• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
2 /*
3  *  Roots3And4.c
4  *
5  *  Utility functions to find cubic and quartic roots,
6  *  coefficients are passed like this:
7  *
8  *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
9  *
10  *  The functions return the number of non-complex roots and
11  *  put the values into the s array.
12  *
13  *  Author:         Jochen Schwarze (schwarze@isa.de)
14  *
15  *  Jan 26, 1990    Version for Graphics Gems
16  *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic
17  *                  (reported by Mark Podlipec),
18  *                  Old-style function definitions,
19  *                  IsZero() as a macro
20  *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in
21  *                  <math.h>, though the functions exist in the library.
22  *                  If large coefficients are used, EQN_EPS should be
23  *                  reduced considerably (e.g. to 1E-30), results will be
24  *                  correct but multiple roots might be reported more
25  *                  than once.
26  */
27 
28 #include    <math.h>
29 #include "CubicUtilities.h"
30 #include "QuadraticUtilities.h"
31 #include "QuarticRoot.h"
32 
reducedQuarticRoots(const double t4,const double t3,const double t2,const double t1,const double t0,const bool oneHint,double roots[4])33 int reducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
34         const double t0, const bool oneHint, double roots[4]) {
35 #ifdef SK_DEBUG
36     // create a string mathematica understands
37     // GDB set print repe 15 # if repeated digits is a bother
38     //     set print elements 400 # if line doesn't fit
39     char str[1024];
40     bzero(str, sizeof(str));
41     sprintf(str, "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
42         t4, t3, t2, t1, t0);
43     mathematica_ize(str, sizeof(str));
44 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
45     SkDebugf("%s\n", str);
46 #endif
47 #endif
48 #if 0 && SK_DEBUG
49     bool t4Or = approximately_zero_when_compared_to(t4, t0) // 0 is one root
50             || approximately_zero_when_compared_to(t4, t1)
51             || approximately_zero_when_compared_to(t4, t2);
52     bool t4And = approximately_zero_when_compared_to(t4, t0) // 0 is one root
53             && approximately_zero_when_compared_to(t4, t1)
54             && approximately_zero_when_compared_to(t4, t2);
55     if (t4Or != t4And) {
56         SkDebugf("%s t4 or and\n", __FUNCTION__);
57     }
58     bool t3Or = approximately_zero_when_compared_to(t3, t0)
59             || approximately_zero_when_compared_to(t3, t1)
60             || approximately_zero_when_compared_to(t3, t2);
61     bool t3And = approximately_zero_when_compared_to(t3, t0)
62             && approximately_zero_when_compared_to(t3, t1)
63             && approximately_zero_when_compared_to(t3, t2);
64     if (t3Or != t3And) {
65         SkDebugf("%s t3 or and\n", __FUNCTION__);
66     }
67     bool t0Or = approximately_zero_when_compared_to(t0, t1) // 0 is one root
68             && approximately_zero_when_compared_to(t0, t2)
69             && approximately_zero_when_compared_to(t0, t3)
70             && approximately_zero_when_compared_to(t0, t4);
71     bool t0And = approximately_zero_when_compared_to(t0, t1) // 0 is one root
72             && approximately_zero_when_compared_to(t0, t2)
73             && approximately_zero_when_compared_to(t0, t3)
74             && approximately_zero_when_compared_to(t0, t4);
75     if (t0Or != t0And) {
76         SkDebugf("%s t0 or and\n", __FUNCTION__);
77     }
78 #endif
79     if (approximately_zero_when_compared_to(t4, t0) // 0 is one root
80             && approximately_zero_when_compared_to(t4, t1)
81             && approximately_zero_when_compared_to(t4, t2)) {
82         if (approximately_zero_when_compared_to(t3, t0)
83             && approximately_zero_when_compared_to(t3, t1)
84             && approximately_zero_when_compared_to(t3, t2)) {
85             return quadraticRootsReal(t2, t1, t0, roots);
86         }
87         if (approximately_zero_when_compared_to(t4, t3)) {
88             return cubicRootsReal(t3, t2, t1, t0, roots);
89         }
90     }
91     if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))// 0 is one root
92       //      && approximately_zero_when_compared_to(t0, t2)
93             && approximately_zero_when_compared_to(t0, t3)
94             && approximately_zero_when_compared_to(t0, t4)) {
95         int num = cubicRootsReal(t4, t3, t2, t1, roots);
96         for (int i = 0; i < num; ++i) {
97             if (approximately_zero(roots[i])) {
98                 return num;
99             }
100         }
101         roots[num++] = 0;
102         return num;
103     }
104     if (oneHint) {
105         SkASSERT(approximately_zero(t4 + t3 + t2 + t1 + t0)); // 1 is one root
106         int num = cubicRootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); // note that -C==A+B+D+E
