• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "CubicUtilities.h"
9 #include "CurveIntersection.h"
10 #include "Intersections.h"
11 #include "IntersectionUtilities.h"
12 #include "LineIntersection.h"
13 #include "LineUtilities.h"
14 #include "QuadraticUtilities.h"
15 #include "TSearch.h"
16 
17 #if 0
18 #undef ONE_OFF_DEBUG
19 #define ONE_OFF_DEBUG 0
20 #endif
21 
22 #if ONE_OFF_DEBUG
23 static const double tLimits1[2][2] = {{0.36, 0.37}, {0.63, 0.64}};
24 static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
25 #endif
26 
27 #define DEBUG_QUAD_PART 0
28 #define SWAP_TOP_DEBUG 0
29 
quadPart(const Cubic & cubic,double tStart,double tEnd,Quadratic & simple)30 static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) {
31     Cubic part;
32     sub_divide(cubic, tStart, tEnd, part);
33     Quadratic quad;
34     demote_cubic_to_quad(part, quad);
35     // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
36     // extremely shallow quadratic?
37     int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill);
38 #if DEBUG_QUAD_PART
39     SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n",
40             __FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y,
41             cubic[3].x, cubic[3].y, tStart, tEnd);
42     SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
43             " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y,
44             part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y,
45             quad[1].x, quad[1].y, quad[2].x, quad[2].y);
46     SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y);
47     if (order > 1) {
48         SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y);
49     }
50     if (order > 2) {
51         SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y);
52     }
53     SkDebugf(")\n");
54     SkASSERT(order < 4 && order > 0);
55 #endif
56     return order;
57 }
58 
intersectWithOrder(const Quadratic & simple1,int order1,const Quadratic & simple2,int order2,Intersections & i)59 static void intersectWithOrder(const Quadratic& simple1, int order1, const Quadratic& simple2,
60         int order2, Intersections& i) {
61     if (order1 == 3 && order2 == 3) {
62         intersect2(simple1, simple2, i);
63     } else if (order1 <= 2 && order2 <= 2) {
64         intersect((const _Line&) simple1, (const _Line&) simple2, i);
65     } else if (order1 == 3 && order2 <= 2) {
66         intersect(simple1, (const _Line&) simple2, i);
67     } else {
68         SkASSERT(order1 <= 2 && order2 == 3);
69         intersect(simple2, (const _Line&) simple1, i);
70         for (int s = 0; s < i.fUsed; ++s) {
71             SkTSwap(i.fT[0][s], i.fT[1][s]);
72         }
73     }
74 }
75 
76 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
77 // chase intersections near quadratic ends, requiring odd hacks to find them.
intersect3(const Cubic & cubic1,double t1s,double t1e,const Cubic & cubic2,double t2s,double t2e,double precisionScale,Intersections & i)78 static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
79         double t2s, double t2e, double precisionScale, Intersections& i) {
80     i.upDepth();
81     bool result = false;
82     Cubic c1, c2;
83     sub_divide(cubic1, t1s, t1e, c1);
84     sub_divide(cubic2, t2s, t2e, c2);
85     SkTDArray<double> ts1;
86     // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
87     cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
88     SkTDArray<double> ts2;
89     cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
90     double t1Start = t1s;
91     int ts1Count = ts1.count();
92     for (int i1 = 0; i1 <= ts1Count; ++i1) {
93         const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
94         const double t1 = t1s + (t1e - t1s) * tEnd1;
95         Quadratic s1;
96         int o1 = quadPart(cubic1, t1Start, t1, s1);
97         double t2Start = t2s;
98         int ts2Count = ts2.count();
99         for (int i2 = 0; i2 <= ts2Count; ++i2) {
100             const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
101             const double t2 = t2s + (t2e - t2s) * tEnd2;
102             if (cubic1 == cubic2 && t1Start >= t2Start) {
103                 t2Start = t2;
104                 continue;
105             }
106             Quadratic s2;
107             int o2 = quadPart(cubic2, t2Start, t2, s2);
108         #if ONE_OFF_DEBUG
109             char tab[] = "                  ";
110             if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
111                     && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
112                 Cubic cSub1, cSub2;
113                 sub_divide(cubic1, t1Start, t1, cSub1);
114                 sub_divide(cubic2, t2Start, t2, cSub2);
115                 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__,
116                         t1Start, t1, t2Start, t2);
117                 Intersections xlocals;
118                 intersectWithOrder(s1, o1, s2, o2, xlocals);
119                 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
120             }
121         #endif
122             Intersections locals;
123             intersectWithOrder(s1, o1, s2, o2, locals);
124             double coStart[2] = { -1 };
125             _Point coPoint;
126             int tCount = locals.used();
127             for (int tIdx = 0; tIdx < tCount; ++tIdx) {
128                 double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
129                 double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
130     // if the computed t is not sufficiently precise, iterate
131                 _Point p1 = xy_at_t(cubic1, to1);
132                 _Point p2 = xy_at_t(cubic2, to2);
133                 if (p1.approximatelyEqual(p2)) {
