• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jquant2.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains 2-pass color quantization (color mapping) routines.
11  * These routines provide selection of a custom color map for an image,
12  * followed by mapping of the image to that color map, with optional
13  * Floyd-Steinberg dithering.
14  * It is also possible to use just the second pass to map to an arbitrary
15  * externally-given color map.
16  *
17  * Note: ordered dithering is not supported, since there isn't any fast
18  * way to compute intercolor distances; it's unclear that ordered dither's
19  * fundamental assumptions even hold with an irregularly spaced color map.
20  */
21 
22 #define JPEG_INTERNALS
23 #include "jinclude.h"
24 #include "jpeglib.h"
25 
26 #ifdef QUANT_2PASS_SUPPORTED
27 
28 
29 /*
30  * This module implements the well-known Heckbert paradigm for color
31  * quantization.  Most of the ideas used here can be traced back to
32  * Heckbert's seminal paper
33  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
34  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
35  *
36  * In the first pass over the image, we accumulate a histogram showing the
37  * usage count of each possible color.  To keep the histogram to a reasonable
38  * size, we reduce the precision of the input; typical practice is to retain
39  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
40  * in the same histogram cell.
41  *
42  * Next, the color-selection step begins with a box representing the whole
43  * color space, and repeatedly splits the "largest" remaining box until we
44  * have as many boxes as desired colors.  Then the mean color in each
45  * remaining box becomes one of the possible output colors.
46  *
47  * The second pass over the image maps each input pixel to the closest output
48  * color (optionally after applying a Floyd-Steinberg dithering correction).
49  * This mapping is logically trivial, but making it go fast enough requires
50  * considerable care.
51  *
52  * Heckbert-style quantizers vary a good deal in their policies for choosing
53  * the "largest" box and deciding where to cut it.  The particular policies
54  * used here have proved out well in experimental comparisons, but better ones
55  * may yet be found.
56  *
57  * In earlier versions of the IJG code, this module quantized in YCbCr color
58  * space, processing the raw upsampled data without a color conversion step.
59  * This allowed the color conversion math to be done only once per colormap
60  * entry, not once per pixel.  However, that optimization precluded other
61  * useful optimizations (such as merging color conversion with upsampling)
62  * and it also interfered with desired capabilities such as quantizing to an
63  * externally-supplied colormap.  We have therefore abandoned that approach.
64  * The present code works in the post-conversion color space, typically RGB.
65  *
66  * To improve the visual quality of the results, we actually work in scaled
67  * RGB space, giving G distances more weight than R, and R in turn more than
68  * B.  To do everything in integer math, we must use integer scale factors.
69  * The 2/3/1 scale factors used here correspond loosely to the relative
70  * weights of the colors in the NTSC grayscale equation.
71  * If you want to use this code to quantize a non-RGB color space, you'll
72  * probably need to change these scale factors.
73  */
74 
75 #define R_SCALE 2		/* scale R distances by this much */
76 #define G_SCALE 3		/* scale G distances by this much */
77 #define B_SCALE 1		/* and B by this much */
78 
79 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
80 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
81 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
82 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
83 
84 /*
85  * First we have the histogram data structure and routines for creating it.
86  *
87  * The number of bits of precision can be adjusted by changing these symbols.
88  * We recommend keeping 6 bits for G and 5 each for R and B.
89  * If you have plenty of memory and cycles, 6 bits all around gives marginally
90  * better results; if you are short of memory, 5 bits all around will save
91  * some space but degrade the results.
92  * To maintain a fully accurate histogram, we'd need to allocate a "long"
93  * (preferably unsigned long) for each cell.  In practice this is overkill;
94  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
95  * and clamping those that do overflow to the maximum value will give close-
96  * enough results.  This reduces the recommended histogram size from 256Kb
97  * to 128Kb, which is a useful savings on PC-class machines.
98  * (In the second pass the histogram space is re-used for pixel mapping data;
99  * in that capacity, each cell must be able to store zero to the number of
100  * desired colors.  16 bits/cell is plenty for that too.)
101  * Since the JPEG code is intended to run in small memory model on 80x86
102  * machines, we can't just allocate the histogram in one chunk.  Instead
103  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
104  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
105  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
106  * on 80x86 machines, the pointer row is in near memory but the actual
107  * arrays are in far memory (same arrangement as we use for image arrays).
108  */
109 
110 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
111 
112 /* These will do the right thing for either R,G,B or B,G,R color order,
113  * but you may not like the results for other color orders.
114  */
115 #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
116 #define HIST_C1_BITS  6		/* bits of precision in G histogram */
117 #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
118 
119 /* Number of elements along histogram axes. */
120 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
121 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
122 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
123 
124 /* These are the amounts to shift an input value to get a histogram index. */
125 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
126 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
127 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
128 
129 
130 typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
131 
132 typedef histcell FAR * histptr;	/* for pointers to histogram cells */
133 
134 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
135 typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
136 typedef hist2d * hist3d;	/* type for top-level pointer */
137 
138 
139 /* Declarations for Floyd-Steinberg dithering.
140  *
141  * Errors are accumulated into the array fserrors[], at a resolution of
142  * 1/16th of a pixel count.  The error at a given pixel is propagated
143  * to its not-yet-processed neighbors using the standard F-S fractions,
144  *		...	(here)	7/16
145  *		3/16	5/16	1/16
146  * We work left-to-right on even rows, right-to-left on odd rows.
147  *
148  * We can get away with a single array (holding one row's worth of errors)
149  * by using it to store the current row's errors at pixel columns not yet
150  * processed, but the next row's errors at columns already processed.  We
151  * need only a few extra variables to hold the errors immediately around the
152  * current column.  (If we are lucky, those variables are in registers, but
153  * even if not, they're probably cheaper to access than array elements are.)