107         for (int i = 0; i < num; ++i) {
108             if (approximately_equal(roots[i], 1)) {
109                 return num;
110             }
111         }
112         roots[num++] = 1;
113         return num;
114     }
115     return -1;
116 }
117 
quarticRootsReal(int firstCubicRoot,const double A,const double B,const double C,const double D,const double E,double s[4])118 int quarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
119         const double D, const double E, double s[4]) {
120     double  u, v;
121     /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
122     const double invA = 1 / A;
123     const double a = B * invA;
124     const double b = C * invA;
125     const double c = D * invA;
126     const double d = E * invA;
127     /*  substitute x = y - a/4 to eliminate cubic term:
128     x^4 + px^2 + qx + r = 0 */
129     const double a2 = a * a;
130     const double p = -3 * a2 / 8 + b;
131     const double q = a2 * a / 8 - a * b / 2 + c;
132     const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
133     int num;
134     if (approximately_zero(r)) {
135     /* no absolute term: y(y^3 + py + q) = 0 */
136         num = cubicRootsReal(1, 0, p, q, s);
137         s[num++] = 0;
138     } else {
139         /* solve the resolvent cubic ... */
140         double cubicRoots[3];
141         int roots = cubicRootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
142         int index;
143     #if 0 && SK_DEBUG // enable to verify that any cubic root is as good as any other
144         double tries[3][4];
145         int nums[3];
146         for (index = 0; index < roots; ++index) {
147             /* ... and take one real solution ... */
148             const double z = cubicRoots[index];
149             /* ... to build two quadric equations */
150             u = z * z - r;
151             v = 2 * z - p;
152             if (approximately_zero_squared(u)) {
153                 u = 0;
154             } else if (u > 0) {
155                 u = sqrt(u);
156             } else {
157                 SkDebugf("%s u=%1.9g <0\n", __FUNCTION__, u);
158                 continue;
159             }
160             if (approximately_zero_squared(v)) {
161                 v = 0;
162             } else if (v > 0) {
163                 v = sqrt(v);
164             } else {
165                 SkDebugf("%s v=%1.9g <0\n", __FUNCTION__, v);
166                 continue;
167             }
168             nums[index] = quadraticRootsReal(1, q < 0 ? -v : v, z - u, tries[index]);
169             nums[index] += quadraticRootsReal(1, q < 0 ? v : -v, z + u, tries[index] + nums[index]);
170             /* resubstitute */
171             const double sub = a / 4;
172             for (int i = 0; i < nums[index]; ++i) {
173                 tries[index][i] -= sub;
174             }
175         }
176         for (index = 0; index < roots; ++index) {
177             SkDebugf("%s", __FUNCTION__);
178             for (int idx2 = 0; idx2 < nums[index]; ++idx2) {
179                 SkDebugf(" %1.9g", tries[index][idx2]);
180             }
181             SkDebugf("\n");
182         }
183     #endif
184         /* ... and take one real solution ... */
185         double z;
186         num = 0;
187         int num2 = 0;
188         for (index = firstCubicRoot; index < roots; ++index) {
189             z = cubicRoots[index];
190             /* ... to build two quadric equations */
191             u = z * z - r;
192             v = 2 * z - p;
193             if (approximately_zero_squared(u)) {
194                 u = 0;
195             } else if (u > 0) {
196                 u = sqrt(u);
197             } else {
198                 continue;
199             }
200             if (approximately_zero_squared(v)) {
201                 v = 0;
202             } else if (v > 0) {
203                 v = sqrt(v);
204             } else {
205                 continue;
206             }
207             num = quadraticRootsReal(1, q < 0 ? -v : v, z - u, s);
208             num2 = quadraticRootsReal(1, q < 0 ? v : -v, z + u, s + num);
209             if (!((num | num2) & 1)) {
210                 break; // prefer solutions without single quad roots
211             }
212         }
213         num += num2;
214         if (!num) {
215             return 0; // no valid cubic root
216         }
217     }
218     /* resubstitute */
219     const double sub = a / 4;
220     for (int i = 0; i < num; ++i) {
221         s[i] -= sub;
222     }
223     // eliminate duplicates
224     for (int i = 0; i < num - 1; ++i) {
225         for (int j = i + 1; j < num; ) {
226             if (AlmostEqualUlps(s[i], s[j])) {
227                 if (j < --num) {
228                     s[j] = s[num];
229                 }
230             } else {
231                 ++j;
232             }
233         }
234     }
235     return num;
236 }
237