• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2011 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkPDFShader.h"
11 
12 #include "SkData.h"
13 #include "SkPDFCatalog.h"
14 #include "SkPDFDevice.h"
15 #include "SkPDFFormXObject.h"
16 #include "SkPDFGraphicState.h"
17 #include "SkPDFResourceDict.h"
18 #include "SkPDFUtils.h"
19 #include "SkScalar.h"
20 #include "SkStream.h"
21 #include "SkTemplates.h"
22 #include "SkThread.h"
23 #include "SkTSet.h"
24 #include "SkTypes.h"
25 
inverseTransformBBox(const SkMatrix & matrix,SkRect * bbox)26 static bool inverseTransformBBox(const SkMatrix& matrix, SkRect* bbox) {
27     SkMatrix inverse;
28     if (!matrix.invert(&inverse)) {
29         return false;
30     }
31     inverse.mapRect(bbox);
32     return true;
33 }
34 
unitToPointsMatrix(const SkPoint pts[2],SkMatrix * matrix)35 static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
36     SkVector    vec = pts[1] - pts[0];
37     SkScalar    mag = vec.length();
38     SkScalar    inv = mag ? SkScalarInvert(mag) : 0;
39 
40     vec.scale(inv);
41     matrix->setSinCos(vec.fY, vec.fX);
42     matrix->preScale(mag, mag);
43     matrix->postTranslate(pts[0].fX, pts[0].fY);
44 }
45 
46 /* Assumes t + startOffset is on the stack and does a linear interpolation on t
47    between startOffset and endOffset from prevColor to curColor (for each color
48    component), leaving the result in component order on the stack. It assumes
49    there are always 3 components per color.
50    @param range                  endOffset - startOffset
51    @param curColor[components]   The current color components.
52    @param prevColor[components]  The previous color components.
53    @param result                 The result ps function.
54  */
interpolateColorCode(SkScalar range,SkScalar * curColor,SkScalar * prevColor,SkString * result)55 static void interpolateColorCode(SkScalar range, SkScalar* curColor,
56                                  SkScalar* prevColor, SkString* result) {
57     SkASSERT(range != SkIntToScalar(0));
58     static const int kColorComponents = 3;
59 
60     // Figure out how to scale each color component.
61     SkScalar multiplier[kColorComponents];
62     for (int i = 0; i < kColorComponents; i++) {
63         multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range);
64     }
65 
66     // Calculate when we no longer need to keep a copy of the input parameter t.
67     // If the last component to use t is i, then dupInput[0..i - 1] = true
68     // and dupInput[i .. components] = false.
69     bool dupInput[kColorComponents];
70     dupInput[kColorComponents - 1] = false;
71     for (int i = kColorComponents - 2; i >= 0; i--) {
72         dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
73     }
74 
75     if (!dupInput[0] && multiplier[0] == 0) {
76         result->append("pop ");
77     }
78 
79     for (int i = 0; i < kColorComponents; i++) {
80         // If the next components needs t and this component will consume a
81         // copy, make another copy.
82         if (dupInput[i] && multiplier[i] != 0) {
83             result->append("dup ");
84         }
85 
86         if (multiplier[i] == 0) {
87             result->appendScalar(prevColor[i]);
88             result->append(" ");
89         } else {
90             if (multiplier[i] != 1) {
91                 result->appendScalar(multiplier[i]);
92                 result->append(" mul ");
93             }
94             if (prevColor[i] != 0) {
95                 result->appendScalar(prevColor[i]);
96                 result->append(" add ");
97             }
98         }
99 
100         if (dupInput[i]) {
101             result->append("exch\n");
102         }
103     }
104 }
105 
106 /* Generate Type 4 function code to map t=[0,1) to the passed gradient,
107    clamping at the edges of the range.  The generated code will be of the form:
108        if (t < 0) {
109            return colorData[0][r,g,b];
110        } else {
111            if (t < info.fColorOffsets[1]) {
112                return linearinterpolation(colorData[0][r,g,b],
113                                           colorData[1][r,g,b]);
114            } else {
115                if (t < info.fColorOffsets[2]) {
116                    return linearinterpolation(colorData[1][r,g,b],
117                                               colorData[2][r,g,b]);
118                } else {
119 
120                 ...    } else {
121                            return colorData[info.fColorCount - 1][r,g,b];
122                        }
123                 ...
124            }
125        }
126  */
gradientFunctionCode(const SkShader::GradientInfo & info,SkString * result)127 static void gradientFunctionCode(const SkShader::GradientInfo& info,
128                                  SkString* result) {
129     /* We want to linearly interpolate from the previous color to the next.
130        Scale the colors from 0..255 to 0..1 and determine the multipliers
131        for interpolation.
132        C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
133      */
134     static const int kColorComponents = 3;
135     typedef SkScalar ColorTuple[kColorComponents];
136     SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
137     ColorTuple *colorData = colorDataAlloc.get();
138     const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
139     for (int i = 0; i < info.fColorCount; i++) {
140         colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
141         colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
142         colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
143     }
144 
145     // Clamp the initial color.
146     result->append("dup 0 le {pop ");
147     result->appendScalar(colorData[0][0]);
148     result->append(" ");
149     result->appendScalar(colorData[0][1]);
150     result->append(" ");
151     result->appendScalar(colorData[0][2]);
152     result->append(" }\n");
153 
154     // The gradient colors.
155     int gradients = 0;
156     for (int i = 1 ; i < info.fColorCount; i++) {
157         if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) {
158             continue;
159         }
160         gradients++;
161 
162         result->append("{dup ");
163         result->appendScalar(info.fColorOffsets[i]);
164         result->append(" le {");
165         if (info.fColorOffsets[i - 1] != 0) {
166             result->appendScalar(info.fColorOffsets[i - 1]);
167             result->append(" sub\n");
168         }
169 
170         interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
171                              colorData[i], colorData[i - 1], result);
172         result->append("}\n");
173     }
174 
175     // Clamp the final color.
176     result->append("{pop ");
177     result->appendScalar(colorData[info.fColorCount - 1][0]);
178     result->append(" ");
179     result->appendScalar(colorData[info.fColorCount - 1][1]);
180     result->append(" ");
181     result->appendScalar(colorData[info.fColorCount - 1][2]);
182 
183     for (int i = 0 ; i < gradients + 1; i++) {
184         result->append("} ifelse\n");
185     }
186 }
187 
188 /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
tileModeCode(SkShader::TileMode mode,SkString * result)189 static void tileModeCode(SkShader::TileMode mode, SkString* result) {
190     if (mode == SkShader::kRepeat_TileMode) {
191         result->append("dup truncate sub\n");  // Get the fractional part.
