• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
3 */
4 
5 /*
6 Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
7 Then for degree elevation, the equations are:
8 
9 Q0 = P0
10 Q1 = 1/3 P0 + 2/3 P1
11 Q2 = 2/3 P1 + 1/3 P2
12 Q3 = P2
13 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
14  the equations above:
15 
16 P1 = 3/2 Q1 - 1/2 Q0
17 P1 = 3/2 Q2 - 1/2 Q3
18 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
19  it's likely not, your best bet is to average them. So,
20 
21 P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
22 
23 
24 Cubic defined by: P1/2 - anchor points, C1/C2 control points
25 |x| is the euclidean norm of x
26 mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
27  control point at C = (3·C2 - P2 + 3·C1 - P1)/4
28 
29 Algorithm
30 
31 pick an absolute precision (prec)
32 Compute the Tdiv as the root of (cubic) equation
33 sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
34 if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
35  quadratic, with a defect less than prec, by the mid-point approximation.
36  Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
37 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
38  approximation
39 Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
40 
41 confirmed by (maybe stolen from)
42 http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
43 // maybe in turn derived from  http://www.cccg.ca/proceedings/2004/36.pdf
44 // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
45 
46 */
47 
48 #include "CubicUtilities.h"
49 #include "CurveIntersection.h"
50 #include "LineIntersection.h"
51 #include "TSearch.h"
52 
53 const bool AVERAGE_END_POINTS = true; // results in better fitting curves
54 
55 #define USE_CUBIC_END_POINTS 1
56 
calcTDiv(const Cubic & cubic,double precision,double start)57 static double calcTDiv(const Cubic& cubic, double precision, double start) {
58     const double adjust = sqrt(3) / 36;
59     Cubic sub;
60     const Cubic* cPtr;
61     if (start == 0) {
62         cPtr = &cubic;
63     } else {
64         // OPTIMIZE: special-case half-split ?
65         sub_divide(cubic, start, 1, sub);
66         cPtr = &sub;
67     }
68     const Cubic& c = *cPtr;
69     double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x;
70     double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y;
71     double dist = sqrt(dx * dx + dy * dy);
72     double tDiv3 = precision / (adjust * dist);
73     double t = cube_root(tDiv3);
74     if (start > 0) {
75         t = start + (1 - start) * t;
76     }
77     return t;
78 }
79 
demote_cubic_to_quad(const Cubic & cubic,Quadratic & quad)80 void demote_cubic_to_quad(const Cubic& cubic, Quadratic& quad) {
81     quad[0] = cubic[0];
82 if (AVERAGE_END_POINTS) {
83     const _Point fromC1 = { (3 * cubic[1].x - cubic[0].x) / 2, (3 * cubic[1].y - cubic[0].y) / 2 };
84     const _Point fromC2 = { (3 * cubic[2].x - cubic[3].x) / 2, (3 * cubic[2].y - cubic[3].y) / 2 };
85     quad[1].x = (fromC1.x + fromC2.x) / 2;
86     quad[1].y = (fromC1.y + fromC2.y) / 2;
87 } else {
88     lineIntersect((const _Line&) cubic[0], (const _Line&) cubic[2], quad[1]);
89 }
90     quad[2] = cubic[3];
91 }
92 
cubic_to_quadratics(const Cubic & cubic,double precision,SkTDArray<Quadratic> & quadratics)93 int cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<Quadratic>& quadratics) {
94     SkTDArray<double> ts;
95     cubic_to_quadratics(cubic, precision, ts);
96     int tsCount = ts.count();
97     double t1Start = 0;
98     int order = 0;
99     for (int idx = 0; idx <= tsCount; ++idx) {
100         double t1 = idx < tsCount ? ts[idx] : 1;
101         Cubic part;
102         sub_divide(cubic, t1Start, t1, part);
103         Quadratic q1;
104         demote_cubic_to_quad(part, q1);
105         Quadratic s1;
106         int o1 = reduceOrder(q1, s1, kReduceOrder_TreatAsFill);
107         if (order < o1) {
108             order = o1;
109         }
110         memcpy(quadratics.append(), o1 < 2 ? s1 : q1, sizeof(Quadratic));
111         t1Start = t1;
112     }
113     return order;
114 }
115 
addSimpleTs(const Cubic & cubic,double precision,SkTDArray<double> & ts)116 static bool addSimpleTs(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
