1) {
710 tdist = (x - maxc1) * C1_SCALE;
711 max_dist += tdist*tdist;
712 } else {
713 tdist = (x - minc1) * C1_SCALE;
714 max_dist += tdist*tdist;
715 }
716 }
717
718 x = GETJSAMPLE(cinfo->colormap[2][i]);
719 if (x < minc2) {
720 tdist = (x - minc2) * C2_SCALE;
721 min_dist += tdist*tdist;
722 tdist = (x - maxc2) * C2_SCALE;
723 max_dist += tdist*tdist;
724 } else if (x > maxc2) {
725 tdist = (x - maxc2) * C2_SCALE;
726 min_dist += tdist*tdist;
727 tdist = (x - minc2) * C2_SCALE;
728 max_dist += tdist*tdist;
729 } else {
730 /* within cell range so no contribution to min_dist */
731 if (x <= centerc2) {
732 tdist = (x - maxc2) * C2_SCALE;
733 max_dist += tdist*tdist;
734 } else {
735 tdist = (x - minc2) * C2_SCALE;
736 max_dist += tdist*tdist;
737 }
738 }
739
740 mindist[i] = min_dist; /* save away the results */
741 if (max_dist < minmaxdist)
742 minmaxdist = max_dist;
743 }
744
745 /* Now we know that no cell in the update box is more than minmaxdist
746 * away from some colormap entry. Therefore, only colors that are
747 * within minmaxdist of some part of the box need be considered.
748 */
749 ncolors = 0;
750 for (i = 0; i < numcolors; i++) {
751 if (mindist[i] <= minmaxdist)
752 colorlist[ncolors++] = (JSAMPLE) i;
753 }
754 return ncolors;
755 }
756
757
758 LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])759 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
760 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
761 /* Find the closest colormap entry for each cell in the update box,
762 * given the list of candidate colors prepared by find_nearby_colors.
763 * Return the indexes of the closest entries in the bestcolor[] array.
764 * This routine uses Thomas' incremental distance calculation method to
765 * find the distance from a colormap entry to successive cells in the box.
766 */
767 {
768 int ic0, ic1, ic2;
769 int i, icolor;
770 register INT32 * bptr; /* pointer into bestdist[] array */
771 JSAMPLE * cptr; /* pointer into bestcolor[] array */
772 INT32 dist0, dist1; /* initial distance values */
773 register INT32 dist2; /* current distance in inner loop */
774 INT32 xx0, xx1; /* distance increments */
775 register INT32 xx2;
776 INT32 inc0, inc1, inc2; /* initial values for increments */
777 /* This array holds the distance to the nearest-so-far color for each cell */
778 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
779
780 /* Initialize best-distance for each cell of the update box */
781 bptr = bestdist;
782 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
783 *bptr++ = 0x7FFFFFFFL;
784
785 /* For each color selected by find_nearby_colors,
786 * compute its distance to the center of each cell in the box.
787 * If that's less than best-so-far, update best distance and color number.
