• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "CurveIntersection.h"
8 #include "Intersections.h"
9 #include "LineIntersection.h"
10 #include "LineUtilities.h"
11 
12 /* Determine the intersection point of two lines. This assumes the lines are not parallel,
13    and that that the lines are infinite.
14    From http://en.wikipedia.org/wiki/Line-line_intersection
15  */
lineIntersect(const _Line & a,const _Line & b,_Point & p)16 void lineIntersect(const _Line& a, const _Line& b, _Point& p) {
17     double axLen = a[1].x - a[0].x;
18     double ayLen = a[1].y - a[0].y;
19     double bxLen = b[1].x - b[0].x;
20     double byLen = b[1].y - b[0].y;
21     double denom = byLen * axLen - ayLen * bxLen;
22     SkASSERT(denom);
23     double term1 = a[1].x * a[0].y - a[1].y * a[0].x;
24     double term2 = b[1].x * b[0].y - b[1].y * b[0].x;
25     p.x = (term1 * bxLen - axLen * term2) / denom;
26     p.y = (term1 * byLen - ayLen * term2) / denom;
27 }
28 
computePoints(const _Line & a,int used,Intersections & i)29 static int computePoints(const _Line& a, int used, Intersections& i) {
30     i.fPt[0] = xy_at_t(a, i.fT[0][0]);
31     if ((i.fUsed = used) == 2) {
32         i.fPt[1] = xy_at_t(a, i.fT[0][1]);
33     }
34     return i.fUsed;
35 }
36 
37 /*
38    Determine the intersection point of two line segments
39    Return FALSE if the lines don't intersect
40    from: http://paulbourke.net/geometry/lineline2d/
41  */
42 
intersect(const _Line & a,const _Line & b,Intersections & i)43 int intersect(const _Line& a, const _Line& b, Intersections& i) {
44     double axLen = a[1].x - a[0].x;
45     double ayLen = a[1].y - a[0].y;
46     double bxLen = b[1].x - b[0].x;
47     double byLen = b[1].y - b[0].y;
48     /* Slopes match when denom goes to zero:
49                       axLen / ayLen ==                   bxLen / byLen
50     (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
51              byLen  * axLen         ==  ayLen          * bxLen
52              byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
53      */
54     double denom = byLen * axLen - ayLen * bxLen;
55     double ab0y = a[0].y - b[0].y;
56     double ab0x = a[0].x - b[0].x;
57     double numerA = ab0y * bxLen - byLen * ab0x;
58     double numerB = ab0y * axLen - ayLen * ab0x;
59     bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)
60             || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB);
61     numerA /= denom;
62     numerB /= denom;
63     if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA)
64             && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
65             && !sk_double_isnan(numerB)) {
66         if (mayNotOverlap) {
67             return 0;
68         }
69         i.fT[0][0] = numerA;
70         i.fT[1][0] = numerB;
71         i.fPt[0] = xy_at_t(a, numerA);
72         return computePoints(a, 1, i);
73     }
74    /* See if the axis intercepts match:
75               ay - ax * ayLen / axLen  ==          by - bx * ayLen / axLen
76      axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
77      axLen *  ay - ax * ayLen          == axLen *  by - bx * ayLen
78     */
79     // FIXME: need to use AlmostEqualUlps variant instead
80     if (!approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x,
81             axLen * b[0].y - ayLen * b[0].x)) {
82         return 0;
83     }
84     const double* aPtr;
85     const double* bPtr;
86     if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
87         aPtr = &a[0].x;
88         bPtr = &b[0].x;
89     } else {
90         aPtr = &a[0].y;
91         bPtr = &b[0].y;
92     }
93     double a0 = aPtr[0];
94     double a1 = aPtr[2];
95     double b0 = bPtr[0];
96     double b1 = bPtr[2];
97     // OPTIMIZATION: restructure to reject before the divide
98     // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1))
99     // (except efficient)
100     double aDenom = a0 - a1;
101     if (approximately_zero(aDenom)) {
102         if (!between(b0, a0, b1)) {
103             return 0;
104         }
105         i.fT[0][0] = i.fT[0][1] = 0;
106     } else {
107         double at0 = (a0 - b0) / aDenom;
108         double at1 = (a0 - b1) / aDenom;
109         if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
110             return 0;
111         }
112         i.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
113         i.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
114     }
115     double bDenom = b0 - b1;
116     if (approximately_zero(bDenom)) {
117         i.fT[1][0] = i.fT[1][1] = 0;
118     } else {
119         int bIn = aDenom * bDenom < 0;
120         i.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0);
121         i.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0);
122     }
123     bool second = fabs(i.fT[0][0] - i.fT[0][1]) > FLT_EPSILON;