134                     if (locals.fIsCoincident[0] & 1 << tIdx) {
135                         if (coStart[0] < 0) {
136                             coStart[0] = to1;
137                             coStart[1] = to2;
138                             coPoint = p1;
139                         } else {
140                             i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
141                             coStart[0] = -1;
142                         }
143                         result = true;
144                     } else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) {
145                         if (i.swapped()) { // FIXME: insert should respect swap
146                             i.insert(to2, to1, p1);
147                         } else {
148                             i.insert(to1, to2, p1);
149                         }
150                         result = true;
151                     }
152                 } else {
153                     double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
154 #if 1
155                     double c1Bottom = tIdx == 0 ? 0 :
156                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
157                     double c1Min = SkTMax(c1Bottom, to1 - offset);
158                     double c1Top = tIdx == tCount - 1 ? 1 :
159                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
160                     double c1Max = SkTMin(c1Top, to1 + offset);
161                     double c2Min = SkTMax(0., to2 - offset);
162                     double c2Max = SkTMin(1., to2 + offset);
163                 #if ONE_OFF_DEBUG
164                     SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
165                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
166                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
167                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
168                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
169                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
170                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
171                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
172                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
173                     SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
174                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
175                             i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
176                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
177                     SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
178                             " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
179                 #endif
180                     intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
181                 #if ONE_OFF_DEBUG
182                     SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
183                             i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
184                 #endif
185                     if (tCount > 1) {
186                         c1Min = SkTMax(0., to1 - offset);
187                         c1Max = SkTMin(1., to1 + offset);
188                         double c2Bottom = tIdx == 0 ? to2 :
189                                 (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
190                         double c2Top = tIdx == tCount - 1 ? to2 :
191                                 (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
192                         if (c2Bottom > c2Top) {
193                             SkTSwap(c2Bottom, c2Top);
194                         }
195                         if (c2Bottom == to2) {
196                             c2Bottom = 0;
197                         }
198                         if (c2Top == to2) {
199                             c2Top = 1;
200                         }
201                         c2Min = SkTMax(c2Bottom, to2 - offset);
202                         c2Max = SkTMin(c2Top, to2 + offset);
203                     #if ONE_OFF_DEBUG
204                         SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
205                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
206                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
207                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
208                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
209                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
210                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
211                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
212                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
213                         SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
214                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
215                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
216                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
217                         SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
218                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
219                     #endif
220                         intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
221                 #if ONE_OFF_DEBUG
222                     SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
223                             i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
224                 #endif
225                         c1Min = SkTMax(c1Bottom, to1 - offset);
226                         c1Max = SkTMin(c1Top, to1 + offset);
227                     #if ONE_OFF_DEBUG
