1
2 /*
3 * Copyright 2011 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #include "SkPDFShader.h"
11
12 #include "SkData.h"
13 #include "SkPDFCatalog.h"
14 #include "SkPDFDevice.h"
15 #include "SkPDFFormXObject.h"
16 #include "SkPDFGraphicState.h"
17 #include "SkPDFResourceDict.h"
18 #include "SkPDFUtils.h"
19 #include "SkScalar.h"
20 #include "SkStream.h"
21 #include "SkTemplates.h"
22 #include "SkThread.h"
23 #include "SkTSet.h"
24 #include "SkTypes.h"
25
inverseTransformBBox(const SkMatrix & matrix,SkRect * bbox)26 static bool inverseTransformBBox(const SkMatrix& matrix, SkRect* bbox) {
27 SkMatrix inverse;
28 if (!matrix.invert(&inverse)) {
29 return false;
30 }
31 inverse.mapRect(bbox);
32 return true;
33 }
34
unitToPointsMatrix(const SkPoint pts[2],SkMatrix * matrix)35 static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
36 SkVector vec = pts[1] - pts[0];
37 SkScalar mag = vec.length();
38 SkScalar inv = mag ? SkScalarInvert(mag) : 0;
39
40 vec.scale(inv);
41 matrix->setSinCos(vec.fY, vec.fX);
42 matrix->preScale(mag, mag);
43 matrix->postTranslate(pts[0].fX, pts[0].fY);
44 }
45
46 /* Assumes t + startOffset is on the stack and does a linear interpolation on t
47 between startOffset and endOffset from prevColor to curColor (for each color
48 component), leaving the result in component order on the stack. It assumes
49 there are always 3 components per color.
50 @param range endOffset - startOffset
51 @param curColor[components] The current color components.
52 @param prevColor[components] The previous color components.
53 @param result The result ps function.
54 */
interpolateColorCode(SkScalar range,SkScalar * curColor,SkScalar * prevColor,SkString * result)55 static void interpolateColorCode(SkScalar range, SkScalar* curColor,
56 SkScalar* prevColor, SkString* result) {
57 SkASSERT(range != SkIntToScalar(0));
58 static const int kColorComponents = 3;
59
60 // Figure out how to scale each color component.
61 SkScalar multiplier[kColorComponents];
62 for (int i = 0; i < kColorComponents; i++) {
63 multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range);
64 }
65
66 // Calculate when we no longer need to keep a copy of the input parameter t.
67 // If the last component to use t is i, then dupInput[0..i - 1] = true
68 // and dupInput[i .. components] = false.
69 bool dupInput[kColorComponents];
70 dupInput[kColorComponents - 1] = false;
71 for (int i = kColorComponents - 2; i >= 0; i--) {
72 dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
73 }
74
75 if (!dupInput[0] && multiplier[0] == 0) {
76 result->append("pop ");
77 }
78
79 for (int i = 0; i < kColorComponents; i++) {
80 // If the next components needs t and this component will consume a
81 // copy, make another copy.
82 if (dupInput[i] && multiplier[i] != 0) {
83 result->append("dup ");
84 }
85
86 if (multiplier[i] == 0) {
87 result->appendScalar(prevColor[i]);
88 result->append(" ");
89 } else {
90 if (multiplier[i] != 1) {
91 result->appendScalar(multiplier[i]);
92 result->append(" mul ");
93 }
94 if (prevColor[i] != 0) {
95 result->appendScalar(prevColor[i]);
96 result->append(" add ");
97 }
98 }
99
100 if (dupInput[i]) {
101 result->append("exch\n");
102 }
103 }
104 }
105
106 /* Generate Type 4 function code to map t=[0,1) to the passed gradient,
107 clamping at the edges of the range. The generated code will be of the form:
108 if (t < 0) {
109 return colorData[0][r,g,b];
110 } else {
111 if (t < info.fColorOffsets[1]) {
112 return linearinterpolation(colorData[0][r,g,b],
113 colorData[1][r,g,b]);
114 } else {
115 if (t < info.fColorOffsets[2]) {
116 return linearinterpolation(colorData[1][r,g,b],
117 colorData[2][r,g,b]);
118 } else {
119
120 ... } else {
121 return colorData[info.fColorCount - 1][r,g,b];
122 }
123 ...