788 */
789
790 /* Nominal steps between cell centers ("x" in Thomas article) */
791 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
792 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
793 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
794
795 for (i = 0; i < numcolors; i++) {
796 icolor = GETJSAMPLE(colorlist[i]);
797 /* Compute (square of) distance from minc0/c1/c2 to this color */
798 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
799 dist0 = inc0*inc0;
800 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
801 dist0 += inc1*inc1;
802 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
803 dist0 += inc2*inc2;
804 /* Form the initial difference increments */
805 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
806 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
807 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
808 /* Now loop over all cells in box, updating distance per Thomas method */
809 bptr = bestdist;
810 cptr = bestcolor;
811 xx0 = inc0;
812 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
813 dist1 = dist0;
814 xx1 = inc1;
815 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
816 dist2 = dist1;
817 xx2 = inc2;
818 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
819 if (dist2 < *bptr) {
820 *bptr = dist2;
821 *cptr = (JSAMPLE) icolor;
822 }
823 dist2 += xx2;
824 xx2 += 2 * STEP_C2 * STEP_C2;
825 bptr++;
826 cptr++;
827 }
828 dist1 += xx1;
829 xx1 += 2 * STEP_C1 * STEP_C1;
830 }
831 dist0 += xx0;
832 xx0 += 2 * STEP_C0 * STEP_C0;
833 }
834 }
835 }
836
837
838 LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)839 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
840 /* Fill the inverse-colormap entries in the update box that contains */
841 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
842 /* we can fill as many others as we wish.) */
843 {
844 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
845 hist3d histogram = cquantize->histogram;
846 int minc0, minc1, minc2; /* lower left corner of update box */
847 int ic0, ic1, ic2;
848 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
849 register histptr cachep; /* pointer into main cache array */
850 /* This array lists the candidate colormap indexes. */
851 JSAMPLE colorlist[MAXNUMCOLORS];
852 int numcolors; /* number of candidate colors */
853 /* This array holds the actually closest colormap index for each cell. */
854 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
855
856 /* Convert cell coordinates to update box ID */
857 c0 >>= BOX_C0_LOG;
858 c1 >>= BOX_C1_LOG;
859 c2 >>= BOX_C2_LOG;
860
861 /* Compute true coordinates of update box's origin corner.
862 * Actually we compute the coordinates of the center of the corner
863 * histogram cell, which are the lower bounds of the volume we care about.
864 */
865 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
866 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
867 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
868
869 /* Determine which colormap entries are close enough to be candidates
870 * for the nearest entry to some cell in the update box.
871 */
872 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
873
874 /* Determine the actually nearest colors. */
875 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
876 bestcolor);
877
878 /* Save the best color numbers (plus 1) in the main cache array */
879 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
880 c1 <<= BOX_C1_LOG;
881 c2 <<= BOX_C2_LOG;
882 cptr = bestcolor;
883 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
884 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
885 cachep = & histogram[c0+ic0][c1+ic1][c2];
886 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
887 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
888 }
889 }
890 }
891 }
892
893
894 /*
895 * Map some rows of pixels to the output colormapped representation.
896 */
897
898 METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)899 pass2_no_dither (j_decompress_ptr cinfo,
900 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
901 /* This version performs no dithering */
902 {
903 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
904 hist3d histogram = cquantize->histogram;
905 register JSAMPROW inptr, outptr;
906 register histptr cachep;
907 register int c0, c1, c2;
908 int row;
909 JDIMENSION col;
910 JDIMENSION width = cinfo->output_width;
911
912 for (row = 0; row < num_rows; row++) {
913 inptr = input_buf[row];
914 outptr = output_buf[row];
915 for (col = width; col > 0; col--) {
916 /* get pixel value and index into the cache */
917 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
918 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
919 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
920 cachep = & histogram[c0][c1][c2];
921 /* If we have not seen this color before, find nearest colormap entry */
922 /* and update the cache */
923 if (*cachep == 0)
924 fill_inverse_cmap(cinfo, c0,c1,c2);
925 /* Now emit the colormap index for this cell */
926 *outptr++ = (JSAMPLE) (*cachep - 1);
927 }
928 }
929 }
930
931
932 METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)933 pass2_fs_dither (j_decompress_ptr cinfo,
934 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