228                         SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
229                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
230                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
231                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
232                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
233                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
234                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
235                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
236                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
237                         SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
238                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
239                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
240                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
241                         SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
242                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
243                     #endif
244                         intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
245                 #if ONE_OFF_DEBUG
246                     SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
247                             i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
248                 #endif
249                     }
250 #else
251                     double c1Bottom = tIdx == 0 ? 0 :
252                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
253                     double c1Min = SkTMax(c1Bottom, to1 - offset);
254                     double c1Top = tIdx == tCount - 1 ? 1 :
255                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
256                     double c1Max = SkTMin(c1Top, to1 + offset);
257                     double c2Bottom = tIdx == 0 ? to2 :
258                             (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
259                     double c2Top = tIdx == tCount - 1 ? to2 :
260                             (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
261                     if (c2Bottom > c2Top) {
262                         SkTSwap(c2Bottom, c2Top);
263                     }
264                     if (c2Bottom == to2) {
265                         c2Bottom = 0;
266                     }
267                     if (c2Top == to2) {
268                         c2Top = 1;
269                     }
270                     double c2Min = SkTMax(c2Bottom, to2 - offset);
271                     double c2Max = SkTMin(c2Top, to2 + offset);
272                 #if ONE_OFF_DEBUG
273                     SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__,
274                             c1Min <= 0.210357794 && 0.210357794 <= c1Max
275                          && c2Min <= 0.223476406 && 0.223476406 <= c2Max,
276                             to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset
277                          && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset,
278                             c1Min <= 0.211324707 && 0.211324707 <= c1Max
279                          && c2Min <= 0.211327209 && 0.211327209 <= c2Max,
280                             to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset
281                          && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset);
282                     SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
283                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
284                             __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top,
285                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
286                     SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
287                             " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
288                 #endif
289 #endif
290                     intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
291                     // TODO: if no intersection is found, either quadratics intersected where
292                     // cubics did not, or the intersection was missed. In the former case, expect
293                     // the quadratics to be nearly parallel at the point of intersection, and check
294                     // for that.
295                 }
296             }
297             SkASSERT(coStart[0] == -1);
298             t2Start = t2;
299         }
300         t1Start = t1;
301     }
302     i.downDepth();
303     return result;
304 }
305 
306 #if 0
307 #define LINE_FRACTION (1.0 / gPrecisionUnit)
308 #else
309 #define LINE_FRACTION 0.1
310 #endif
311 
312 // intersect the end of the cubic with the other. Try lines from the end to control and opposite
313 // end to determine range of t on opposite cubic.
intersectEnd(const Cubic & cubic1,bool start,const Cubic & cubic2,const _Rect & bounds2,Intersections & i)314 static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
315         Intersections& i) {
316  //   bool selfIntersect = cubic1 == cubic2;
317     _Line line;
318     int t1Index = start ? 0 : 3;
319     line[0] = cubic1[t1Index];
320     // don't bother if the two cubics are connnected
321 #if 0
322     if (!selfIntersect && (line[0].approximatelyEqual(cubic2[0])
323             || line[0].approximatelyEqual(cubic2[3]))) {
324         return false;
325     }
326 #endif
327     bool result = false;
328     SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array
329     for (int index = 0; index < 4; ++index) {
330         if (index == t1Index) {
331             continue;
332         }
333         _Vector dxy1 = cubic1[index] - line[0];