192         result->append("dup 0 le {1 add} if\n");  // Map (-1,0) => (0,1)
193         return;
194     }
195 
196     if (mode == SkShader::kMirror_TileMode) {
197         // Map t mod 2 into [0, 1, 1, 0].
198         //               Code                     Stack
199         result->append("abs "                 // Map negative to positive.
200                        "dup "                 // t.s t.s
201                        "truncate "            // t.s t
202                        "dup "                 // t.s t t
203                        "cvi "                 // t.s t T
204                        "2 mod "               // t.s t (i mod 2)
205                        "1 eq "                // t.s t true|false
206                        "3 1 roll "            // true|false t.s t
207                        "sub "                 // true|false 0.s
208                        "exch "                // 0.s true|false
209                        "{1 exch sub} if\n");  // 1 - 0.s|0.s
210     }
211 }
212 
213 /**
214  *  Returns PS function code that applies inverse perspective
215  *  to a x, y point.
216  *  The function assumes that the stack has at least two elements,
217  *  and that the top 2 elements are numeric values.
218  *  After executing this code on a PS stack, the last 2 elements are updated
219  *  while the rest of the stack is preserved intact.
220  *  inversePerspectiveMatrix is the inverse perspective matrix.
221  */
apply_perspective_to_coordinates(const SkMatrix & inversePerspectiveMatrix)222 static SkString apply_perspective_to_coordinates(
223         const SkMatrix& inversePerspectiveMatrix) {
224     SkString code;
225     if (!inversePerspectiveMatrix.hasPerspective()) {
226         return code;
227     }
228 
229     // Perspective matrix should be:
230     // 1   0  0
231     // 0   1  0
232     // p0 p1 p2
233 
234     const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
235     const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
236     const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
237 
238     // y = y / (p2 + p0 x + p1 y)
239     // x = x / (p2 + p0 x + p1 y)
240 
241     // Input on stack: x y
242     code.append(" dup ");               // x y y
243     code.appendScalar(p1);              // x y y p1
244     code.append(" mul "                 // x y y*p1
245                 " 2 index ");           // x y y*p1 x
246     code.appendScalar(p0);              // x y y p1 x p0
247     code.append(" mul ");               // x y y*p1 x*p0
248     code.appendScalar(p2);              // x y y p1 x*p0 p2
249     code.append(" add "                 // x y y*p1 x*p0+p2
250                 "add "                  // x y y*p1+x*p0+p2
251                 "3 1 roll "             // y*p1+x*p0+p2 x y
252                 "2 index "              // z x y y*p1+x*p0+p2
253                 "div "                  // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
254                 "3 1 roll "             // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
255                 "exch "                 // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
256                 "div "                  // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
257                 "exch\n");              // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
258     return code;
259 }
260 
linearCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)261 static SkString linearCode(const SkShader::GradientInfo& info,
262                            const SkMatrix& perspectiveRemover) {
263     SkString function("{");
264 
265     function.append(apply_perspective_to_coordinates(perspectiveRemover));
266 
267     function.append("pop\n");  // Just ditch the y value.
268     tileModeCode(info.fTileMode, &function);
269     gradientFunctionCode(info, &function);
270     function.append("}");
271     return function;
272 }
273 
radialCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)274 static SkString radialCode(const SkShader::GradientInfo& info,
275                            const SkMatrix& perspectiveRemover) {
276     SkString function("{");
277 
278     function.append(apply_perspective_to_coordinates(perspectiveRemover));
279 
280     // Find the distance from the origin.
281     function.append("dup "      // x y y
282                     "mul "      // x y^2
283                     "exch "     // y^2 x
284                     "dup "      // y^2 x x
285                     "mul "      // y^2 x^2
286                     "add "      // y^2+x^2
287                     "sqrt\n");  // sqrt(y^2+x^2)
288 
289     tileModeCode(info.fTileMode, &function);
290     gradientFunctionCode(info, &function);
291     function.append("}");
292     return function;
293 }
294 
295 /* The math here is all based on the description in Two_Point_Radial_Gradient,
296    with one simplification, the coordinate space has been scaled so that
297    Dr = 1.  This means we don't need to scale the entire equation by 1/Dr^2.
298  */
twoPointRadialCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)299 static SkString twoPointRadialCode(const SkShader::GradientInfo& info,
300                                    const SkMatrix& perspectiveRemover) {
301     SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX;
302     SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY;
303     SkScalar sr = info.fRadius[0];
304     SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1;
305     bool posRoot = info.fRadius[1] > info.fRadius[0];
306 
307     // We start with a stack of (x y), copy it and then consume one copy in
308     // order to calculate b and the other to calculate c.
309     SkString function("{");
310 
311     function.append(apply_perspective_to_coordinates(perspectiveRemover));
312 
313     function.append("2 copy ");
314 
315     // Calculate -b and b^2.
316     function.appendScalar(dy);
317     function.append(" mul exch ");
318     function.appendScalar(dx);
319     function.append(" mul add ");
320     function.appendScalar(sr);
321     function.append(" sub 2 mul neg dup dup mul\n");
322 
323     // Calculate c
324     function.append("4 2 roll dup mul exch dup mul add ");
325     function.appendScalar(SkScalarMul(sr, sr));
326     function.append(" sub\n");
327 
328     // Calculate the determinate
329     function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
330     function.append(" mul sub abs sqrt\n");
331 
332     // And then the final value of t.
333     if (posRoot) {
334         function.append("sub ");
335     } else {
336         function.append("add ");
337     }
338     function.appendScalar(SkScalarMul(SkIntToScalar(2), a));
339     function.append(" div\n");
340 
341     tileModeCode(info.fTileMode, &function);
342     gradientFunctionCode(info, &function);
343     function.append("}");
344     return function;
345 }
346 
347 /* Conical gradient shader, based on the Canvas spec for radial gradients
348    See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
349  */
twoPointConicalCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)350 static SkString twoPointConicalCode(const SkShader::GradientInfo& info,
351                                     const SkMatrix& perspectiveRemover) {
352     SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
353     SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
354     SkScalar r0 = info.fRadius[0];
355     SkScalar dr = info.fRadius[1] - info.fRadius[0];
356     SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) -
357                  SkScalarMul(dr, dr);
358 
359     // First compute t, if the pixel falls outside the cone, then we'll end
360     // with 'false' on the stack, otherwise we'll push 'true' with t below it
361 
362     // We start with a stack of (x y), copy it and then consume one copy in
363     // order to calculate b and the other to calculate c.