154  *
155  * The fserrors[] array has (#columns + 2) entries; the extra entry at
156  * each end saves us from special-casing the first and last pixels.
157  * Each entry is three values long, one value for each color component.
158  *
159  * Note: on a wide image, we might not have enough room in a PC's near data
160  * segment to hold the error array; so it is allocated with alloc_large.
161  */
162 
163 #if BITS_IN_JSAMPLE == 8
164 typedef INT16 FSERROR;		/* 16 bits should be enough */
165 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
166 #else
167 typedef INT32 FSERROR;		/* may need more than 16 bits */
168 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
169 #endif
170 
171 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
172 
173 
174 /* Private subobject */
175 
176 typedef struct {
177   struct jpeg_color_quantizer pub; /* public fields */
178 
179   /* Space for the eventually created colormap is stashed here */
180   JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
181   int desired;			/* desired # of colors = size of colormap */
182 
183   /* Variables for accumulating image statistics */
184   hist3d histogram;		/* pointer to the histogram */
185 
186   boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
187 
188   /* Variables for Floyd-Steinberg dithering */
189   FSERRPTR fserrors;		/* accumulated errors */
190   boolean on_odd_row;		/* flag to remember which row we are on */
191   int * error_limiter;		/* table for clamping the applied error */
192 } my_cquantizer;
193 
194 typedef my_cquantizer * my_cquantize_ptr;
195 
196 
197 /*
198  * Prescan some rows of pixels.
199  * In this module the prescan simply updates the histogram, which has been
200  * initialized to zeroes by start_pass.
201  * An output_buf parameter is required by the method signature, but no data
202  * is actually output (in fact the buffer controller is probably passing a
203  * NULL pointer).
204  */
205 
206 METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)207 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
208 		  JSAMPARRAY output_buf, int num_rows)
209 {
210   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
211   register JSAMPROW ptr;
212   register histptr histp;
213   register hist3d histogram = cquantize->histogram;
214   int row;
215   JDIMENSION col;
216   JDIMENSION width = cinfo->output_width;
217 
218   for (row = 0; row < num_rows; row++) {
219     ptr = input_buf[row];
220     for (col = width; col > 0; col--) {
221       /* get pixel value and index into the histogram */
222       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
223 			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
224 			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
225       /* increment, check for overflow and undo increment if so. */
226       if (++(*histp) <= 0)
227 	(*histp)--;
228       ptr += 3;
229     }
230   }
231 }
232 
233 
234 /*
235  * Next we have the really interesting routines: selection of a colormap
236  * given the completed histogram.
237  * These routines work with a list of "boxes", each representing a rectangular
238  * subset of the input color space (to histogram precision).
239  */
240 
241 typedef struct {
242   /* The bounds of the box (inclusive); expressed as histogram indexes */
243   int c0min, c0max;
244   int c1min, c1max;
245   int c2min, c2max;
246   /* The volume (actually 2-norm) of the box */
247   INT32 volume;
248   /* The number of nonzero histogram cells within this box */
249   long colorcount;
250 } box;
251 
252 typedef box * boxptr;
253 
254 
255 LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)256 find_biggest_color_pop (boxptr boxlist, int numboxes)
257 /* Find the splittable box with the largest color population */
258 /* Returns NULL if no splittable boxes remain */
259 {
260   register boxptr boxp;
261   register int i;
262   register long maxc = 0;
263   boxptr which = NULL;
264 
265   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
266     if (boxp->colorcount > maxc && boxp->volume > 0) {
267       which = boxp;
268       maxc = boxp->colorcount;
269     }
270   }
271   return which;
272 }
273 
274 
275 LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)276 find_biggest_volume (boxptr boxlist, int numboxes)
277 /* Find the splittable box with the largest (scaled) volume */
278 /* Returns NULL if no splittable boxes remain */
279 {
280   register boxptr boxp;
281   register int i;
282   register INT32 maxv = 0;
283   boxptr which = NULL;
284 
285   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
286     if (boxp->volume > maxv) {
287       which = boxp;
288       maxv = boxp->volume;
289     }
290   }
291   return which;
292 }
293 
294 
295 LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)296 update_box (j_decompress_ptr cinfo, boxptr boxp)
297 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
298 /* and recompute its volume and population */
299 {
300   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
301   hist3d histogram = cquantize->histogram;
302   histptr histp;
303   int c0,c1,c2;
304   int c0min,c0max,c1min,c1max,c2min,c2max;
305   INT32 dist0,dist1,dist2;
306   long ccount;
307 
308   c0min = boxp->c0min;  c0max = boxp->c0max;
309   c1min = boxp->c1min;  c1max = boxp->c1max;
310   c2min = boxp->c2min;  c2max = boxp->c2max;
311 
312   if (c0max > c0min)
313     for (c0 = c0min; c0 <= c0max; c0++)
314       for (c1 = c1min; c1 <= c1max; c1++) {
315 	histp = & histogram[c0][c1][c2min];
316 	for (c2 = c2min; c2 <= c2max; c2++)
317 	  if (*histp++ != 0) {
318 	    boxp->c0min = c0min = c0;
319 	    goto have_c0min;
320 	  }
321       }
322  have_c0min:
323   if (c0max > c0min)
324     for (c0 = c0max; c0 >= c0min; c0--)
325       for (c1 = c1min; c1 <= c1max; c1++) {
326 	histp = & histogram[c0][c1][c2min];
327 	for (c2 = c2min; c2 <= c2max; c2++)
328 	  if (*histp++ != 0) {
329 	    boxp->c0max = c0max = c0;
330 	    goto have_c0max;
331 	  }
332       }
333  have_c0max:
334   if (c1max > c1min)
335     for (c1 = c1min; c1 <= c1max; c1++)
336       for (c0 = c0min; c0 <= c0max; c0++) {
337 	histp = & histogram[c0][c1][c2min];
338 	for (c2 = c2min; c2 <= c2max; c2++)
339 	  if (*histp++ != 0) {
340 	    boxp->c1min = c1min = c1;
341 	    goto have_c1min;
342 	  }
343       }
344  have_c1min:
345   if (c1max > c1min)
346     for (c1 = c1max; c1 >= c1min; c1--)
347       for (c0 = c0min; c0 <= c0max; c0++) {
348 	histp = & histogram[c0][c1][c2min];
349 	for (c2 = c2min; c2 <= c2max; c2++)
350 	  if (*histp++ != 0) {
351 	    boxp->c1max = c1max = c1;
352 	    goto have_c1max;
353 	  }
354       }
355  have_c1max:
356   if (c2max > c2min)
357     for (c2 = c2min; c2 <= c2max; c2++)
358       for (c0 = c0min; c0 <= c0max; c0++) {
359 	histp = & histogram[c0][c1min][c2];
360 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
361 	  if (*histp != 0) {
362 	    boxp->c2min = c2min = c2;
363 	    goto have_c2min;
364 	  }
365       }
366  have_c2min:
367   if (c2max > c2min)
368     for (c2 = c2max; c2 >= c2min; c2--)
369       for (c0 = c0min; c0 <= c0max; c0++) {
370 	histp = & histogram[c0][c1min][c2];
371 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
372 	  if (*histp != 0) {
373 	    boxp->c2max = c2max = c2;
374 	    goto have_c2max;
375 	  }
376       }
377  have_c2max:
378 
379   /* Update box volume.