334         dxy1 /= gPrecisionUnit;
335         line[1] = line[0] + dxy1;
336         _Rect lineBounds;
337         lineBounds.setBounds(line);
338         if (!bounds2.intersects(lineBounds)) {
339             continue;
340         }
341         Intersections local;
342         if (!intersect(cubic2, line, local)) {
343             continue;
344         }
345         for (int idx2 = 0; idx2 < local.used(); ++idx2) {
346             double foundT = local.fT[0][idx2];
347             if (approximately_less_than_zero(foundT)
348                     || approximately_greater_than_one(foundT)) {
349                 continue;
350             }
351             if (local.fPt[idx2].approximatelyEqual(line[0])) {
352                 if (i.swapped()) { // FIXME: insert should respect swap
353                     i.insert(foundT, start ? 0 : 1, line[0]);
354                 } else {
355                     i.insert(start ? 0 : 1, foundT, line[0]);
356                 }
357                 result = true;
358             } else {
359                 *tVals.append() = local.fT[0][idx2];
360             }
361         }
362     }
363     if (tVals.count() == 0) {
364         return result;
365     }
366     QSort<double>(tVals.begin(), tVals.end() - 1);
367     double tMin1 = start ? 0 : 1 - LINE_FRACTION;
368     double tMax1 = start ? LINE_FRACTION : 1;
369     int tIdx = 0;
370     do {
371         int tLast = tIdx;
372         while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
373             ++tLast;
374         }
375         double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
376         double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
377         int lastUsed = i.used();
378         result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
379         if (lastUsed == i.used()) {
380             tMin2 = SkTMax(tVals[tIdx] - (1.0 / gPrecisionUnit), 0.0);
381             tMax2 = SkTMin(tVals[tLast] + (1.0 / gPrecisionUnit), 1.0);
382             result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
383         }
384         tIdx = tLast + 1;
385     } while (tIdx < tVals.count());
386     return result;
387 }
388 
389 const double CLOSE_ENOUGH = 0.001;
390 
closeStart(const Cubic & cubic,int cubicIndex,Intersections & i,_Point & pt)391 static bool closeStart(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
392     if (i.fT[cubicIndex][0] != 0 || i.fT[cubicIndex][1] > CLOSE_ENOUGH) {
393         return false;
394     }
395     pt = xy_at_t(cubic, (i.fT[cubicIndex][0] + i.fT[cubicIndex][1]) / 2);
396     return true;
397 }
398 
closeEnd(const Cubic & cubic,int cubicIndex,Intersections & i,_Point & pt)399 static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
400     int last = i.used() - 1;
401     if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
402         return false;
403     }
404     pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2);
405     return true;
406 }
407 
intersect3(const Cubic & c1,const Cubic & c2,Intersections & i)408 bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
409     bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
410     // FIXME: pass in cached bounds from caller
411     _Rect c1Bounds, c2Bounds;
412     c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
413     c2Bounds.setBounds(c2);
414     result |= intersectEnd(c1, false, c2, c2Bounds, i);
415     result |= intersectEnd(c1, true, c2, c2Bounds, i);
416     bool selfIntersect = c1 == c2;
417     if (!selfIntersect) {
418         i.swap();
419         result |= intersectEnd(c2, false, c1, c1Bounds, i);
420         result |= intersectEnd(c2, true, c1, c1Bounds, i);
421         i.swap();
422     }
423     // If an end point and a second point very close to the end is returned, the second
424     // point may have been detected because the approximate quads
425     // intersected at the end and close to it. Verify that the second point is valid.
426     if (i.used() <= 1 || i.coincidentUsed()) {
427         return result;
428     }
429     _Point pt[2];
430     if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
431             && pt[0].approximatelyEqual(pt[1])) {
432         i.removeOne(1);
433     }
434     if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
435             && pt[0].approximatelyEqual(pt[1])) {
436         i.removeOne(i.used() - 2);
437     }
438     return result;
439 }
440 
441 // Up promote the quad to a cubic.
442 // OPTIMIZATION If this is a common use case, optimize by duplicating
443 // the intersect 3 loop to avoid the promotion  / demotion code
intersect(const Cubic & cubic,const Quadratic & quad,Intersections & i)444 int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
445     Cubic up;
446     toCubic(quad, up);
447     (void) intersect3(cubic, up, i);
448     return i.used();
449 }
450 
451 /* http://www.ag.jku.at/compass/compasssample.pdf
452 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
453 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
454 SINTEF Applied Mathematics http://www.sintef.no )
455 describes a method to find the self intersection of a cubic by taking the gradient of the implicit
456 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
457 
intersect(const Cubic & c,Intersections & i)458 int intersect(const Cubic& c, Intersections& i) {
459     // check to see if x or y end points are the extrema. Are other quick rejects possible?
460     if (ends_are_extrema_in_x_or_y(c)) {
461         return false;
462     }
463     (void) intersect3(c, c, i);
464     if (i.used() > 0) {
465         SkASSERT(i.used() == 1);
466         if (i.fT[0][0] > i.fT[1][0]) {
467             SkTSwap(i.fT[0][0], i.fT[1][0]);
468         }
469     }
470     return i.used();
471 }
472