364     SkString function("{");
365 
366     function.append(apply_perspective_to_coordinates(perspectiveRemover));
367 
368     function.append("2 copy ");
369 
370     // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
371     function.appendScalar(dy);
372     function.append(" mul exch ");
373     function.appendScalar(dx);
374     function.append(" mul add ");
375     function.appendScalar(SkScalarMul(r0, dr));
376     function.append(" add -2 mul dup dup mul\n");
377 
378     // c = x^2 + y^2 + radius0^2
379     function.append("4 2 roll dup mul exch dup mul add ");
380     function.appendScalar(SkScalarMul(r0, r0));
381     function.append(" sub dup 4 1 roll\n");
382 
383     // Contents of the stack at this point: c, b, b^2, c
384 
385     // if a = 0, then we collapse to a simpler linear case
386     if (a == 0) {
387 
388         // t = -c/b
389         function.append("pop pop div neg dup ");
390 
391         // compute radius(t)
392         function.appendScalar(dr);
393         function.append(" mul ");
394         function.appendScalar(r0);
395         function.append(" add\n");
396 
397         // if r(t) < 0, then it's outside the cone
398         function.append("0 lt {pop false} {true} ifelse\n");
399 
400     } else {
401 
402         // quadratic case: the Canvas spec wants the largest
403         // root t for which radius(t) > 0
404 
405         // compute the discriminant (b^2 - 4ac)
406         function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
407         function.append(" mul sub dup\n");
408 
409         // if d >= 0, proceed
410         function.append("0 ge {\n");
411 
412         // an intermediate value we'll use to compute the roots:
413         // q = -0.5 * (b +/- sqrt(d))
414         function.append("sqrt exch dup 0 lt {exch -1 mul} if");
415         function.append(" add -0.5 mul dup\n");
416 
417         // first root = q / a
418         function.appendScalar(a);
419         function.append(" div\n");
420 
421         // second root = c / q
422         function.append("3 1 roll div\n");
423 
424         // put the larger root on top of the stack
425         function.append("2 copy gt {exch} if\n");
426 
427         // compute radius(t) for larger root
428         function.append("dup ");
429         function.appendScalar(dr);
430         function.append(" mul ");
431         function.appendScalar(r0);
432         function.append(" add\n");
433 
434         // if r(t) > 0, we have our t, pop off the smaller root and we're done
435         function.append(" 0 gt {exch pop true}\n");
436 
437         // otherwise, throw out the larger one and try the smaller root
438         function.append("{pop dup\n");
439         function.appendScalar(dr);
440         function.append(" mul ");
441         function.appendScalar(r0);
442         function.append(" add\n");
443 
444         // if r(t) < 0, push false, otherwise the smaller root is our t
445         function.append("0 le {pop false} {true} ifelse\n");
446         function.append("} ifelse\n");
447 
448         // d < 0, clear the stack and push false
449         function.append("} {pop pop pop false} ifelse\n");
450     }
451 
452     // if the pixel is in the cone, proceed to compute a color
453     function.append("{");
454     tileModeCode(info.fTileMode, &function);
455     gradientFunctionCode(info, &function);
456 
457     // otherwise, just write black
458     function.append("} {0 0 0} ifelse }");
459 
460     return function;
461 }
462 
sweepCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)463 static SkString sweepCode(const SkShader::GradientInfo& info,
464                           const SkMatrix& perspectiveRemover) {
465     SkString function("{exch atan 360 div\n");
466     tileModeCode(info.fTileMode, &function);
467     gradientFunctionCode(info, &function);
468     function.append("}");
469     return function;
470 }
471 
472 class SkPDFShader::State {
473 public:
474     SkShader::GradientType fType;
475     SkShader::GradientInfo fInfo;
476     SkAutoFree fColorData;    // This provides storage for arrays in fInfo.
477     SkMatrix fCanvasTransform;
478     SkMatrix fShaderTransform;
479     SkIRect fBBox;
480 
481     SkBitmap fImage;
482     uint32_t fPixelGeneration;
483     SkShader::TileMode fImageTileModes[2];
484 
485     State(const SkShader& shader, const SkMatrix& canvasTransform,
486           const SkIRect& bbox);
487 
488     bool operator==(const State& b) const;
489 
490     SkPDFShader::State* CreateAlphaToLuminosityState() const;
491     SkPDFShader::State* CreateOpaqueState() const;
492 
493     bool GradientHasAlpha() const;
494 
495 private:
496     State(const State& other);
497     State operator=(const State& rhs);
498     void AllocateGradientInfoStorage();
499 };
500 
501 class SkPDFFunctionShader : public SkPDFDict, public SkPDFShader {
502     SK_DECLARE_INST_COUNT(SkPDFFunctionShader)
503 public:
504     explicit SkPDFFunctionShader(SkPDFShader::State* state);
~SkPDFFunctionShader()505     virtual ~SkPDFFunctionShader() {
506         if (isValid()) {
507             RemoveShader(this);
508         }
509         fResources.unrefAll();
510     }
511 
isValid()512     virtual bool isValid() { return fResources.count() > 0; }
513 
getResources(const SkTSet<SkPDFObject * > & knownResourceObjects,SkTSet<SkPDFObject * > * newResourceObjects)514     void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
515                       SkTSet<SkPDFObject*>* newResourceObjects) {
516         GetResourcesHelper(&fResources,
517                            knownResourceObjects,
518                            newResourceObjects);
519     }
520 
521 private:
522     static SkPDFObject* RangeObject();
523 
524     SkTDArray<SkPDFObject*> fResources;
525     SkAutoTDelete<const SkPDFShader::State> fState;
526 
527     SkPDFStream* makePSFunction(const SkString& psCode, SkPDFArray* domain);
528     typedef SkPDFDict INHERITED;
529 };
530 
531 /**
532  * A shader for PDF gradients. This encapsulates the function shader
533  * inside a tiling pattern while providing a common pattern interface.
534  * The encapsulation allows the use of a SMask for transparency gradients.