380    * We use 2-norm rather than real volume here; this biases the method
381    * against making long narrow boxes, and it has the side benefit that
382    * a box is splittable iff norm > 0.
383    * Since the differences are expressed in histogram-cell units,
384    * we have to shift back to JSAMPLE units to get consistent distances;
385    * after which, we scale according to the selected distance scale factors.
386    */
387   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
388   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
389   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
390   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
391 
392   /* Now scan remaining volume of box and compute population */
393   ccount = 0;
394   for (c0 = c0min; c0 <= c0max; c0++)
395     for (c1 = c1min; c1 <= c1max; c1++) {
396       histp = & histogram[c0][c1][c2min];
397       for (c2 = c2min; c2 <= c2max; c2++, histp++)
398 	if (*histp != 0) {
399 	  ccount++;
400 	}
401     }
402   boxp->colorcount = ccount;
403 }
404 
405 
406 LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)407 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
408 	    int desired_colors)
409 /* Repeatedly select and split the largest box until we have enough boxes */
410 {
411   int n,lb;
412   int c0,c1,c2,cmax;
413   register boxptr b1,b2;
414 
415   while (numboxes < desired_colors) {
416     /* Select box to split.
417      * Current algorithm: by population for first half, then by volume.
418      */
419     if (numboxes*2 <= desired_colors) {
420       b1 = find_biggest_color_pop(boxlist, numboxes);
421     } else {
422       b1 = find_biggest_volume(boxlist, numboxes);
423     }
424     if (b1 == NULL)		/* no splittable boxes left! */
425       break;
426     b2 = &boxlist[numboxes];	/* where new box will go */
427     /* Copy the color bounds to the new box. */
428     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
429     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
430     /* Choose which axis to split the box on.
431      * Current algorithm: longest scaled axis.
432      * See notes in update_box about scaling distances.
433      */
434     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
435     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
436     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
437     /* We want to break any ties in favor of green, then red, blue last.
438      * This code does the right thing for R,G,B or B,G,R color orders only.
439      */
440     if (rgb_red[cinfo->out_color_space] == 0) {
441       cmax = c1; n = 1;
442       if (c0 > cmax) { cmax = c0; n = 0; }
443       if (c2 > cmax) { n = 2; }
444     }
445     else {
446       cmax = c1; n = 1;
447       if (c2 > cmax) { cmax = c2; n = 2; }
448       if (c0 > cmax) { n = 0; }
449     }
450     /* Choose split point along selected axis, and update box bounds.
451      * Current algorithm: split at halfway point.
452      * (Since the box has been shrunk to minimum volume,
453      * any split will produce two nonempty subboxes.)
454      * Note that lb value is max for lower box, so must be < old max.