124     SkASSERT((fabs(i.fT[1][0] - i.fT[1][1]) <= FLT_EPSILON) ^ second);
125     return computePoints(a, 1 + second, i);
126 }
127 
horizontalIntersect(const _Line & line,double y,double tRange[2])128 int horizontalIntersect(const _Line& line, double y, double tRange[2]) {
129     double min = line[0].y;
130     double max = line[1].y;
131     if (min > max) {
132         SkTSwap(min, max);
133     }
134     if (min > y || max < y) {
135         return 0;
136     }
137     if (AlmostEqualUlps(min, max)) {
138         tRange[0] = 0;
139         tRange[1] = 1;
140         return 2;
141     }
142     tRange[0] = (y - line[0].y) / (line[1].y - line[0].y);
143     return 1;
144 }
145 
146 // OPTIMIZATION  Given: dy = line[1].y - line[0].y
147 // and: xIntercept / (y - line[0].y) == (line[1].x - line[0].x) / dy
148 // then: xIntercept * dy == (line[1].x - line[0].x) * (y - line[0].y)
149 // Assuming that dy is always > 0, the line segment intercepts if:
150 //   left * dy <= xIntercept * dy <= right * dy
151 // thus: left * dy <= (line[1].x - line[0].x) * (y - line[0].y) <= right * dy
152 // (clever as this is, it does not give us the t value, so may be useful only
153 // as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps)
horizontalLineIntersect(const _Line & line,double left,double right,double y,double tRange[2])154 int horizontalLineIntersect(const _Line& line, double left, double right,
155         double y, double tRange[2]) {
156     int result = horizontalIntersect(line, y, tRange);
157     if (result != 1) {
158         // FIXME: this is incorrect if result == 2
159         return result;
160     }
161     double xIntercept = line[0].x + tRange[0] * (line[1].x - line[0].x);
162     if (xIntercept > right || xIntercept < left) {
163         return 0;
164     }
165     return result;
166 }
167 
horizontalIntersect(const _Line & line,double left,double right,double y,bool flipped,Intersections & intersections)168 int horizontalIntersect(const _Line& line, double left, double right,
169         double y, bool flipped, Intersections& intersections) {
170     int result = horizontalIntersect(line, y, intersections.fT[0]);
171     switch (result) {
172         case 0:
173             break;
174         case 1: {
175             double xIntercept = line[0].x + intersections.fT[0][0]
176                     * (line[1].x - line[0].x);
177             if (xIntercept > right || xIntercept < left) {
178                 return 0;
179             }
180             intersections.fT[1][0] = (xIntercept - left) / (right - left);
181             break;
182         }
183         case 2:
184         #if 0 // sorting edges fails to preserve original direction
185             double lineL = line[0].x;
186             double lineR = line[1].x;
187             if (lineL > lineR) {
188                 SkTSwap(lineL, lineR);
189             }
190             double overlapL = SkTMax(left, lineL);
191             double overlapR = SkTMin(right, lineR);
192             if (overlapL > overlapR) {
193                 return 0;
194             }
195             if (overlapL == overlapR) {
196                 result = 1;
197             }
198             intersections.fT[0][0] = (overlapL - line[0].x) / (line[1].x - line[0].x);
199             intersections.fT[1][0] = (overlapL - left) / (right - left);
200             if (result > 1) {
201                 intersections.fT[0][1] = (overlapR - line[0].x) / (line[1].x - line[0].x);
202                 intersections.fT[1][1] = (overlapR - left) / (right - left);
203             }
204         #else
205             double a0 = line[0].x;
206             double a1 = line[1].x;
207             double b0 = flipped ? right : left;
208             double b1 = flipped ? left : right;
209             // FIXME: share common code below
210             double at0 = (a0 - b0) / (a0 - a1);
211             double at1 = (a0 - b1) / (a0 - a1);
212             if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
213                 return 0;
214             }
215             intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
216             intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
217             int bIn = (a0 - a1) * (b0 - b1) < 0;
218             intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1),
219                     1.0), 0.0);
220             intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1),
221                     1.0), 0.0);
222             bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
223                     > FLT_EPSILON;
224             SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1])
225                     <= FLT_EPSILON) ^ second);
226             return computePoints(line, 1 + second, intersections);
227         #endif