535  */
536 class SkPDFAlphaFunctionShader : public SkPDFStream, public SkPDFShader {
537 public:
538     explicit SkPDFAlphaFunctionShader(SkPDFShader::State* state);
~SkPDFAlphaFunctionShader()539     virtual ~SkPDFAlphaFunctionShader() {
540         if (isValid()) {
541             RemoveShader(this);
542         }
543     }
544 
isValid()545     virtual bool isValid() {
546         return fColorShader.get() != NULL;
547     }
548 
549 private:
550     SkAutoTDelete<const SkPDFShader::State> fState;
551 
552     SkPDFGraphicState* CreateSMaskGraphicState();
553 
getResources(const SkTSet<SkPDFObject * > & knownResourceObjects,SkTSet<SkPDFObject * > * newResourceObjects)554     void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
555                       SkTSet<SkPDFObject*>* newResourceObjects) {
556         fResourceDict->getReferencedResources(knownResourceObjects,
557                                               newResourceObjects,
558                                               true);
559     }
560 
561     SkAutoTUnref<SkPDFObject> fColorShader;
562     SkAutoTUnref<SkPDFResourceDict> fResourceDict;
563 };
564 
565 class SkPDFImageShader : public SkPDFStream, public SkPDFShader {
566 public:
567     explicit SkPDFImageShader(SkPDFShader::State* state);
~SkPDFImageShader()568     virtual ~SkPDFImageShader() {
569         if (isValid()) {
570             RemoveShader(this);
571         }
572         fResources.unrefAll();
573     }
574 
isValid()575     virtual bool isValid() { return size() > 0; }
576 
getResources(const SkTSet<SkPDFObject * > & knownResourceObjects,SkTSet<SkPDFObject * > * newResourceObjects)577     void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
578                       SkTSet<SkPDFObject*>* newResourceObjects) {
579         GetResourcesHelper(&fResources.toArray(),
580                            knownResourceObjects,
581                            newResourceObjects);
582     }
583 
584 private:
585     SkTSet<SkPDFObject*> fResources;
586     SkAutoTDelete<const SkPDFShader::State> fState;
587 };
588 
SkPDFShader()589 SkPDFShader::SkPDFShader() {}
590 
591 // static
GetPDFShaderByState(State * inState)592 SkPDFObject* SkPDFShader::GetPDFShaderByState(State* inState) {
593     SkPDFObject* result;
594 
595     SkAutoTDelete<State> shaderState(inState);
596     if (shaderState.get()->fType == SkShader::kNone_GradientType &&
597             shaderState.get()->fImage.isNull()) {
598         // TODO(vandebo) This drops SKComposeShader on the floor.  We could
599         // handle compose shader by pulling things up to a layer, drawing with
600         // the first shader, applying the xfer mode and drawing again with the
601         // second shader, then applying the layer to the original drawing.
602         return NULL;
603     }
604 
605     ShaderCanonicalEntry entry(NULL, shaderState.get());
606     int index = CanonicalShaders().find(entry);
607     if (index >= 0) {
608         result = CanonicalShaders()[index].fPDFShader;
609         result->ref();
610         return result;
611     }
612 
613     bool valid = false;
614     // The PDFShader takes ownership of the shaderSate.
615     if (shaderState.get()->fType == SkShader::kNone_GradientType) {
616         SkPDFImageShader* imageShader =
617             new SkPDFImageShader(shaderState.detach());
618         valid = imageShader->isValid();
619         result = imageShader;
620     } else {
621         if (shaderState.get()->GradientHasAlpha()) {
622             SkPDFAlphaFunctionShader* gradientShader =
623                 SkNEW_ARGS(SkPDFAlphaFunctionShader, (shaderState.detach()));
624             valid = gradientShader->isValid();
625             result = gradientShader;
626         } else {
627             SkPDFFunctionShader* functionShader =
628                 SkNEW_ARGS(SkPDFFunctionShader, (shaderState.detach()));
629             valid = functionShader->isValid();
630             result = functionShader;
631         }
632     }
633     if (!valid) {
634         delete result;
635         return NULL;
636     }
637     entry.fPDFShader = result;
638     CanonicalShaders().push(entry);
639     return result;  // return the reference that came from new.
640 }
641 
642 // static
RemoveShader(SkPDFObject * shader)643 void SkPDFShader::RemoveShader(SkPDFObject* shader) {
644     SkAutoMutexAcquire lock(CanonicalShadersMutex());
645     ShaderCanonicalEntry entry(shader, NULL);
646     int index = CanonicalShaders().find(entry);
647     SkASSERT(index >= 0);
648     CanonicalShaders().removeShuffle(index);
649 }
650 
651 // static
GetPDFShader(const SkShader & shader,const SkMatrix & matrix,const SkIRect & surfaceBBox)652 SkPDFObject* SkPDFShader::GetPDFShader(const SkShader& shader,
653                                        const SkMatrix& matrix,
654                                        const SkIRect& surfaceBBox) {
655     SkAutoMutexAcquire lock(CanonicalShadersMutex());
656     return GetPDFShaderByState(
657             SkNEW_ARGS(State, (shader, matrix, surfaceBBox)));
658 }
659 
660 // static
CanonicalShaders()661 SkTDArray<SkPDFShader::ShaderCanonicalEntry>& SkPDFShader::CanonicalShaders() {
662     SkPDFShader::CanonicalShadersMutex().assertHeld();
663     static SkTDArray<ShaderCanonicalEntry> gCanonicalShaders;
664     return gCanonicalShaders;
665 }
666 
667 SK_DECLARE_STATIC_MUTEX(gCanonicalShadersMutex);
668 // static
CanonicalShadersMutex()669 SkBaseMutex& SkPDFShader::CanonicalShadersMutex() {
670     return gCanonicalShadersMutex;
671 }
672 
673 // static
RangeObject()674 SkPDFObject* SkPDFFunctionShader::RangeObject() {
675     SkPDFShader::CanonicalShadersMutex().assertHeld();
676     static SkPDFArray* range = NULL;
677     // This method is only used with CanonicalShadersMutex, so it's safe to
678     // populate domain.
679     if (range == NULL) {
680         range = new SkPDFArray;
681         range->reserve(6);
682         range->appendInt(0);
683         range->appendInt(1);
684         range->appendInt(0);
685         range->appendInt(1);
686         range->appendInt(0);
687         range->appendInt(1);
688     }
689     return range;
690 }
691 
get_gradient_resource_dict(SkPDFObject * functionShader,SkPDFObject * gState)692 static SkPDFResourceDict* get_gradient_resource_dict(
693         SkPDFObject* functionShader,
694         SkPDFObject* gState) {
695     SkPDFResourceDict* dict = new SkPDFResourceDict();
696 
697     if (functionShader != NULL) {
698         dict->insertResourceAsReference(
699                 SkPDFResourceDict::kPattern_ResourceType, 0, functionShader);
700     }
701     if (gState != NULL) {
702         dict->insertResourceAsReference(
703                 SkPDFResourceDict::kExtGState_ResourceType, 0, gState);
704     }
705 
706     return dict;
707 }
708 
populate_tiling_pattern_dict(SkPDFDict * pattern,SkRect & bbox,SkPDFDict * resources,const SkMatrix & matrix)709 static void populate_tiling_pattern_dict(SkPDFDict* pattern,
710                                       SkRect& bbox, SkPDFDict* resources,
711                                       const SkMatrix& matrix) {
712     const int kTiling_PatternType = 1;
713     const int kColoredTilingPattern_PaintType = 1;
714     const int kConstantSpacing_TilingType = 1;
715 
716     pattern->insertName("Type", "Pattern");
717     pattern->insertInt("PatternType", kTiling_PatternType);
718     pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
719     pattern->insertInt("TilingType", kConstantSpacing_TilingType);
720     pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref();
721     pattern->insertScalar("XStep", bbox.width());
722     pattern->insertScalar("YStep", bbox.height());
723     pattern->insert("Resources", resources);
724     if (!matrix.isIdentity()) {
725         pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref();
726     }
727 }
728 
729 /**
730  * Creates a content stream which fills the pattern P0 across bounds.