455      */
456     switch (n) {
457     case 0:
458       lb = (b1->c0max + b1->c0min) / 2;
459       b1->c0max = lb;
460       b2->c0min = lb+1;
461       break;
462     case 1:
463       lb = (b1->c1max + b1->c1min) / 2;
464       b1->c1max = lb;
465       b2->c1min = lb+1;
466       break;
467     case 2:
468       lb = (b1->c2max + b1->c2min) / 2;
469       b1->c2max = lb;
470       b2->c2min = lb+1;
471       break;
472     }
473     /* Update stats for boxes */
474     update_box(cinfo, b1);
475     update_box(cinfo, b2);
476     numboxes++;
477   }
478   return numboxes;
479 }
480 
481 
482 LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)483 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
484 /* Compute representative color for a box, put it in colormap[icolor] */
485 {
486   /* Current algorithm: mean weighted by pixels (not colors) */
487   /* Note it is important to get the rounding correct! */
488   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
489   hist3d histogram = cquantize->histogram;
490   histptr histp;
491   int c0,c1,c2;
492   int c0min,c0max,c1min,c1max,c2min,c2max;
493   long count;
494   long total = 0;
495   long c0total = 0;
496   long c1total = 0;
497   long c2total = 0;
498 
499   c0min = boxp->c0min;  c0max = boxp->c0max;
500   c1min = boxp->c1min;  c1max = boxp->c1max;
501   c2min = boxp->c2min;  c2max = boxp->c2max;
502 
503   for (c0 = c0min; c0 <= c0max; c0++)
504     for (c1 = c1min; c1 <= c1max; c1++) {
505       histp = & histogram[c0][c1][c2min];
506       for (c2 = c2min; c2 <= c2max; c2++) {
507 	if ((count = *histp++) != 0) {
508 	  total += count;
509 	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
510 	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
511 	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
512 	}
513       }
514     }
515 
516   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
517   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
518   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
519 }
520 
521 
522 LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)523 select_colors (j_decompress_ptr cinfo, int desired_colors)
524 /* Master routine for color selection */
525 {
526   boxptr boxlist;
527   int numboxes;
528   int i;
529 
530   /* Allocate workspace for box list */
531   boxlist = (boxptr) (*cinfo->mem->alloc_small)
532     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
533   /* Initialize one box containing whole space */
534   numboxes = 1;
535   boxlist[0].c0min = 0;
536   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
537   boxlist[0].c1min = 0;
538   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
539   boxlist[0].c2min = 0;
540   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
541   /* Shrink it to actually-used volume and set its statistics */
542   update_box(cinfo, & boxlist[0]);
543   /* Perform median-cut to produce final box list */
544   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
545   /* Compute the representative color for each box, fill colormap */
546   for (i = 0; i < numboxes; i++)
547     compute_color(cinfo, & boxlist[i], i);
548   cinfo->actual_number_of_colors = numboxes;
549   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
550 }
551 
552 
553 /*
554  * These routines are concerned with the time-critical task of mapping input
555  * colors to the nearest color in the selected colormap.
556  *
557  * We re-use the histogram space as an "inverse color map", essentially a
558  * cache for the results of nearest-color searches.  All colors within a
559  * histogram cell will be mapped to the same colormap entry, namely the one
560  * closest to the cell's center.  This may not be quite the closest entry to
561  * the actual input color, but it's almost as good.  A zero in the cache
562  * indicates we haven't found the nearest color for that cell yet; the array
563  * is cleared to zeroes before starting the mapping pass.  When we find the
564  * nearest color for a cell, its colormap index plus one is recorded in the
565  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
566  * when they need to use an unfilled entry in the cache.
567  *
568  * Our method of efficiently finding nearest colors is based on the "locally
569  * sorted search" idea described by Heckbert and on the incremental distance
570  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
571  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
572  * the distances from a given colormap entry to each cell of the histogram can
573  * be computed quickly using an incremental method: the differences between
574  * distances to adjacent cells themselves differ by a constant.  This allows a
575  * fairly fast implementation of the "brute force" approach of computing the
576  * distance from every colormap entry to every histogram cell.  Unfortunately,
577  * it needs a work array to hold the best-distance-so-far for each histogram
578  * cell (because the inner loop has to be over cells, not colormap entries).
579  * The work array elements have to be INT32s, so the work array would need
580  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
581  *
582  * To get around these problems, we apply Thomas' method to compute the
583  * nearest colors for only the cells within a small subbox of the histogram.
584  * The work array need be only as big as the subbox, so the memory usage
585  * problem is solved.  Furthermore, we need not fill subboxes that are never
586  * referenced in pass2; many images use only part of the color gamut, so a
587  * fair amount of work is saved.  An additional advantage of this
588  * approach is that we can apply Heckbert's locality criterion to quickly
589  * eliminate colormap entries that are far away from the subbox; typically
590  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
591  * and we need not compute their distances to individual cells in the subbox.
592  * The speed of this approach is heavily influenced by the subbox size: too
593  * small means too much overhead, too big loses because Heckbert's criterion
594  * can't eliminate as many colormap entries.  Empirically the best subbox
595  * size seems to be about 1/512th of the histogram (1/8th in each direction).
596  *
597  * Thomas' article also describes a refined method which is asymptotically
598  * faster than the brute-force method, but it is also far more complex and
599  * cannot efficiently be applied to small subboxes.  It is therefore not
600  * useful for programs intended to be portable to DOS machines.  On machines
601  * with plenty of memory, filling the whole histogram in one shot with Thomas'
602  * refined method might be faster than the present code --- but then again,
603  * it might not be any faster, and it's certainly more complicated.
604  */
605 
606 
607 /* log2(histogram cells in update box) for each axis; this can be adjusted */
608 #define BOX_C0_LOG  (HIST_C0_BITS-3)
609 #define BOX_C1_LOG  (HIST_C1_BITS-3)
610 #define BOX_C2_LOG  (HIST_C2_BITS-3)
611 
612 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
613 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
614 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
615 
616 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
617 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
618 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
619 
620 
621 /*
622  * The next three routines implement inverse colormap filling.  They could
623  * all be folded into one big routine, but splitting them up this way saves
624  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
625  * and may allow some compilers to produce better code by registerizing more
626  * inner-loop variables.
627  */
628 
629 LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])630 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
631 		    JSAMPLE colorlist[])
632 /* Locate the colormap entries close enough to an update box to be candidates
633  * for the nearest entry to some cell(s) in the update box.  The update box
634  * is specified by the center coordinates of its first cell.  The number of
635  * candidate colormap entries is returned, and their colormap indexes are
636  * placed in colorlist[].
637  * This routine uses Heckbert's "locally sorted search" criterion to select
638  * the colors that need further consideration.
639  */
640 {
641   int numcolors = cinfo->actual_number_of_colors;
642   int maxc0, maxc1, maxc2;
643   int centerc0, centerc1, centerc2;
644   int i, x, ncolors;
645   INT32 minmaxdist, min_dist, max_dist, tdist;
646   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
647 
648   /* Compute true coordinates of update box's upper corner and center.
649    * Actually we compute the coordinates of the center of the upper-corner
650    * histogram cell, which are the upper bounds of the volume we care about.