935 /* This version performs Floyd-Steinberg dithering */
936 {
937 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
938 hist3d histogram = cquantize->histogram;
939 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
940 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
941 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
942 register FSERRPTR errorptr; /* => fserrors[] at column before current */
943 JSAMPROW inptr; /* => current input pixel */
944 JSAMPROW outptr; /* => current output pixel */
945 histptr cachep;
946 int dir; /* +1 or -1 depending on direction */
947 int dir3; /* 3*dir, for advancing inptr & errorptr */
948 int row;
949 JDIMENSION col;
950 JDIMENSION width = cinfo->output_width;
951 JSAMPLE *range_limit = cinfo->sample_range_limit;
952 int *error_limit = cquantize->error_limiter;
953 JSAMPROW colormap0 = cinfo->colormap[0];
954 JSAMPROW colormap1 = cinfo->colormap[1];
955 JSAMPROW colormap2 = cinfo->colormap[2];
956 SHIFT_TEMPS
957
958 for (row = 0; row < num_rows; row++) {
959 inptr = input_buf[row];
960 outptr = output_buf[row];
961 if (cquantize->on_odd_row) {
962 /* work right to left in this row */
963 inptr += (width-1) * 3; /* so point to rightmost pixel */
964 outptr += width-1;
965 dir = -1;
966 dir3 = -3;
967 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
968 cquantize->on_odd_row = FALSE; /* flip for next time */
969 } else {
970 /* work left to right in this row */
971 dir = 1;
972 dir3 = 3;
973 errorptr = cquantize->fserrors; /* => entry before first real column */
974 cquantize->on_odd_row = TRUE; /* flip for next time */
975 }
976 /* Preset error values: no error propagated to first pixel from left */
977 cur0 = cur1 = cur2 = 0;
978 /* and no error propagated to row below yet */
979 belowerr0 = belowerr1 = belowerr2 = 0;
980 bpreverr0 = bpreverr1 = bpreverr2 = 0;
981
982 for (col = width; col > 0; col--) {
983 /* curN holds the error propagated from the previous pixel on the
984 * current line. Add the error propagated from the previous line
985 * to form the complete error correction term for this pixel, and
986 * round the error term (which is expressed * 16) to an integer.
987 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
988 * for either sign of the error value.
989 * Note: errorptr points to *previous* column's array entry.
990 */
991 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
992 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
993 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
994 /* Limit the error using transfer function set by init_error_limit.
995 * See comments with init_error_limit for rationale.
996 */
997 cur0 = error_limit[cur0];
998 cur1 = error_limit[cur1];
999 cur2 = error_limit[cur2];
1000 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1001 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1002 * this sets the required size of the range_limit array.
1003 */
1004 cur0 += GETJSAMPLE(inptr[0]);
1005 cur1 += GETJSAMPLE(inptr[1]);
1006 cur2 += GETJSAMPLE(inptr[2]);
1007 cur0 = GETJSAMPLE(range_limit[cur0]);
1008 cur1 = GETJSAMPLE(range_limit[cur1]);
1009 cur2 = GETJSAMPLE(range_limit[cur2]);
1010 /* Index into the cache with adjusted pixel value */
1011 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1012 /* If we have not seen this color before, find nearest colormap */
1013 /* entry and update the cache */
1014 if (*cachep == 0)
1015 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1016 /* Now emit the colormap index for this cell */
1017 { register int pixcode = *cachep - 1;
1018 *outptr = (JSAMPLE) pixcode;
1019 /* Compute representation error for this pixel */
1020 cur0 -= GETJSAMPLE(colormap0[pixcode]);
1021 cur1 -= GETJSAMPLE(colormap1[pixcode]);
1022 cur2 -= GETJSAMPLE(colormap2[pixcode]);
1023 }
1024 /* Compute error fractions to be propagated to adjacent pixels.
1025 * Add these into the running sums, and simultaneously shift the
1026 * next-line error sums left by 1 column.
1027 */
1028 { register LOCFSERROR bnexterr, delta;
1029
1030 bnexterr = cur0; /* Process component 0 */
1031 delta = cur0 * 2;
1032 cur0 += delta; /* form error * 3 */
1033 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1034 cur0 += delta; /* form error * 5 */
1035 bpreverr0 = belowerr0 + cur0;
1036 belowerr0 = bnexterr;
1037 cur0 += delta; /* form error * 7 */
1038 bnexterr = cur1; /* Process component 1 */
1039 delta = cur1 * 2;
1040 cur1 += delta; /* form error * 3 */
1041 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1042 cur1 += delta; /* form error * 5 */
1043 bpreverr1 = belowerr1 + cur1;
1044 belowerr1 = bnexterr;
1045 cur1 += delta; /* form error * 7 */
1046 bnexterr = cur2; /* Process component 2 */
1047 delta = cur2 * 2;
1048 cur2 += delta; /* form error * 3 */
1049 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1050 cur2 += delta; /* form error * 5 */
1051 bpreverr2 = belowerr2 + cur2;
1052 belowerr2 = bnexterr;
1053 cur2 += delta; /* form error * 7 */
1054 }
1055 /* At this point curN contains the 7/16 error value to be propagated
1056 * to the next pixel on the current line, and all the errors for the
1057 * next line have been shifted over. We are therefore ready to move on.