731  * @param gsIndex A graphics state resource index to apply, or <0 if no
732  * graphics state to apply.
733  */
create_pattern_fill_content(int gsIndex,SkRect & bounds)734 static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) {
735     SkDynamicMemoryWStream content;
736     if (gsIndex >= 0) {
737         SkPDFUtils::ApplyGraphicState(gsIndex, &content);
738     }
739     SkPDFUtils::ApplyPattern(0, &content);
740     SkPDFUtils::AppendRectangle(bounds, &content);
741     SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType,
742                           &content);
743 
744     return content.detachAsStream();
745 }
746 
747 /**
748  * Creates a ExtGState with the SMask set to the luminosityShader in
749  * luminosity mode. The shader pattern extends to the bbox.
750  */
CreateSMaskGraphicState()751 SkPDFGraphicState* SkPDFAlphaFunctionShader::CreateSMaskGraphicState() {
752     SkRect bbox;
753     bbox.set(fState.get()->fBBox);
754 
755     SkAutoTUnref<SkPDFObject> luminosityShader(
756             SkPDFShader::GetPDFShaderByState(
757                  fState->CreateAlphaToLuminosityState()));
758 
759     SkAutoTUnref<SkStream> alphaStream(create_pattern_fill_content(-1, bbox));
760 
761     SkAutoTUnref<SkPDFResourceDict>
762         resources(get_gradient_resource_dict(luminosityShader, NULL));
763 
764     SkAutoTUnref<SkPDFFormXObject> alphaMask(
765             new SkPDFFormXObject(alphaStream.get(), bbox, resources.get()));
766 
767     return SkPDFGraphicState::GetSMaskGraphicState(
768             alphaMask.get(), false,
769             SkPDFGraphicState::kLuminosity_SMaskMode);
770 }
771 
SkPDFAlphaFunctionShader(SkPDFShader::State * state)772 SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state)
773         : fState(state) {
774     SkRect bbox;
775     bbox.set(fState.get()->fBBox);
776 
777     fColorShader.reset(
778             SkPDFShader::GetPDFShaderByState(state->CreateOpaqueState()));
779 
780     // Create resource dict with alpha graphics state as G0 and
781     // pattern shader as P0, then write content stream.
782     SkAutoTUnref<SkPDFGraphicState> alphaGs(CreateSMaskGraphicState());
783     fResourceDict.reset(
784             get_gradient_resource_dict(fColorShader.get(), alphaGs.get()));
785 
786     SkAutoTUnref<SkStream> colorStream(
787             create_pattern_fill_content(0, bbox));
788     setData(colorStream.get());
789 
790     populate_tiling_pattern_dict(this, bbox, fResourceDict.get(),
791                                  SkMatrix::I());
792 }
793 
794 // Finds affine and persp such that in = affine * persp.
795 // but it returns the inverse of perspective matrix.
split_perspective(const SkMatrix in,SkMatrix * affine,SkMatrix * perspectiveInverse)796 static bool split_perspective(const SkMatrix in, SkMatrix* affine,
797                               SkMatrix* perspectiveInverse) {
798     const SkScalar p2 = in[SkMatrix::kMPersp2];
799 
800     if (SkScalarNearlyZero(p2)) {
801         return false;
802     }
803 
804     const SkScalar zero = SkIntToScalar(0);
805     const SkScalar one = SkIntToScalar(1);
806 
807     const SkScalar sx = in[SkMatrix::kMScaleX];
808     const SkScalar kx = in[SkMatrix::kMSkewX];
809     const SkScalar tx = in[SkMatrix::kMTransX];
810     const SkScalar ky = in[SkMatrix::kMSkewY];
811     const SkScalar sy = in[SkMatrix::kMScaleY];
812     const SkScalar ty = in[SkMatrix::kMTransY];
813     const SkScalar p0 = in[SkMatrix::kMPersp0];
814     const SkScalar p1 = in[SkMatrix::kMPersp1];
815 
816     // Perspective matrix would be:
817     // 1  0  0
818     // 0  1  0
819     // p0 p1 p2
820     // But we need the inverse of persp.
821     perspectiveInverse->setAll(one,          zero,       zero,
822                                zero,         one,        zero,
823                                -p0/p2,     -p1/p2,     1/p2);
824 
825     affine->setAll(sx - p0 * tx / p2,       kx - p1 * tx / p2,      tx / p2,
826                    ky - p0 * ty / p2,       sy - p1 * ty / p2,      ty / p2,
827                    zero,                    zero,                   one);
828 
829     return true;
830 }
831 
SkPDFFunctionShader(SkPDFShader::State * state)832 SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
833         : SkPDFDict("Pattern"),
834           fState(state) {
835     SkString (*codeFunction)(const SkShader::GradientInfo& info,
836                              const SkMatrix& perspectiveRemover) = NULL;
837     SkPoint transformPoints[2];
838 
839     // Depending on the type of the gradient, we want to transform the
840     // coordinate space in different ways.
841     const SkShader::GradientInfo* info = &fState.get()->fInfo;
842     transformPoints[0] = info->fPoint[0];
843     transformPoints[1] = info->fPoint[1];
844     switch (fState.get()->fType) {
845         case SkShader::kLinear_GradientType:
846             codeFunction = &linearCode;
847             break;
848         case SkShader::kRadial_GradientType:
849             transformPoints[1] = transformPoints[0];
850             transformPoints[1].fX += info->fRadius[0];
851             codeFunction = &radialCode;
852             break;
853         case SkShader::kRadial2_GradientType: {
854             // Bail out if the radii are the same.  Empty fResources signals
855             // an error and isValid will return false.