651    * Note that since ">>" rounds down, the "center" values may be closer to
652    * min than to max; hence comparisons to them must be "<=", not "<".
653    */
654   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
655   centerc0 = (minc0 + maxc0) >> 1;
656   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
657   centerc1 = (minc1 + maxc1) >> 1;
658   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
659   centerc2 = (minc2 + maxc2) >> 1;
660 
661   /* For each color in colormap, find:
662    *  1. its minimum squared-distance to any point in the update box
663    *     (zero if color is within update box);
664    *  2. its maximum squared-distance to any point in the update box.
665    * Both of these can be found by considering only the corners of the box.
666    * We save the minimum distance for each color in mindist[];
667    * only the smallest maximum distance is of interest.
668    */
669   minmaxdist = 0x7FFFFFFFL;
670 
671   for (i = 0; i < numcolors; i++) {
672     /* We compute the squared-c0-distance term, then add in the other two. */
673     x = GETJSAMPLE(cinfo->colormap[0][i]);
674     if (x < minc0) {
675       tdist = (x - minc0) * C0_SCALE;
676       min_dist = tdist*tdist;
677       tdist = (x - maxc0) * C0_SCALE;
678       max_dist = tdist*tdist;
679     } else if (x > maxc0) {
680       tdist = (x - maxc0) * C0_SCALE;
681       min_dist = tdist*tdist;
682       tdist = (x - minc0) * C0_SCALE;
683       max_dist = tdist*tdist;
684     } else {
685       /* within cell range so no contribution to min_dist */
686       min_dist = 0;
687       if (x <= centerc0) {
688 	tdist = (x - maxc0) * C0_SCALE;
689 	max_dist = tdist*tdist;
690       } else {
691 	tdist = (x - minc0) * C0_SCALE;
692 	max_dist = tdist*tdist;
693       }
694     }
695 
696     x = GETJSAMPLE(cinfo->colormap[1][i]);
697     if (x < minc1) {
698       tdist = (x - minc1) * C1_SCALE;
699       min_dist += tdist*tdist;
700       tdist = (x - maxc1) * C1_SCALE;
701       max_dist += tdist*tdist;
702     } else if (x > maxc1) {
703       tdist = (x - maxc1) * C1_SCALE;
704       min_dist += tdist*tdist;
705       tdist = (x - minc1) * C1_SCALE;
706       max_dist += tdist*tdist;
707     } else {
708       /* within cell range so no contribution to min_dist */
709       if (x <= centerc1) {
710 	tdist = (x - maxc1) * C1_SCALE;
711 	max_dist += tdist*tdist;
712       } else {
713 	tdist = (x - minc1) * C1_SCALE;
714 	max_dist += tdist*tdist;
715       }
716     }
717 
718     x = GETJSAMPLE(cinfo->colormap[2][i]);
719     if (x < minc2) {
720       tdist = (x - minc2) * C2_SCALE;
721       min_dist += tdist*tdist;
722       tdist = (x - maxc2) * C2_SCALE;
723       max_dist += tdist*tdist;
724     } else if (x > maxc2) {
725       tdist = (x - maxc2) * C2_SCALE;
726       min_dist += tdist*tdist;
727       tdist = (x - minc2) * C2_SCALE;
728       max_dist += tdist*tdist;
729     } else {
730       /* within cell range so no contribution to min_dist */
731       if (x <= centerc2) {
732 	tdist = (x - maxc2) * C2_SCALE;
733 	max_dist += tdist*tdist;
734       } else {
735 	tdist = (x - minc2) * C2_SCALE;
736 	max_dist += tdist*tdist;
737       }
738     }
739 
740     mindist[i] = min_dist;	/* save away the results */
741     if (max_dist < minmaxdist)
742       minmaxdist = max_dist;
743   }
744 
745   /* Now we know that no cell in the update box is more than minmaxdist
746    * away from some colormap entry.  Therefore, only colors that are
747    * within minmaxdist of some part of the box need be considered.
748    */
749   ncolors = 0;
750   for (i = 0; i < numcolors; i++) {
751     if (mindist[i] <= minmaxdist)
752       colorlist[ncolors++] = (JSAMPLE) i;
753   }
754   return ncolors;
755 }
756 
757 
758 LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])759 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
760 		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
761 /* Find the closest colormap entry for each cell in the update box,
762  * given the list of candidate colors prepared by find_nearby_colors.
763  * Return the indexes of the closest entries in the bestcolor[] array.
764  * This routine uses Thomas' incremental distance calculation method to
765  * find the distance from a colormap entry to successive cells in the box.
766  */
767 {
768   int ic0, ic1, ic2;
769   int i, icolor;
770   register INT32 * bptr;	/* pointer into bestdist[] array */
771   JSAMPLE * cptr;		/* pointer into bestcolor[] array */
772   INT32 dist0, dist1;		/* initial distance values */
773   register INT32 dist2;		/* current distance in inner loop */
774   INT32 xx0, xx1;		/* distance increments */
775   register INT32 xx2;
776   INT32 inc0, inc1, inc2;	/* initial values for increments */
777   /* This array holds the distance to the nearest-so-far color for each cell */
778   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
779 
780   /* Initialize best-distance for each cell of the update box */
781   bptr = bestdist;
782   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
783     *bptr++ = 0x7FFFFFFFL;
784 
785   /* For each color selected by find_nearby_colors,
786    * compute its distance to the center of each cell in the box.
787    * If that's less than best-so-far, update best distance and color number.