117     double tDiv = calcTDiv(cubic, precision, 0);
118     if (tDiv >= 1) {
119         return true;
120     }
121     if (tDiv >= 0.5) {
122         *ts.append() = 0.5;
123         return true;
124     }
125     return false;
126 }
127 
addTs(const Cubic & cubic,double precision,double start,double end,SkTDArray<double> & ts)128 static void addTs(const Cubic& cubic, double precision, double start, double end,
129         SkTDArray<double>& ts) {
130     double tDiv = calcTDiv(cubic, precision, 0);
131     double parts = ceil(1.0 / tDiv);
132     for (double index = 0; index < parts; ++index) {
133         double newT = start + (index / parts) * (end - start);
134         if (newT > 0 && newT < 1) {
135             *ts.append() = newT;
136         }
137     }
138 }
139 
140 // flavor that returns T values only, deferring computing the quads until they are needed
141 // FIXME: when called from recursive intersect 2, this could take the original cubic
142 // and do a more precise job when calling chop at and sub divide by computing the fractional ts.
143 // it would still take the prechopped cubic for reduce order and find cubic inflections
cubic_to_quadratics(const Cubic & cubic,double precision,SkTDArray<double> & ts)144 void cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
145     Cubic reduced;
146     int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed,
147             kReduceOrder_TreatAsFill);
148     if (order < 3) {
149         return;
150     }
151     double inflectT[5];
152     int inflections = find_cubic_inflections(cubic, inflectT);
153     SkASSERT(inflections <= 2);
154     if (!ends_are_extrema_in_x_or_y(cubic)) {
155         inflections += find_cubic_max_curvature(cubic, &inflectT[inflections]);
156         SkASSERT(inflections <= 5);
157     }
158     QSort<double>(inflectT, &inflectT[inflections - 1]);
159     // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
160     // own subroutine?
161     while (inflections && approximately_less_than_zero(inflectT[0])) {
162         memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
163     }
164     int start = 0;
165     do {
166         int next = start + 1;
167         if (next >= inflections) {
168             break;
169         }
170         if (!approximately_equal(inflectT[start], inflectT[next])) {
171             ++start;
172             continue;
173         }
174         memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
175     } while (true);
176     while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
177         --inflections;
178     }
179     CubicPair pair;
180     if (inflections == 1) {
181         chop_at(cubic, pair, inflectT[0]);
182         int orderP1 = reduceOrder(pair.first(), reduced, kReduceOrder_NoQuadraticsAllowed,
183                 kReduceOrder_TreatAsFill);
184         if (orderP1 < 2) {
185             --inflections;
186         } else {
187             int orderP2 = reduceOrder(pair.second(), reduced, kReduceOrder_NoQuadraticsAllowed,
188                     kReduceOrder_TreatAsFill);
189             if (orderP2 < 2) {
190                 --inflections;
191             }
192         }
193     }
194     if (inflections == 0 && addSimpleTs(cubic, precision, ts)) {
195         return;
196     }
197     if (inflections == 1) {
198         chop_at(cubic, pair, inflectT[0]);
199         addTs(pair.first(), precision, 0, inflectT[0], ts);
200         addTs(pair.second(), precision, inflectT[0], 1, ts);
201         return;
202     }
203     if (inflections > 1) {
204         Cubic part;
205         sub_divide(cubic, 0, inflectT[0], part);
206         addTs(part, precision, 0, inflectT[0], ts);
207         int last = inflections - 1;
208         for (int idx = 0; idx < last; ++idx) {
209             sub_divide(cubic, inflectT[idx], inflectT[idx + 1], part);
210             addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
211         }
212         sub_divide(cubic, inflectT[last], 1, part);
213         addTs(part, precision, inflectT[last], 1, ts);
214         return;
215     }
216     addTs(cubic, precision, 0, 1, ts);
217 }
218