856             if (info->fRadius[0] == info->fRadius[1]) {
857                 return;
858             }
859             transformPoints[1] = transformPoints[0];
860             SkScalar dr = info->fRadius[1] - info->fRadius[0];
861             transformPoints[1].fX += dr;
862             codeFunction = &twoPointRadialCode;
863             break;
864         }
865         case SkShader::kConical_GradientType: {
866             transformPoints[1] = transformPoints[0];
867             transformPoints[1].fX += SK_Scalar1;
868             codeFunction = &twoPointConicalCode;
869             break;
870         }
871         case SkShader::kSweep_GradientType:
872             transformPoints[1] = transformPoints[0];
873             transformPoints[1].fX += SK_Scalar1;
874             codeFunction = &sweepCode;
875             break;
876         case SkShader::kColor_GradientType:
877         case SkShader::kNone_GradientType:
878         default:
879             return;
880     }
881 
882     // Move any scaling (assuming a unit gradient) or translation
883     // (and rotation for linear gradient), of the final gradient from
884     // info->fPoints to the matrix (updating bbox appropriately).  Now
885     // the gradient can be drawn on on the unit segment.
886     SkMatrix mapperMatrix;
887     unitToPointsMatrix(transformPoints, &mapperMatrix);
888 
889     SkMatrix finalMatrix = fState.get()->fCanvasTransform;
890     finalMatrix.preConcat(fState.get()->fShaderTransform);
891     finalMatrix.preConcat(mapperMatrix);
892 
893     // Preserves as much as posible in the final matrix, and only removes
894     // the perspective. The inverse of the perspective is stored in
895     // perspectiveInverseOnly matrix and has 3 useful numbers
896     // (p0, p1, p2), while everything else is either 0 or 1.
897     // In this way the shader will handle it eficiently, with minimal code.
898     SkMatrix perspectiveInverseOnly = SkMatrix::I();
899     if (finalMatrix.hasPerspective()) {
900         if (!split_perspective(finalMatrix,
901                                &finalMatrix, &perspectiveInverseOnly)) {
902             return;
903         }
904     }
905 
906     SkRect bbox;
907     bbox.set(fState.get()->fBBox);
908     if (!inverseTransformBBox(finalMatrix, &bbox)) {
909         return;
910     }
911 
912     SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
913     domain->reserve(4);
914     domain->appendScalar(bbox.fLeft);
915     domain->appendScalar(bbox.fRight);
916     domain->appendScalar(bbox.fTop);
917     domain->appendScalar(bbox.fBottom);
918 
919     SkString functionCode;
920     // The two point radial gradient further references fState.get()->fInfo
921     // in translating from x, y coordinates to the t parameter. So, we have
922     // to transform the points and radii according to the calculated matrix.
923     if (fState.get()->fType == SkShader::kRadial2_GradientType) {
924         SkShader::GradientInfo twoPointRadialInfo = *info;
925         SkMatrix inverseMapperMatrix;
926         if (!mapperMatrix.invert(&inverseMapperMatrix)) {
927             return;
928         }
929         inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
930         twoPointRadialInfo.fRadius[0] =
931             inverseMapperMatrix.mapRadius(info->fRadius[0]);
932         twoPointRadialInfo.fRadius[1] =
933             inverseMapperMatrix.mapRadius(info->fRadius[1]);
934         functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
935     } else {
936         functionCode = codeFunction(*info, perspectiveInverseOnly);
937     }
938 
939     SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
940     pdfShader->insertInt("ShadingType", 1);
941     pdfShader->insertName("ColorSpace", "DeviceRGB");
942     pdfShader->insert("Domain", domain.get());
943 
944     SkPDFStream* function = makePSFunction(functionCode, domain.get());
945     pdfShader->insert("Function", new SkPDFObjRef(function))->unref();
946     fResources.push(function);  // Pass ownership to resource list.
947 
948     insertInt("PatternType", 2);
949     insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref();
950     insert("Shading", pdfShader.get());
951 }
952 
SkPDFImageShader(SkPDFShader::State * state)953 SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) {
954     fState.get()->fImage.lockPixels();
955 
956     // The image shader pattern cell will be drawn into a separate device
957     // in pattern cell space (no scaling on the bitmap, though there may be
958     // translations so that all content is in the device, coordinates > 0).
959 
960     // Map clip bounds to shader space to ensure the device is large enough
961     // to handle fake clamping.
962     SkMatrix finalMatrix = fState.get()->fCanvasTransform;
963     finalMatrix.preConcat(fState.get()->fShaderTransform);
964     SkRect deviceBounds;
965     deviceBounds.set(fState.get()->fBBox);
966     if (!inverseTransformBBox(finalMatrix, &deviceBounds)) {
967         return;
968     }
969 
970     const SkBitmap* image = &fState.get()->fImage;
971     SkRect bitmapBounds;
972     image->getBounds(&bitmapBounds);
973 
974     // For tiling modes, the bounds should be extended to include the bitmap,
975     // otherwise the bitmap gets clipped out and the shader is empty and awful.
976     // For clamp modes, we're only interested in the clip region, whether
977     // or not the main bitmap is in it.
978     SkShader::TileMode tileModes[2];
979     tileModes[0] = fState.get()->fImageTileModes[0];
980     tileModes[1] = fState.get()->fImageTileModes[1];
981     if (tileModes[0] != SkShader::kClamp_TileMode ||
982             tileModes[1] != SkShader::kClamp_TileMode) {
983         deviceBounds.join(bitmapBounds);
984     }
985 
986     SkMatrix unflip;
987     unflip.setTranslate(0, SkScalarRoundToScalar(deviceBounds.height()));
988     unflip.preScale(SK_Scalar1, -SK_Scalar1);
989     SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()),
990                                  SkScalarRoundToInt(deviceBounds.height()));
991     // TODO(edisonn): should we pass here the DCT encoder of the destination device?
992     // TODO(edisonn): NYI Perspective, use SkPDFDeviceFlattener.
993     SkPDFDevice pattern(size, size, unflip);
994     SkCanvas canvas(&pattern);
995 
996     SkRect patternBBox;
997     image->getBounds(&patternBBox);
998 
999     // Translate the canvas so that the bitmap origin is at (0, 0).
1000     canvas.translate(-deviceBounds.left(), -deviceBounds.top());
1001     patternBBox.offset(-deviceBounds.left(), -deviceBounds.top());
1002     // Undo the translation in the final matrix
1003     finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top());
1004 
1005     // If the bitmap is out of bounds (i.e. clamp mode where we only see the
1006     // stretched sides), canvas will clip this out and the extraneous data
1007     // won't be saved to the PDF.
1008     canvas.drawBitmap(*image, 0, 0);
1009 
1010     SkScalar width = SkIntToScalar(image->width());
1011     SkScalar height = SkIntToScalar(image->height());
1012 
1013     // Tiling is implied.  First we handle mirroring.