788    */
789 
790   /* Nominal steps between cell centers ("x" in Thomas article) */
791 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
792 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
793 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
794 
795   for (i = 0; i < numcolors; i++) {
796     icolor = GETJSAMPLE(colorlist[i]);
797     /* Compute (square of) distance from minc0/c1/c2 to this color */
798     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
799     dist0 = inc0*inc0;
800     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
801     dist0 += inc1*inc1;
802     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
803     dist0 += inc2*inc2;
804     /* Form the initial difference increments */
805     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
806     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
807     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
808     /* Now loop over all cells in box, updating distance per Thomas method */
809     bptr = bestdist;
810     cptr = bestcolor;
811     xx0 = inc0;
812     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
813       dist1 = dist0;
814       xx1 = inc1;
815       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
816 	dist2 = dist1;
817 	xx2 = inc2;
818 	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
819 	  if (dist2 < *bptr) {
820 	    *bptr = dist2;
821 	    *cptr = (JSAMPLE) icolor;
822 	  }
823 	  dist2 += xx2;
824 	  xx2 += 2 * STEP_C2 * STEP_C2;
825 	  bptr++;
826 	  cptr++;
827 	}
828 	dist1 += xx1;
829 	xx1 += 2 * STEP_C1 * STEP_C1;
830       }
831       dist0 += xx0;
832       xx0 += 2 * STEP_C0 * STEP_C0;
833     }
834   }
835 }
836 
837 
838 LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)839 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
840 /* Fill the inverse-colormap entries in the update box that contains */
841 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
842 /* we can fill as many others as we wish.) */
843 {
844   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
845   hist3d histogram = cquantize->histogram;
846   int minc0, minc1, minc2;	/* lower left corner of update box */
847   int ic0, ic1, ic2;
848   register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
849   register histptr cachep;	/* pointer into main cache array */
850   /* This array lists the candidate colormap indexes. */
851   JSAMPLE colorlist[MAXNUMCOLORS];
852   int numcolors;		/* number of candidate colors */
853   /* This array holds the actually closest colormap index for each cell. */
854   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
855 
856   /* Convert cell coordinates to update box ID */
857   c0 >>= BOX_C0_LOG;
858   c1 >>= BOX_C1_LOG;
859   c2 >>= BOX_C2_LOG;
860 
861   /* Compute true coordinates of update box's origin corner.
862    * Actually we compute the coordinates of the center of the corner
863    * histogram cell, which are the lower bounds of the volume we care about.
864    */
865   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
866   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
867   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
868 
869   /* Determine which colormap entries are close enough to be candidates
870    * for the nearest entry to some cell in the update box.
871    */
872   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
873 
874   /* Determine the actually nearest colors. */
875   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
876 		   bestcolor);
877 
878   /* Save the best color numbers (plus 1) in the main cache array */
879   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
880   c1 <<= BOX_C1_LOG;
881   c2 <<= BOX_C2_LOG;
882   cptr = bestcolor;
883   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
884     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
885       cachep = & histogram[c0+ic0][c1+ic1][c2];
886       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
887 	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
888       }
889     }
890   }
891 }
892 
893 
894 /*
895  * Map some rows of pixels to the output colormapped representation.
896  */
897 
898 METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)899 pass2_no_dither (j_decompress_ptr cinfo,
900 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
901 /* This version performs no dithering */
902 {
903   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
904   hist3d histogram = cquantize->histogram;
905   register JSAMPROW inptr, outptr;
906   register histptr cachep;
907   register int c0, c1, c2;
908   int row;
909   JDIMENSION col;
910   JDIMENSION width = cinfo->output_width;
911 
912   for (row = 0; row < num_rows; row++) {
913     inptr = input_buf[row];
914     outptr = output_buf[row];
915     for (col = width; col > 0; col--) {
916       /* get pixel value and index into the cache */
917       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
918       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
919       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
920       cachep = & histogram[c0][c1][c2];
921       /* If we have not seen this color before, find nearest colormap entry */
922       /* and update the cache */
923       if (*cachep == 0)
924 	fill_inverse_cmap(cinfo, c0,c1,c2);
925       /* Now emit the colormap index for this cell */
926       *outptr++ = (JSAMPLE) (*cachep - 1);
927     }
928   }
929 }
930 
931 
932 METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)933 pass2_fs_dither (j_decompress_ptr cinfo,
934 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
935 /* This version performs Floyd-Steinberg dithering */
936 {
937   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
938   hist3d histogram = cquantize->histogram;
939   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
940   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
941   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
942   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
943   JSAMPROW inptr;		/* => current input pixel */
944   JSAMPROW outptr;		/* => current output pixel */
945   histptr cachep;
946   int dir;			/* +1 or -1 depending on direction */
947   int dir3;			/* 3*dir, for advancing inptr & errorptr */
948   int row;
949   JDIMENSION col;
950   JDIMENSION width = cinfo->output_width;
951   JSAMPLE *range_limit = cinfo->sample_range_limit;
952   int *error_limit = cquantize->error_limiter;
953   JSAMPROW colormap0 = cinfo->colormap[0];
954   JSAMPROW colormap1 = cinfo->colormap[1];
955   JSAMPROW colormap2 = cinfo->colormap[2];
956   SHIFT_TEMPS
957 
958   for (row = 0; row < num_rows; row++) {
959     inptr = input_buf[row];
960     outptr = output_buf[row];
961     if (cquantize->on_odd_row) {
962       /* work right to left in this row */
963       inptr += (width-1) * 3;	/* so point to rightmost pixel */
964       outptr += width-1;
965       dir = -1;
966       dir3 = -3;
967       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
968       cquantize->on_odd_row = FALSE; /* flip for next time */
969     } else {
970       /* work left to right in this row */
971       dir = 1;
972       dir3 = 3;
973       errorptr = cquantize->fserrors; /* => entry before first real column */
974       cquantize->on_odd_row = TRUE; /* flip for next time */
975     }
976     /* Preset error values: no error propagated to first pixel from left */
977     cur0 = cur1 = cur2 = 0;
978     /* and no error propagated to row below yet */
979     belowerr0 = belowerr1 = belowerr2 = 0;
980     bpreverr0 = bpreverr1 = bpreverr2 = 0;
981 
982     for (col = width; col > 0; col--) {
983       /* curN holds the error propagated from the previous pixel on the
984        * current line.  Add the error propagated from the previous line
985        * to form the complete error correction term for this pixel, and
986        * round the error term (which is expressed * 16) to an integer.