124 }
125 }
126 */
gradientFunctionCode(const SkShader::GradientInfo & info,SkString * result)127 static void gradientFunctionCode(const SkShader::GradientInfo& info,
128 SkString* result) {
129 /* We want to linearly interpolate from the previous color to the next.
130 Scale the colors from 0..255 to 0..1 and determine the multipliers
131 for interpolation.
132 C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
133 */
134 static const int kColorComponents = 3;
135 typedef SkScalar ColorTuple[kColorComponents];
136 SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
137 ColorTuple *colorData = colorDataAlloc.get();
138 const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
139 for (int i = 0; i < info.fColorCount; i++) {
140 colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
141 colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
142 colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
143 }
144
145 // Clamp the initial color.
146 result->append("dup 0 le {pop ");
147 result->appendScalar(colorData[0][0]);
148 result->append(" ");
149 result->appendScalar(colorData[0][1]);
150 result->append(" ");
151 result->appendScalar(colorData[0][2]);
152 result->append(" }\n");
153
154 // The gradient colors.
155 int gradients = 0;
156 for (int i = 1 ; i < info.fColorCount; i++) {
157 if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) {
158 continue;
159 }
160 gradients++;
161
162 result->append("{dup ");
163 result->appendScalar(info.fColorOffsets[i]);
164 result->append(" le {");
165 if (info.fColorOffsets[i - 1] != 0) {
166 result->appendScalar(info.fColorOffsets[i - 1]);
167 result->append(" sub\n");
168 }
169
170 interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
171 colorData[i], colorData[i - 1], result);
172 result->append("}\n");
173 }
174
175 // Clamp the final color.
176 result->append("{pop ");
177 result->appendScalar(colorData[info.fColorCount - 1][0]);
178 result->append(" ");
179 result->appendScalar(colorData[info.fColorCount - 1][1]);
180 result->append(" ");
181 result->appendScalar(colorData[info.fColorCount - 1][2]);
182
183 for (int i = 0 ; i < gradients + 1; i++) {
184 result->append("} ifelse\n");
185 }
186 }
187
188 /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
tileModeCode(SkShader::TileMode mode,SkString * result)189 static void tileModeCode(SkShader::TileMode mode, SkString* result) {
190 if (mode == SkShader::kRepeat_TileMode) {
191 result->append("dup truncate sub\n"); // Get the fractional part.
192 result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1)
193 return;
194 }
195
196 if (mode == SkShader::kMirror_TileMode) {
197 // Map t mod 2 into [0, 1, 1, 0].
198 // Code Stack
199 result->append("abs " // Map negative to positive.
200 "dup " // t.s t.s
201 "truncate " // t.s t
202 "dup " // t.s t t
203 "cvi " // t.s t T
204 "2 mod " // t.s t (i mod 2)
205 "1 eq " // t.s t true|false
206 "3 1 roll " // true|false t.s t
207 "sub " // true|false 0.s
208 "exch " // 0.s true|false
209 "{1 exch sub} if\n"); // 1 - 0.s|0.s
210 }
211 }
212
213 /**
214 * Returns PS function code that applies inverse perspective
215 * to a x, y point.
216 * The function assumes that the stack has at least two elements,
217 * and that the top 2 elements are numeric values.
218 * After executing this code on a PS stack, the last 2 elements are updated
219 * while the rest of the stack is preserved intact.
220 * inversePerspectiveMatrix is the inverse perspective matrix.
221 */
apply_perspective_to_coordinates(const SkMatrix & inversePerspectiveMatrix)222 static SkString apply_perspective_to_coordinates(
223 const SkMatrix& inversePerspectiveMatrix) {
224 SkString code;
225 if (!inversePerspectiveMatrix.hasPerspective()) {
226 return code;
227 }
228
229 // Perspective matrix should be:
230 // 1 0 0
231 // 0 1 0
232 // p0 p1 p2
233
234 const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
235 const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
236 const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
237
238 // y = y / (p2 + p0 x + p1 y)
239 // x = x / (p2 + p0 x + p1 y)
240
241 // Input on stack: x y
242 code.append(" dup "); // x y y
243 code.appendScalar(p1); // x y y p1
244 code.append(" mul " // x y y*p1
245 " 2 index "); // x y y*p1 x
246 code.appendScalar(p0); // x y y p1 x p0
247 code.append(" mul "); // x y y*p1 x*p0
248 code.appendScalar(p2); // x y y p1 x*p0 p2
249 code.append(" add " // x y y*p1 x*p0+p2
250 "add " // x y y*p1+x*p0+p2
251 "3 1 roll " // y*p1+x*p0+p2 x y
252 "2 index " // z x y y*p1+x*p0+p2
253 "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
254 "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
255 "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
256 "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
257 "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
258 return code;
259 }
260
linearCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)261 static SkString linearCode(const SkShader::GradientInfo& info,
262 const SkMatrix& perspectiveRemover) {
263 SkString function("{");
264
265 function.append(apply_perspective_to_coordinates(perspectiveRemover));
266
267 function.append("pop\n"); // Just ditch the y value.