1058 */
1059 inptr += dir3; /* Advance pixel pointers to next column */
1060 outptr += dir;
1061 errorptr += dir3; /* advance errorptr to current column */
1062 }
1063 /* Post-loop cleanup: we must unload the final error values into the
1064 * final fserrors[] entry. Note we need not unload belowerrN because
1065 * it is for the dummy column before or after the actual array.
1066 */
1067 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1068 errorptr[1] = (FSERROR) bpreverr1;
1069 errorptr[2] = (FSERROR) bpreverr2;
1070 }
1071 }
1072
1073
1074 /*
1075 * Initialize the error-limiting transfer function (lookup table).
1076 * The raw F-S error computation can potentially compute error values of up to
1077 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1078 * much less, otherwise obviously wrong pixels will be created. (Typical
1079 * effects include weird fringes at color-area boundaries, isolated bright
1080 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1081 * is to ensure that the "corners" of the color cube are allocated as output
1082 * colors; then repeated errors in the same direction cannot cause cascading
1083 * error buildup. However, that only prevents the error from getting
1084 * completely out of hand; Aaron Giles reports that error limiting improves
1085 * the results even with corner colors allocated.
1086 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1087 * well, but the smoother transfer function used below is even better. Thanks
1088 * to Aaron Giles for this idea.
1089 */
1090
1091 LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1092 init_error_limit (j_decompress_ptr cinfo)
1093 /* Allocate and fill in the error_limiter table */
1094 {
1095 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1096 int * table;
1097 int in, out;
1098
1099 table = (int *) (*cinfo->mem->alloc_small)
1100 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1101 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1102 cquantize->error_limiter = table;
1103
1104 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1105 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1106 out = 0;
1107 for (in = 0; in < STEPSIZE; in++, out++) {
1108 table[in] = out; table[-in] = -out;
1109 }
1110 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1111 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1112 table[in] = out; table[-in] = -out;
1113 }
1114 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1115 for (; in <= MAXJSAMPLE; in++) {
1116 table[in] = out; table[-in] = -out;
1117 }
1118 #undef STEPSIZE
1119 }
1120
1121
1122 /*
1123 * Finish up at the end of each pass.
1124 */
1125
1126 METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1127 finish_pass1 (j_decompress_ptr cinfo)
1128 {
1129 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1130
1131 /* Select the representative colors and fill in cinfo->colormap */
1132 cinfo->colormap = cquantize->sv_colormap;
1133 select_colors(cinfo, cquantize->desired);
1134 /* Force next pass to zero the color index table */
1135 cquantize->needs_zeroed = TRUE;
1136 }
1137
1138
1139 METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1140 finish_pass2 (j_decompress_ptr cinfo)
1141 {
1142 /* no work */
1143 }
1144
1145
1146 /*
1147 * Initialize for each processing pass.