1014     if (tileModes[0] == SkShader::kMirror_TileMode) {
1015         SkMatrix xMirror;
1016         xMirror.setScale(-1, 1);
1017         xMirror.postTranslate(2 * width, 0);
1018         canvas.drawBitmapMatrix(*image, xMirror);
1019         patternBBox.fRight += width;
1020     }
1021     if (tileModes[1] == SkShader::kMirror_TileMode) {
1022         SkMatrix yMirror;
1023         yMirror.setScale(SK_Scalar1, -SK_Scalar1);
1024         yMirror.postTranslate(0, 2 * height);
1025         canvas.drawBitmapMatrix(*image, yMirror);
1026         patternBBox.fBottom += height;
1027     }
1028     if (tileModes[0] == SkShader::kMirror_TileMode &&
1029             tileModes[1] == SkShader::kMirror_TileMode) {
1030         SkMatrix mirror;
1031         mirror.setScale(-1, -1);
1032         mirror.postTranslate(2 * width, 2 * height);
1033         canvas.drawBitmapMatrix(*image, mirror);
1034     }
1035 
1036     // Then handle Clamping, which requires expanding the pattern canvas to
1037     // cover the entire surfaceBBox.
1038 
1039     // If both x and y are in clamp mode, we start by filling in the corners.
1040     // (Which are just a rectangles of the corner colors.)
1041     if (tileModes[0] == SkShader::kClamp_TileMode &&
1042             tileModes[1] == SkShader::kClamp_TileMode) {
1043         SkPaint paint;
1044         SkRect rect;
1045         rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0);
1046         if (!rect.isEmpty()) {
1047             paint.setColor(image->getColor(0, 0));
1048             canvas.drawRect(rect, paint);
1049         }
1050 
1051         rect = SkRect::MakeLTRB(width, deviceBounds.top(),
1052                                 deviceBounds.right(), 0);
1053         if (!rect.isEmpty()) {
1054             paint.setColor(image->getColor(image->width() - 1, 0));
1055             canvas.drawRect(rect, paint);
1056         }
1057 
1058         rect = SkRect::MakeLTRB(width, height,
1059                                 deviceBounds.right(), deviceBounds.bottom());
1060         if (!rect.isEmpty()) {
1061             paint.setColor(image->getColor(image->width() - 1,
1062                                            image->height() - 1));
1063             canvas.drawRect(rect, paint);
1064         }
1065 
1066         rect = SkRect::MakeLTRB(deviceBounds.left(), height,
1067                                 0, deviceBounds.bottom());
1068         if (!rect.isEmpty()) {
1069             paint.setColor(image->getColor(0, image->height() - 1));
1070             canvas.drawRect(rect, paint);
1071         }
1072     }
1073 
1074     // Then expand the left, right, top, then bottom.
1075     if (tileModes[0] == SkShader::kClamp_TileMode) {
1076         SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
1077         if (deviceBounds.left() < 0) {
1078             SkBitmap left;
1079             SkAssertResult(image->extractSubset(&left, subset));
1080 
1081             SkMatrix leftMatrix;
1082             leftMatrix.setScale(-deviceBounds.left(), 1);
1083             leftMatrix.postTranslate(deviceBounds.left(), 0);
1084             canvas.drawBitmapMatrix(left, leftMatrix);
1085 
1086             if (tileModes[1] == SkShader::kMirror_TileMode) {
1087                 leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
1088                 leftMatrix.postTranslate(0, 2 * height);
1089                 canvas.drawBitmapMatrix(left, leftMatrix);
1090             }
1091             patternBBox.fLeft = 0;
1092         }
1093 
1094         if (deviceBounds.right() > width) {
1095             SkBitmap right;
1096             subset.offset(image->width() - 1, 0);
1097             SkAssertResult(image->extractSubset(&right, subset));
1098 
1099             SkMatrix rightMatrix;
1100             rightMatrix.setScale(deviceBounds.right() - width, 1);
1101             rightMatrix.postTranslate(width, 0);
1102             canvas.drawBitmapMatrix(right, rightMatrix);
1103 
1104             if (tileModes[1] == SkShader::kMirror_TileMode) {
1105                 rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
1106                 rightMatrix.postTranslate(0, 2 * height);
1107                 canvas.drawBitmapMatrix(right, rightMatrix);
1108             }
1109             patternBBox.fRight = deviceBounds.width();
1110         }
1111     }
1112 
1113     if (tileModes[1] == SkShader::kClamp_TileMode) {
1114         SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
1115         if (deviceBounds.top() < 0) {
1116             SkBitmap top;
1117             SkAssertResult(image->extractSubset(&top, subset));
1118 
1119             SkMatrix topMatrix;
1120             topMatrix.setScale(SK_Scalar1, -deviceBounds.top());
1121             topMatrix.postTranslate(0, deviceBounds.top());
1122             canvas.drawBitmapMatrix(top, topMatrix);
1123 
1124             if (tileModes[0] == SkShader::kMirror_TileMode) {
1125                 topMatrix.postScale(-1, 1);
1126                 topMatrix.postTranslate(2 * width, 0);
1127                 canvas.drawBitmapMatrix(top, topMatrix);
1128             }
1129             patternBBox.fTop = 0;
1130         }
1131 
1132         if (deviceBounds.bottom() > height) {
1133             SkBitmap bottom;
1134             subset.offset(0, image->height() - 1);
1135             SkAssertResult(image->extractSubset(&bottom, subset));
1136 
1137             SkMatrix bottomMatrix;
1138             bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height);
1139             bottomMatrix.postTranslate(0, height);
1140             canvas.drawBitmapMatrix(bottom, bottomMatrix);
1141 
1142             if (tileModes[0] == SkShader::kMirror_TileMode) {
1143                 bottomMatrix.postScale(-1, 1);
1144                 bottomMatrix.postTranslate(2 * width, 0);
1145                 canvas.drawBitmapMatrix(bottom, bottomMatrix);
1146             }
1147             patternBBox.fBottom = deviceBounds.height();
1148         }
1149     }
1150 
1151     // Put the canvas into the pattern stream (fContent).