228             break;
229     }
230     if (flipped) {
231         // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x
232         for (int index = 0; index < result; ++index) {
233             intersections.fT[1][index] = 1 - intersections.fT[1][index];
234         }
235     }
236     return computePoints(line, result, intersections);
237 }
238 
verticalIntersect(const _Line & line,double x,double tRange[2])239 static int verticalIntersect(const _Line& line, double x, double tRange[2]) {
240     double min = line[0].x;
241     double max = line[1].x;
242     if (min > max) {
243         SkTSwap(min, max);
244     }
245     if (min > x || max < x) {
246         return 0;
247     }
248     if (AlmostEqualUlps(min, max)) {
249         tRange[0] = 0;
250         tRange[1] = 1;
251         return 2;
252     }
253     tRange[0] = (x - line[0].x) / (line[1].x - line[0].x);
254     return 1;
255 }
256 
verticalIntersect(const _Line & line,double top,double bottom,double x,bool flipped,Intersections & intersections)257 int verticalIntersect(const _Line& line, double top, double bottom,
258         double x, bool flipped, Intersections& intersections) {
259     int result = verticalIntersect(line, x, intersections.fT[0]);
260     switch (result) {
261         case 0:
262             break;
263         case 1: {
264             double yIntercept = line[0].y + intersections.fT[0][0]
265                     * (line[1].y - line[0].y);
266             if (yIntercept > bottom || yIntercept < top) {
267                 return 0;
268             }
269             intersections.fT[1][0] = (yIntercept - top) / (bottom - top);
270             break;
271         }
272         case 2:
273         #if 0 // sorting edges fails to preserve original direction
274             double lineT = line[0].y;
275             double lineB = line[1].y;
276             if (lineT > lineB) {
277                 SkTSwap(lineT, lineB);
278             }
279             double overlapT = SkTMax(top, lineT);
280             double overlapB = SkTMin(bottom, lineB);
281             if (overlapT > overlapB) {
282                 return 0;
283             }
284             if (overlapT == overlapB) {
285                 result = 1;
286             }
287             intersections.fT[0][0] = (overlapT - line[0].y) / (line[1].y - line[0].y);
288             intersections.fT[1][0] = (overlapT - top) / (bottom - top);
289             if (result > 1) {
290                 intersections.fT[0][1] = (overlapB - line[0].y) / (line[1].y - line[0].y);
291                 intersections.fT[1][1] = (overlapB - top) / (bottom - top);
292             }
293         #else
294             double a0 = line[0].y;
295             double a1 = line[1].y;
296             double b0 = flipped ? bottom : top;
297             double b1 = flipped ? top : bottom;
298             // FIXME: share common code above
299             double at0 = (a0 - b0) / (a0 - a1);
300             double at1 = (a0 - b1) / (a0 - a1);
301             if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
302                 return 0;
303             }
304             intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
305             intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
306             int bIn = (a0 - a1) * (b0 - b1) < 0;
307             intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1),
308                     1.0), 0.0);
309             intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1),
310                     1.0), 0.0);
311             bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
312                     > FLT_EPSILON;
313             SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1])
314                     <= FLT_EPSILON) ^ second);
315             return computePoints(line, 1 + second, intersections);
316         #endif
317             break;
318     }
319     if (flipped) {
320         // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
321         for (int index = 0; index < result; ++index) {
322             intersections.fT[1][index] = 1 - intersections.fT[1][index];
323         }
324     }
325     return computePoints(line, result, intersections);
326 }
327 
328 // from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
329 // 4 subs, 2 muls, 1 cmp
ccw(const _Point & A,const _Point & B,const _Point & C)330 static bool ccw(const _Point& A, const _Point& B, const _Point& C) {
331     return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x);
332 }
333 
334 // 16 subs, 8 muls, 6 cmps
testIntersect(const _Line & a,const _Line & b)335 bool testIntersect(const _Line& a, const _Line& b) {
336     return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
337             && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
338 }
339