987        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
988        * for either sign of the error value.
989        * Note: errorptr points to *previous* column's array entry.
990        */
991       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
992       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
993       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
994       /* Limit the error using transfer function set by init_error_limit.
995        * See comments with init_error_limit for rationale.
996        */
997       cur0 = error_limit[cur0];
998       cur1 = error_limit[cur1];
999       cur2 = error_limit[cur2];
1000       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1001        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1002        * this sets the required size of the range_limit array.
1003        */
1004       cur0 += GETJSAMPLE(inptr[0]);
1005       cur1 += GETJSAMPLE(inptr[1]);
1006       cur2 += GETJSAMPLE(inptr[2]);
1007       cur0 = GETJSAMPLE(range_limit[cur0]);
1008       cur1 = GETJSAMPLE(range_limit[cur1]);
1009       cur2 = GETJSAMPLE(range_limit[cur2]);
1010       /* Index into the cache with adjusted pixel value */
1011       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1012       /* If we have not seen this color before, find nearest colormap */
1013       /* entry and update the cache */
1014       if (*cachep == 0)
1015 	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1016       /* Now emit the colormap index for this cell */
1017       { register int pixcode = *cachep - 1;
1018 	*outptr = (JSAMPLE) pixcode;
1019 	/* Compute representation error for this pixel */
1020 	cur0 -= GETJSAMPLE(colormap0[pixcode]);
1021 	cur1 -= GETJSAMPLE(colormap1[pixcode]);
1022 	cur2 -= GETJSAMPLE(colormap2[pixcode]);
1023       }
1024       /* Compute error fractions to be propagated to adjacent pixels.
1025        * Add these into the running sums, and simultaneously shift the
1026        * next-line error sums left by 1 column.
1027        */
1028       { register LOCFSERROR bnexterr, delta;
1029 
1030 	bnexterr = cur0;	/* Process component 0 */
1031 	delta = cur0 * 2;
1032 	cur0 += delta;		/* form error * 3 */
1033 	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1034 	cur0 += delta;		/* form error * 5 */
1035 	bpreverr0 = belowerr0 + cur0;
1036 	belowerr0 = bnexterr;
1037 	cur0 += delta;		/* form error * 7 */
1038 	bnexterr = cur1;	/* Process component 1 */
1039 	delta = cur1 * 2;
1040 	cur1 += delta;		/* form error * 3 */
1041 	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1042 	cur1 += delta;		/* form error * 5 */
1043 	bpreverr1 = belowerr1 + cur1;
1044 	belowerr1 = bnexterr;
1045 	cur1 += delta;		/* form error * 7 */
1046 	bnexterr = cur2;	/* Process component 2 */
1047 	delta = cur2 * 2;
1048 	cur2 += delta;		/* form error * 3 */
1049 	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1050 	cur2 += delta;		/* form error * 5 */
1051 	bpreverr2 = belowerr2 + cur2;
1052 	belowerr2 = bnexterr;
1053 	cur2 += delta;		/* form error * 7 */
1054       }
1055       /* At this point curN contains the 7/16 error value to be propagated
1056        * to the next pixel on the current line, and all the errors for the
1057        * next line have been shifted over.  We are therefore ready to move on.
1058        */
1059       inptr += dir3;		/* Advance pixel pointers to next column */
1060       outptr += dir;
1061       errorptr += dir3;		/* advance errorptr to current column */
1062     }
1063     /* Post-loop cleanup: we must unload the final error values into the
1064      * final fserrors[] entry.  Note we need not unload belowerrN because
1065      * it is for the dummy column before or after the actual array.
1066      */
1067     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1068     errorptr[1] = (FSERROR) bpreverr1;
1069     errorptr[2] = (FSERROR) bpreverr2;
1070   }
1071 }
1072 
1073 
1074 /*
1075  * Initialize the error-limiting transfer function (lookup table).
1076  * The raw F-S error computation can potentially compute error values of up to
1077  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1078  * much less, otherwise obviously wrong pixels will be created.  (Typical
1079  * effects include weird fringes at color-area boundaries, isolated bright
1080  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1081  * is to ensure that the "corners" of the color cube are allocated as output
1082  * colors; then repeated errors in the same direction cannot cause cascading
1083  * error buildup.  However, that only prevents the error from getting
1084  * completely out of hand; Aaron Giles reports that error limiting improves
1085  * the results even with corner colors allocated.
1086  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1087  * well, but the smoother transfer function used below is even better.  Thanks
1088  * to Aaron Giles for this idea.
1089  */
1090 
1091 LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1092 init_error_limit (j_decompress_ptr cinfo)
1093 /* Allocate and fill in the error_limiter table */
1094 {
1095   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1096   int * table;
1097   int in, out;
1098 
1099   table = (int *) (*cinfo->mem->alloc_small)
1100     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1101   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1102   cquantize->error_limiter = table;
1103 
1104 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1105   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1106   out = 0;
1107   for (in = 0; in < STEPSIZE; in++, out++) {
1108     table[in] = out; table[-in] = -out;
1109   }
1110   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1111   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1112     table[in] = out; table[-in] = -out;
1113   }
1114   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1115   for (; in <= MAXJSAMPLE; in++) {
1116     table[in] = out; table[-in] = -out;
1117   }
1118 #undef STEPSIZE
1119 }
1120 
1121 
1122 /*
1123  * Finish up at the end of each pass.