268 tileModeCode(info.fTileMode, &function);
269 gradientFunctionCode(info, &function);
270 function.append("}");
271 return function;
272 }
273
radialCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)274 static SkString radialCode(const SkShader::GradientInfo& info,
275 const SkMatrix& perspectiveRemover) {
276 SkString function("{");
277
278 function.append(apply_perspective_to_coordinates(perspectiveRemover));
279
280 // Find the distance from the origin.
281 function.append("dup " // x y y
282 "mul " // x y^2
283 "exch " // y^2 x
284 "dup " // y^2 x x
285 "mul " // y^2 x^2
286 "add " // y^2+x^2
287 "sqrt\n"); // sqrt(y^2+x^2)
288
289 tileModeCode(info.fTileMode, &function);
290 gradientFunctionCode(info, &function);
291 function.append("}");
292 return function;
293 }
294
295 /* The math here is all based on the description in Two_Point_Radial_Gradient,
296 with one simplification, the coordinate space has been scaled so that
297 Dr = 1. This means we don't need to scale the entire equation by 1/Dr^2.
298 */
twoPointRadialCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)299 static SkString twoPointRadialCode(const SkShader::GradientInfo& info,
300 const SkMatrix& perspectiveRemover) {
301 SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX;
302 SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY;
303 SkScalar sr = info.fRadius[0];
304 SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1;
305 bool posRoot = info.fRadius[1] > info.fRadius[0];
306
307 // We start with a stack of (x y), copy it and then consume one copy in
308 // order to calculate b and the other to calculate c.
309 SkString function("{");
310
311 function.append(apply_perspective_to_coordinates(perspectiveRemover));
312
313 function.append("2 copy ");
314
315 // Calculate -b and b^2.
316 function.appendScalar(dy);
317 function.append(" mul exch ");
318 function.appendScalar(dx);
319 function.append(" mul add ");
320 function.appendScalar(sr);
321 function.append(" sub 2 mul neg dup dup mul\n");
322
323 // Calculate c
324 function.append("4 2 roll dup mul exch dup mul add ");
325 function.appendScalar(SkScalarMul(sr, sr));
326 function.append(" sub\n");
327
328 // Calculate the determinate
329 function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
330 function.append(" mul sub abs sqrt\n");
331
332 // And then the final value of t.
333 if (posRoot) {
334 function.append("sub ");
335 } else {
336 function.append("add ");
337 }
338 function.appendScalar(SkScalarMul(SkIntToScalar(2), a));
339 function.append(" div\n");
340
341 tileModeCode(info.fTileMode, &function);
342 gradientFunctionCode(info, &function);
343 function.append("}");
344 return function;
345 }
346
347 /* Conical gradient shader, based on the Canvas spec for radial gradients
348 See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
349 */
twoPointConicalCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)350 static SkString twoPointConicalCode(const SkShader::GradientInfo& info,
351 const SkMatrix& perspectiveRemover) {
352 SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
353 SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
354 SkScalar r0 = info.fRadius[0];
355 SkScalar dr = info.fRadius[1] - info.fRadius[0];
356 SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) -
357 SkScalarMul(dr, dr);
358
359 // First compute t, if the pixel falls outside the cone, then we'll end
360 // with 'false' on the stack, otherwise we'll push 'true' with t below it
361
362 // We start with a stack of (x y), copy it and then consume one copy in
363 // order to calculate b and the other to calculate c.