1152     SkAutoTUnref<SkStream> content(pattern.content());
1153     setData(content.get());
1154     SkPDFResourceDict* resourceDict = pattern.getResourceDict();
1155     resourceDict->getReferencedResources(fResources, &fResources, false);
1156 
1157     populate_tiling_pattern_dict(this, patternBBox,
1158                                  pattern.getResourceDict(), finalMatrix);
1159 
1160     fState.get()->fImage.unlockPixels();
1161 }
1162 
makePSFunction(const SkString & psCode,SkPDFArray * domain)1163 SkPDFStream* SkPDFFunctionShader::makePSFunction(const SkString& psCode, SkPDFArray* domain) {
1164     SkAutoDataUnref funcData(SkData::NewWithCopy(psCode.c_str(), psCode.size()));
1165     SkPDFStream* result = new SkPDFStream(funcData.get());
1166     result->insertInt("FunctionType", 4);
1167     result->insert("Domain", domain);
1168     result->insert("Range", RangeObject());
1169     return result;
1170 }
1171 
ShaderCanonicalEntry(SkPDFObject * pdfShader,const State * state)1172 SkPDFShader::ShaderCanonicalEntry::ShaderCanonicalEntry(SkPDFObject* pdfShader, const State* state)
1173     : fPDFShader(pdfShader)
1174     , fState(state)
1175 {}
1176 
operator ==(const ShaderCanonicalEntry & b) const1177 bool SkPDFShader::ShaderCanonicalEntry::operator==(const ShaderCanonicalEntry& b) const {
1178     return fPDFShader == b.fPDFShader ||
1179            (fState != NULL && b.fState != NULL && *fState == *b.fState);
1180 }
1181 
operator ==(const SkPDFShader::State & b) const1182 bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
1183     if (fType != b.fType ||
1184             fCanvasTransform != b.fCanvasTransform ||
1185             fShaderTransform != b.fShaderTransform ||
1186             fBBox != b.fBBox) {
1187         return false;
1188     }
1189 
1190     if (fType == SkShader::kNone_GradientType) {
1191         if (fPixelGeneration != b.fPixelGeneration ||
1192                 fPixelGeneration == 0 ||
1193                 fImageTileModes[0] != b.fImageTileModes[0] ||
1194                 fImageTileModes[1] != b.fImageTileModes[1]) {
1195             return false;
1196         }
1197     } else {
1198         if (fInfo.fColorCount != b.fInfo.fColorCount ||
1199                 memcmp(fInfo.fColors, b.fInfo.fColors,
1200                        sizeof(SkColor) * fInfo.fColorCount) != 0 ||
1201                 memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
1202                        sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
1203                 fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
1204                 fInfo.fTileMode != b.fInfo.fTileMode) {
1205             return false;
1206         }
1207 
1208         switch (fType) {
1209             case SkShader::kLinear_GradientType:
1210                 if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
1211                     return false;
1212                 }
1213                 break;
1214             case SkShader::kRadial_GradientType:
1215                 if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
1216                     return false;
1217                 }
1218                 break;
1219             case SkShader::kRadial2_GradientType:
1220             case SkShader::kConical_GradientType:
1221                 if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
1222                         fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
1223                         fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
1224                     return false;
1225                 }
1226                 break;
1227             case SkShader::kSweep_GradientType:
1228             case SkShader::kNone_GradientType:
1229             case SkShader::kColor_GradientType:
1230                 break;
1231         }
1232     }
1233     return true;
1234 }
1235 
State(const SkShader & shader,const SkMatrix & canvasTransform,const SkIRect & bbox)1236 SkPDFShader::State::State(const SkShader& shader,
1237                           const SkMatrix& canvasTransform, const SkIRect& bbox)
1238         : fCanvasTransform(canvasTransform),
1239           fBBox(bbox),
1240           fPixelGeneration(0) {
1241     fInfo.fColorCount = 0;
1242     fInfo.fColors = NULL;
1243     fInfo.fColorOffsets = NULL;
1244     fShaderTransform = shader.getLocalMatrix();
1245     fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode;
1246 
1247     fType = shader.asAGradient(&fInfo);
1248 
1249     if (fType == SkShader::kNone_GradientType) {
1250         SkShader::BitmapType bitmapType;
1251         SkMatrix matrix;
1252         bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes);
1253         if (bitmapType != SkShader::kDefault_BitmapType) {
1254             fImage.reset();
1255             return;
1256         }
1257         SkASSERT(matrix.isIdentity());
1258         fPixelGeneration = fImage.getGenerationID();
1259     } else {
1260         AllocateGradientInfoStorage();
1261         shader.asAGradient(&fInfo);
1262     }
1263 }
1264 
State(const SkPDFShader::State & other)1265 SkPDFShader::State::State(const SkPDFShader::State& other)
1266   : fType(other.fType),
1267     fCanvasTransform(other.fCanvasTransform),
1268     fShaderTransform(other.fShaderTransform),
1269     fBBox(other.fBBox)
1270 {
1271     // Only gradients supported for now, since that is all that is used.
1272     // If needed, image state copy constructor can be added here later.
1273     SkASSERT(fType != SkShader::kNone_GradientType);
1274 
1275     if (fType != SkShader::kNone_GradientType) {
1276         fInfo = other.fInfo;
1277 
1278         AllocateGradientInfoStorage();
1279         for (int i = 0; i < fInfo.fColorCount; i++) {
1280             fInfo.fColors[i] = other.fInfo.fColors[i];
1281             fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i];
1282         }
1283     }
1284 }
1285 
1286 /**
1287  * Create a copy of this gradient state with alpha assigned to RGB luminousity.
1288  * Only valid for gradient states.
1289  */
CreateAlphaToLuminosityState() const1290 SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const {
1291     SkASSERT(fType != SkShader::kNone_GradientType);
1292 
1293     SkPDFShader::State* newState = new SkPDFShader::State(*this);
1294 
1295     for (int i = 0; i < fInfo.fColorCount; i++) {
1296         SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1297         newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
1298     }
1299 
1300     return newState;
1301 }
1302 
1303 /**
1304  * Create a copy of this gradient state with alpha set to fully opaque
1305  * Only valid for gradient states.
1306  */
CreateOpaqueState() const1307 SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const {
1308     SkASSERT(fType != SkShader::kNone_GradientType);
1309 
1310     SkPDFShader::State* newState = new SkPDFShader::State(*this);
1311     for (int i = 0; i < fInfo.fColorCount; i++) {
1312         newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i],
1313                                                  SK_AlphaOPAQUE);
1314     }
1315 
1316     return newState;
1317 }
1318 
1319 /**
1320  * Returns true if state is a gradient and the gradient has alpha.
1321  */
GradientHasAlpha() const1322 bool SkPDFShader::State::GradientHasAlpha() const {
1323     if (fType == SkShader::kNone_GradientType) {
1324         return false;
1325     }
1326 
1327     for (int i = 0; i < fInfo.fColorCount; i++) {
1328         SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1329         if (alpha != SK_AlphaOPAQUE) {
1330             return true;
1331         }
1332     }
1333     return false;
1334 }
1335 
AllocateGradientInfoStorage()1336 void SkPDFShader::State::AllocateGradientInfoStorage() {
1337     fColorData.set(sk_malloc_throw(
1338                fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
1339     fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get());
1340     fInfo.fColorOffsets =
1341             reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount);
1342 }
1343