1124  */
1125 
1126 METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1127 finish_pass1 (j_decompress_ptr cinfo)
1128 {
1129   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1130 
1131   /* Select the representative colors and fill in cinfo->colormap */
1132   cinfo->colormap = cquantize->sv_colormap;
1133   select_colors(cinfo, cquantize->desired);
1134   /* Force next pass to zero the color index table */
1135   cquantize->needs_zeroed = TRUE;
1136 }
1137 
1138 
1139 METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1140 finish_pass2 (j_decompress_ptr cinfo)
1141 {
1142   /* no work */
1143 }
1144 
1145 
1146 /*
1147  * Initialize for each processing pass.
1148  */
1149 
1150 METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1151 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1152 {
1153   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1154   hist3d histogram = cquantize->histogram;
1155   int i;
1156 
1157   /* Only F-S dithering or no dithering is supported. */
1158   /* If user asks for ordered dither, give him F-S. */
1159   if (cinfo->dither_mode != JDITHER_NONE)
1160     cinfo->dither_mode = JDITHER_FS;
1161 
1162   if (is_pre_scan) {
1163     /* Set up method pointers */
1164     cquantize->pub.color_quantize = prescan_quantize;
1165     cquantize->pub.finish_pass = finish_pass1;
1166     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1167   } else {
1168     /* Set up method pointers */
1169     if (cinfo->dither_mode == JDITHER_FS)
1170       cquantize->pub.color_quantize = pass2_fs_dither;
1171     else
1172       cquantize->pub.color_quantize = pass2_no_dither;
1173     cquantize->pub.finish_pass = finish_pass2;
1174 
1175     /* Make sure color count is acceptable */
1176     i = cinfo->actual_number_of_colors;
1177     if (i < 1)
1178       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1179     if (i > MAXNUMCOLORS)
1180       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1181 
1182     if (cinfo->dither_mode == JDITHER_FS) {
1183       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1184 				   (3 * SIZEOF(FSERROR)));
1185       /* Allocate Floyd-Steinberg workspace if we didn't already. */
1186       if (cquantize->fserrors == NULL)
1187 	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1188 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1189       /* Initialize the propagated errors to zero. */
1190       jzero_far((void FAR *) cquantize->fserrors, arraysize);
1191       /* Make the error-limit table if we didn't already. */
1192       if (cquantize->error_limiter == NULL)
1193 	init_error_limit(cinfo);
1194       cquantize->on_odd_row = FALSE;
1195     }
1196 
1197   }
1198   /* Zero the histogram or inverse color map, if necessary */
1199   if (cquantize->needs_zeroed) {
1200     for (i = 0; i < HIST_C0_ELEMS; i++) {
1201       jzero_far((void FAR *) histogram[i],
1202 		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1203     }
1204     cquantize->needs_zeroed = FALSE;
1205   }
1206 }
1207 
1208 
1209 /*
1210  * Switch to a new external colormap between output passes.
1211  */
1212 
1213 METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1214 new_color_map_2_quant (j_decompress_ptr cinfo)
1215 {
1216   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1217 
1218   /* Reset the inverse color map */
1219   cquantize->needs_zeroed = TRUE;
1220 }
1221 
1222 
1223 /*
1224  * Module initialization routine for 2-pass color quantization.
1225  */
1226 
1227 GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1228 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1229 {
1230   my_cquantize_ptr cquantize;
1231   int i;
1232 
1233   cquantize = (my_cquantize_ptr)
1234     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1235 				SIZEOF(my_cquantizer));
1236   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1237   cquantize->pub.start_pass = start_pass_2_quant;
1238   cquantize->pub.new_color_map = new_color_map_2_quant;
1239   cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
1240   cquantize->error_limiter = NULL;
1241 
1242   /* Make sure jdmaster didn't give me a case I can't handle */
1243   if (cinfo->out_color_components != 3)
1244     ERREXIT(cinfo, JERR_NOTIMPL);
1245 
1246   /* Allocate the histogram/inverse colormap storage */
1247   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1248     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1249   for (i = 0; i < HIST_C0_ELEMS; i++) {
1250     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1251       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1252        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1253   }
1254   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1255 
1256   /* Allocate storage for the completed colormap, if required.
1257    * We do this now since it is FAR storage and may affect
1258    * the memory manager's space calculations.
1259    */
1260   if (cinfo->enable_2pass_quant) {
1261     /* Make sure color count is acceptable */
1262     int desired = cinfo->desired_number_of_colors;
1263     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1264     if (desired < 8)
1265       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1266     /* Make sure colormap indexes can be represented by JSAMPLEs */
1267     if (desired > MAXNUMCOLORS)
1268       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1269     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1270       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1271     cquantize->desired = desired;
1272   } else
1273     cquantize->sv_colormap = NULL;
1274 
1275   /* Only F-S dithering or no dithering is supported. */
1276   /* If user asks for ordered dither, give him F-S. */
1277   if (cinfo->dither_mode != JDITHER_NONE)
1278     cinfo->dither_mode = JDITHER_FS;
1279 
1280   /* Allocate Floyd-Steinberg workspace if necessary.
1281    * This isn't really needed until pass 2, but again it is FAR storage.
1282    * Although we will cope with a later change in dither_mode,
1283    * we do not promise to honor max_memory_to_use if dither_mode changes.
1284    */
1285   if (cinfo->dither_mode == JDITHER_FS) {
1286     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1287       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1288        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1289     /* Might as well create the error-limiting table too. */
1290     init_error_limit(cinfo);
1291   }
1292 }
1293 
1294 #endif /* QUANT_2PASS_SUPPORTED */
1295