364 SkString function("{");
365
366 function.append(apply_perspective_to_coordinates(perspectiveRemover));
367
368 function.append("2 copy ");
369
370 // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
371 function.appendScalar(dy);
372 function.append(" mul exch ");
373 function.appendScalar(dx);
374 function.append(" mul add ");
375 function.appendScalar(SkScalarMul(r0, dr));
376 function.append(" add -2 mul dup dup mul\n");
377
378 // c = x^2 + y^2 + radius0^2
379 function.append("4 2 roll dup mul exch dup mul add ");
380 function.appendScalar(SkScalarMul(r0, r0));
381 function.append(" sub dup 4 1 roll\n");
382
383 // Contents of the stack at this point: c, b, b^2, c
384
385 // if a = 0, then we collapse to a simpler linear case
386 if (a == 0) {
387
388 // t = -c/b
389 function.append("pop pop div neg dup ");
390
391 // compute radius(t)
392 function.appendScalar(dr);
393 function.append(" mul ");
394 function.appendScalar(r0);
395 function.append(" add\n");
396
397 // if r(t) < 0, then it's outside the cone
398 function.append("0 lt {pop false} {true} ifelse\n");
399
400 } else {
401
402 // quadratic case: the Canvas spec wants the largest
403 // root t for which radius(t) > 0
404
405 // compute the discriminant (b^2 - 4ac)
406 function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
407 function.append(" mul sub dup\n");
408
409 // if d >= 0, proceed
410 function.append("0 ge {\n");
411
412 // an intermediate value we'll use to compute the roots:
413 // q = -0.5 * (b +/- sqrt(d))
414 function.append("sqrt exch dup 0 lt {exch -1 mul} if");
415 function.append(" add -0.5 mul dup\n");
416
417 // first root = q / a
418 function.appendScalar(a);
419 function.append(" div\n");
420
421 // second root = c / q
422 function.append("3 1 roll div\n");
423
424 // put the larger root on top of the stack
425 function.append("2 copy gt {exch} if\n");
426
427 // compute radius(t) for larger root
428 function.append("dup ");
429 function.appendScalar(dr);
430 function.append(" mul ");
431 function.appendScalar(r0);
432 function.append(" add\n");
433
434 // if r(t) > 0, we have our t, pop off the smaller root and we're done
435 function.append(" 0 gt {exch pop true}\n");
436
437 // otherwise, throw out the larger one and try the smaller root
438 function.append("{pop dup\n");
439 function.appendScalar(dr);
440 function.append(" mul ");
441 function.appendScalar(r0);
442 function.append(" add\n");
443
444 // if r(t) < 0, push false, otherwise the smaller root is our t
445 function.append("0 le {pop false} {true} ifelse\n");
446 function.append("} ifelse\n");
447
448 // d < 0, clear the stack and push false
449 function.append("} {pop pop pop false} ifelse\n");
450 }
451
452 // if the pixel is in the cone, proceed to compute a color
453 function.append("{");
454 tileModeCode(info.fTileMode, &function);
455 gradientFunctionCode(info, &function);
456
457 // otherwise, just write black
458 function.append("} {0 0 0} ifelse }");
459
460 return function;
461 }
462
sweepCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)463 static SkString sweepCode(const SkShader::GradientInfo& info,
464 const SkMatrix& perspectiveRemover) {
465 SkString function("{exch atan 360 div\n");
466 tileModeCode(info.fTileMode, &function);
467 gradientFunctionCode(info, &function);
468 function.append("}");
469 return function;
470 }
471
472 class SkPDFShader::State {
473 public:
474 SkShader::GradientType fType;
475 SkShader::GradientInfo fInfo;
476 SkAutoFree fColorData; // This provides storage for arrays in fInfo.
477 SkMatrix fCanvasTransform;
478 SkMatrix fShaderTransform;
479 SkIRect fBBox;
480
481 SkBitmap fImage;
482 uint32_t fPixelGeneration;
483 SkShader::TileMode fImageTileModes[2];
484
485 State(const SkShader& shader, const SkMatrix& canvasTransform,
486 const SkIRect& bbox);
487
488 bool operator==(const State& b) const;
489
490 SkPDFShader::State* CreateAlphaToLuminosityState() const;
491 SkPDFShader::State* CreateOpaqueState() const;
492
493 bool GradientHasAlpha() const;
494
495 private:
496 State(const State& other);
497 State operator=(const State& rhs);
498 void AllocateGradientInfoStorage();
499 };
500
501 class SkPDFFunctionShader : public SkPDFDict, public SkPDFShader {
502 SK_DECLARE_INST_COUNT(SkPDFFunctionShader)
503 public:
504 explicit SkPDFFunctionShader(SkPDFShader::State* state);
~SkPDFFunctionShader()505 virtual ~SkPDFFunctionShader() {
506 if (isValid()) {
507 RemoveShader(this);
508 }
509 fResources.unrefAll();
510 }
511
isValid()512 virtual bool isValid() { return fResources.count() > 0; }
513
getResources(const SkTSet<SkPDFObject * > & knownResourceObjects,SkTSet<SkPDFObject * > * newResourceObjects)514 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
515 SkTSet<SkPDFObject*>* newResourceObjects) {
516 GetResourcesHelper(&fResources,
517 knownResourceObjects,
518 newResourceObjects);
519 }
520
521 private:
522 static SkPDFObject* RangeObject();
523
524 SkTDArray<SkPDFObject*> fResources;
525 SkAutoTDelete<const SkPDFShader::State> fState;
526
527 SkPDFStream* makePSFunction(const SkString& psCode, SkPDFArray* domain);
528 typedef SkPDFDict INHERITED;
529 };
530
531 /**
532 * A shader for PDF gradients. This encapsulates the function shader
533 * inside a tiling pattern while providing a common pattern interface.
534 * The encapsulation allows the use of a SMask for transparency gradients.
535 */
536 class SkPDFAlphaFunctionShader : public SkPDFStream, public SkPDFShader {
537 public:
538 explicit SkPDFAlphaFunctionShader(SkPDFShader::State* state);
~SkPDFAlphaFunctionShader()539 virtual ~SkPDFAlphaFunctionShader() {
540 if (isValid()) {
541 RemoveShader(this);
542 }
543 }
544
isValid()545 virtual bool isValid() {
546 return fColorShader.get() != NULL;
547 }
548
549 private:
550 SkAutoTDelete<const SkPDFShader::State> fState;
551
552 SkPDFGraphicState* CreateSMaskGraphicState();
553
getResources(const SkTSet<SkPDFObject * > & knownResourceObjects,SkTSet<SkPDFObject * > * newResourceObjects)554 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
555 SkTSet<SkPDFObject*>* newResourceObjects) {
556 fResourceDict->getReferencedResources(knownResourceObjects,
557 newResourceObjects,
558 true);
559 }
560
561 SkAutoTUnref<SkPDFObject> fColorShader;
562 SkAutoTUnref<SkPDFResourceDict> fResourceDict;
563 };
564
565 class SkPDFImageShader : public SkPDFStream, public SkPDFShader {
566 public:
567 explicit SkPDFImageShader(SkPDFShader::State* state);
~SkPDFImageShader()568 virtual ~SkPDFImageShader() {
569 if (isValid()) {
570 RemoveShader(this);
571 }
572 fResources.unrefAll();
573 }
574
isValid()575 virtual bool isValid() { return size() > 0; }
576
getResources(const SkTSet<SkPDFObject * > & knownResourceObjects,SkTSet<SkPDFObject * > * newResourceObjects)577 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
578 SkTSet<SkPDFObject*>* newResourceObjects) {
579 GetResourcesHelper(&fResources.toArray(),
580 knownResourceObjects,
581 newResourceObjects);
582 }
583
584 private:
585 SkTSet<SkPDFObject*> fResources;
586 SkAutoTDelete<const SkPDFShader::State> fState;
587 };
588
SkPDFShader()589 SkPDFShader::SkPDFShader() {}
590
591 // static
GetPDFShaderByState(State * inState)592 SkPDFObject* SkPDFShader::GetPDFShaderByState(State* inState) {
593 SkPDFObject* result;
594
595 SkAutoTDelete<State> shaderState(inState);
596 if (shaderState.get()->fType == SkShader::kNone_GradientType &&
597 shaderState.get()->fImage.isNull()) {
598 // TODO(vandebo) This drops SKComposeShader on the floor. We could
599 // handle compose shader by pulling things up to a layer, drawing with
600 // the first shader, applying the xfer mode and drawing again with the
601 // second shader, then applying the layer to the original drawing.
602 return NULL;
603 }
604
605 ShaderCanonicalEntry entry(NULL, shaderState.get());
606 int index = CanonicalShaders().find(entry);
607 if (index >= 0) {
608 result = CanonicalShaders()[index].fPDFShader;
609 result->ref();
610 return result;
611 }
612
613 bool valid = false;
614 // The PDFShader takes ownership of the shaderSate.