1148 */
1149
1150 METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1151 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1152 {
1153 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1154 hist3d histogram = cquantize->histogram;
1155 int i;
1156
1157 /* Only F-S dithering or no dithering is supported. */
1158 /* If user asks for ordered dither, give him F-S. */
1159 if (cinfo->dither_mode != JDITHER_NONE)
1160 cinfo->dither_mode = JDITHER_FS;
1161
1162 if (is_pre_scan) {
1163 /* Set up method pointers */
1164 cquantize->pub.color_quantize = prescan_quantize;
1165 cquantize->pub.finish_pass = finish_pass1;
1166 cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1167 } else {
1168 /* Set up method pointers */
1169 if (cinfo->dither_mode == JDITHER_FS)
1170 cquantize->pub.color_quantize = pass2_fs_dither;
1171 else
1172 cquantize->pub.color_quantize = pass2_no_dither;
1173 cquantize->pub.finish_pass = finish_pass2;
1174
1175 /* Make sure color count is acceptable */
1176 i = cinfo->actual_number_of_colors;
1177 if (i < 1)
1178 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1179 if (i > MAXNUMCOLORS)
1180 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1181
1182 if (cinfo->dither_mode == JDITHER_FS) {
1183 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1184 (3 * SIZEOF(FSERROR)));
1185 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1186 if (cquantize->fserrors == NULL)
1187 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1188 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1189 /* Initialize the propagated errors to zero. */
1190 jzero_far((void FAR *) cquantize->fserrors, arraysize);
1191 /* Make the error-limit table if we didn't already. */
1192 if (cquantize->error_limiter == NULL)
1193 init_error_limit(cinfo);
1194 cquantize->on_odd_row = FALSE;
1195 }
1196
1197 }
1198 /* Zero the histogram or inverse color map, if necessary */
1199 if (cquantize->needs_zeroed) {
1200 for (i = 0; i < HIST_C0_ELEMS; i++) {
1201 jzero_far((void FAR *) histogram[i],
1202 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1203 }
1204 cquantize->needs_zeroed = FALSE;
1205 }
1206 }
1207
1208
1209 /*
1210 * Switch to a new external colormap between output passes.
1211 */
1212
1213 METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1214 new_color_map_2_quant (j_decompress_ptr cinfo)
1215 {
1216 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1217
1218 /* Reset the inverse color map */
1219 cquantize->needs_zeroed = TRUE;
1220 }
1221
1222
1223 /*
1224 * Module initialization routine for 2-pass color quantization.
1225 */
1226
1227 GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1228 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1229 {
1230 my_cquantize_ptr cquantize;
1231 int i;
1232
1233 cquantize = (my_cquantize_ptr)
1234 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1235 SIZEOF(my_cquantizer));
1236 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1237 cquantize->pub.start_pass = start_pass_2_quant;
1238 cquantize->pub.new_color_map = new_color_map_2_quant;
1239 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1240 cquantize->error_limiter = NULL;
1241
1242 /* Make sure jdmaster didn't give me a case I can't handle */
1243 if (cinfo->out_color_components != 3)
1244 ERREXIT(cinfo, JERR_NOTIMPL);
1245
1246 /* Allocate the histogram/inverse colormap storage */
1247 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1248 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1249 for (i = 0; i < HIST_C0_ELEMS; i++) {
1250 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1251 ((j_common_ptr) cinfo, JPOOL_IMAGE,
1252 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1253 }
1254 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1255
1256 /* Allocate storage for the completed colormap, if required.
1257 * We do this now since it is FAR storage and may affect
1258 * the memory manager's space calculations.
1259 */
1260 if (cinfo->enable_2pass_quant) {
1261 /* Make sure color count is acceptable */
1262 int desired = cinfo->desired_number_of_colors;
1263 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1264 if (desired < 8)
1265 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1266 /* Make sure colormap indexes can be represented by JSAMPLEs */
1267 if (desired > MAXNUMCOLORS)
1268 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1269 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1270 ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1271 cquantize->desired = desired;
1272 } else
1273 cquantize->sv_colormap = NULL;
1274
1275 /* Only F-S dithering or no dithering is supported. */
1276 /* If user asks for ordered dither, give him F-S. */
1277 if (cinfo->dither_mode != JDITHER_NONE)
1278 cinfo->dither_mode = JDITHER_FS;
1279
1280 /* Allocate Floyd-Steinberg workspace if necessary.
1281 * This isn't really needed until pass 2, but again it is FAR storage.
1282 * Although we will cope with a later change in dither_mode,
1283 * we do not promise to honor max_memory_to_use if dither_mode changes.
1284 */
1285 if (cinfo->dither_mode == JDITHER_FS) {
1286 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1287 ((j_common_ptr) cinfo, JPOOL_IMAGE,
1288 (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1289 /* Might as well create the error-limiting table too. */
1290 init_error_limit(cinfo);
1291 }
1292 }
1293
1294 #endif /* QUANT_2PASS_SUPPORTED */
1295