• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "DataTypes.h"
8 #include "Extrema.h"
9 
validUnitDivide(double numer,double denom,double * ratio)10 static int validUnitDivide(double numer, double denom, double* ratio)
11 {
12     if (numer < 0) {
13         numer = -numer;
14         denom = -denom;
15     }
16     if (denom == 0 || numer == 0 || numer >= denom)
17         return 0;
18     double r = numer / denom;
19     if (r == 0) { // catch underflow if numer <<<< denom
20         return 0;
21     }
22     *ratio = r;
23     return 1;
24 }
25 
26 /** From Numerical Recipes in C.
27 
28     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
29     x1 = Q / A
30     x2 = C / Q
31 */
findUnitQuadRoots(double A,double B,double C,double roots[2])32 static int findUnitQuadRoots(double A, double B, double C, double roots[2])
33 {
34     if (A == 0)
35         return validUnitDivide(-C, B, roots);
36 
37     double* r = roots;
38 
39     double R = B*B - 4*A*C;
40     if (R < 0) {  // complex roots
41         return 0;
42     }
43     R = sqrt(R);
44 
45     double Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
46     r += validUnitDivide(Q, A, r);
47     r += validUnitDivide(C, Q, r);
48     if (r - roots == 2 && AlmostEqualUlps(roots[0], roots[1])) { // nearly-equal?
49         r -= 1; // skip the double root
50     }
51     return (int)(r - roots);
52 }
53 
54 /** Cubic'(t) = At^2 + Bt + C, where
55     A = 3(-a + 3(b - c) + d)
56     B = 6(a - 2b + c)
57     C = 3(b - a)
58     Solve for t, keeping only those that fit between 0 < t < 1
59 */
findExtrema(double a,double b,double c,double d,double tValues[2])60 int findExtrema(double a, double b, double c, double d, double tValues[2])
61 {
62     // we divide A,B,C by 3 to simplify
63     double A = d - a + 3*(b - c);
64     double B = 2*(a - b - b + c);
65     double C = b - a;
66 
67     return findUnitQuadRoots(A, B, C, tValues);
68 }
69 
70 /** Quad'(t) = At + B, where
71     A = 2(a - 2b + c)
72     B = 2(b - a)
73     Solve for t, only if it fits between 0 < t < 1
74 */
findExtrema(double a,double b,double c,double tValue[1])75 int findExtrema(double a, double b, double c, double tValue[1])
76 {
77     /*  At + B == 0
78         t = -B / A
79     */
80     return validUnitDivide(a - b, a - b - b + c, tValue);
81 }
82