615 if (shaderState.get()->fType == SkShader::kNone_GradientType) {
616 SkPDFImageShader* imageShader =
617 new SkPDFImageShader(shaderState.detach());
618 valid = imageShader->isValid();
619 result = imageShader;
620 } else {
621 if (shaderState.get()->GradientHasAlpha()) {
622 SkPDFAlphaFunctionShader* gradientShader =
623 SkNEW_ARGS(SkPDFAlphaFunctionShader, (shaderState.detach()));
624 valid = gradientShader->isValid();
625 result = gradientShader;
626 } else {
627 SkPDFFunctionShader* functionShader =
628 SkNEW_ARGS(SkPDFFunctionShader, (shaderState.detach()));
629 valid = functionShader->isValid();
630 result = functionShader;
631 }
632 }
633 if (!valid) {
634 delete result;
635 return NULL;
636 }
637 entry.fPDFShader = result;
638 CanonicalShaders().push(entry);
639 return result; // return the reference that came from new.
640 }
641
642 // static
RemoveShader(SkPDFObject * shader)643 void SkPDFShader::RemoveShader(SkPDFObject* shader) {
644 SkAutoMutexAcquire lock(CanonicalShadersMutex());
645 ShaderCanonicalEntry entry(shader, NULL);
646 int index = CanonicalShaders().find(entry);
647 SkASSERT(index >= 0);
648 CanonicalShaders().removeShuffle(index);
649 }
650
651 // static
GetPDFShader(const SkShader & shader,const SkMatrix & matrix,const SkIRect & surfaceBBox)652 SkPDFObject* SkPDFShader::GetPDFShader(const SkShader& shader,
653 const SkMatrix& matrix,
654 const SkIRect& surfaceBBox) {
655 SkAutoMutexAcquire lock(CanonicalShadersMutex());
656 return GetPDFShaderByState(
657 SkNEW_ARGS(State, (shader, matrix, surfaceBBox)));
658 }
659
660 // static
CanonicalShaders()661 SkTDArray<SkPDFShader::ShaderCanonicalEntry>& SkPDFShader::CanonicalShaders() {
662 SkPDFShader::CanonicalShadersMutex().assertHeld();
663 static SkTDArray<ShaderCanonicalEntry> gCanonicalShaders;
664 return gCanonicalShaders;
665 }
666
667 SK_DECLARE_STATIC_MUTEX(gCanonicalShadersMutex);
668 // static
CanonicalShadersMutex()669 SkBaseMutex& SkPDFShader::CanonicalShadersMutex() {
670 return gCanonicalShadersMutex;
671 }
672
673 // static
RangeObject()674 SkPDFObject* SkPDFFunctionShader::RangeObject() {
675 SkPDFShader::CanonicalShadersMutex().assertHeld();
676 static SkPDFArray* range = NULL;
677 // This method is only used with CanonicalShadersMutex, so it's safe to
678 // populate domain.
679 if (range == NULL) {
680 range = new SkPDFArray;
681 range->reserve(6);
682 range->appendInt(0);
683 range->appendInt(1);
684 range->appendInt(0);
685 range->appendInt(1);
686 range->appendInt(0);
687 range->appendInt(1);
688 }
689 return range;
690 }
691
get_gradient_resource_dict(SkPDFObject * functionShader,SkPDFObject * gState)692 static SkPDFResourceDict* get_gradient_resource_dict(
693 SkPDFObject* functionShader,
694 SkPDFObject* gState) {
695 SkPDFResourceDict* dict = new SkPDFResourceDict();
696
697 if (functionShader != NULL) {
698 dict->insertResourceAsReference(
699 SkPDFResourceDict::kPattern_ResourceType, 0, functionShader);
700 }
701 if (gState != NULL) {
702 dict->insertResourceAsReference(
703 SkPDFResourceDict::kExtGState_ResourceType, 0, gState);
704 }
705
706 return dict;
707 }
708
populate_tiling_pattern_dict(SkPDFDict * pattern,SkRect & bbox,SkPDFDict * resources,const SkMatrix & matrix)709 static void populate_tiling_pattern_dict(SkPDFDict* pattern,
710 SkRect& bbox, SkPDFDict* resources,
711 const SkMatrix& matrix) {
712 const int kTiling_PatternType = 1;
713 const int kColoredTilingPattern_PaintType = 1;
714 const int kConstantSpacing_TilingType = 1;
715
716 pattern->insertName("Type", "Pattern");
717 pattern->insertInt("PatternType", kTiling_PatternType);
718 pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
719 pattern->insertInt("TilingType", kConstantSpacing_TilingType);
720 pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref();
721 pattern->insertScalar("XStep", bbox.width());
722 pattern->insertScalar("YStep", bbox.height());
723 pattern->insert("Resources", resources);
724 if (!matrix.isIdentity()) {
725 pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref();
726 }
727 }
728
729 /**
730 * Creates a content stream which fills the pattern P0 across bounds.
731 * @param gsIndex A graphics state resource index to apply, or <0 if no
732 * graphics state to apply.
733 */
create_pattern_fill_content(int gsIndex,SkRect & bounds)734 static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) {
735 SkDynamicMemoryWStream content;
736 if (gsIndex >= 0) {
737 SkPDFUtils::ApplyGraphicState(gsIndex, &content);
738 }
739 SkPDFUtils::ApplyPattern(0, &content);
740 SkPDFUtils::AppendRectangle(bounds, &content);
741 SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType,
742 &content);
743
744 return content.detachAsStream();
745 }
746
747 /**
748 * Creates a ExtGState with the SMask set to the luminosityShader in
749 * luminosity mode. The shader pattern extends to the bbox.
750 */
CreateSMaskGraphicState()751 SkPDFGraphicState* SkPDFAlphaFunctionShader::CreateSMaskGraphicState() {
752 SkRect bbox;
753 bbox.set(fState.get()->fBBox);
754
755 SkAutoTUnref<SkPDFObject> luminosityShader(
756 SkPDFShader::GetPDFShaderByState(
757 fState->CreateAlphaToLuminosityState()));
758
759 SkAutoTUnref<SkStream> alphaStream(create_pattern_fill_content(-1, bbox));
760
761 SkAutoTUnref<SkPDFResourceDict>
762 resources(get_gradient_resource_dict(luminosityShader, NULL));
763
764 SkAutoTUnref<SkPDFFormXObject> alphaMask(
765 new SkPDFFormXObject(alphaStream.get(), bbox, resources.get()));
766
767 return SkPDFGraphicState::GetSMaskGraphicState(
768 alphaMask.get(), false,
769 SkPDFGraphicState::kLuminosity_SMaskMode);
770 }
771
SkPDFAlphaFunctionShader(SkPDFShader::State * state)772 SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state)
773 : fState(state) {
774 SkRect bbox;
775 bbox.set(fState.get()->fBBox);
776
777 fColorShader.reset(
778 SkPDFShader::GetPDFShaderByState(state->CreateOpaqueState()));
779
780 // Create resource dict with alpha graphics state as G0 and
781 // pattern shader as P0, then write content stream.
782 SkAutoTUnref<SkPDFGraphicState> alphaGs(CreateSMaskGraphicState());
783 fResourceDict.reset(
784 get_gradient_resource_dict(fColorShader.get(), alphaGs.get()));
785
786 SkAutoTUnref<SkStream> colorStream(
787 create_pattern_fill_content(0, bbox));
788 setData(colorStream.get());
789
790 populate_tiling_pattern_dict(this, bbox, fResourceDict.get(),
791 SkMatrix::I());
792 }
793
794 // Finds affine and persp such that in = affine * persp.
795 // but it returns the inverse of perspective matrix.
split_perspective(const SkMatrix in,SkMatrix * affine,SkMatrix * perspectiveInverse)796 static bool split_perspective(const SkMatrix in, SkMatrix* affine,
797 SkMatrix* perspectiveInverse) {
798 const SkScalar p2 = in[SkMatrix::kMPersp2];
799
800 if (SkScalarNearlyZero(p2)) {
801 return false;
802 }
803
804 const SkScalar zero = SkIntToScalar(0);
805 const SkScalar one = SkIntToScalar(1);
806
807 const SkScalar sx = in[SkMatrix::kMScaleX];
808 const SkScalar kx = in[SkMatrix::kMSkewX];
809 const SkScalar tx = in[SkMatrix::kMTransX];
810 const SkScalar ky = in[SkMatrix::kMSkewY];
811 const SkScalar sy = in[SkMatrix::kMScaleY];
812 const SkScalar ty = in[SkMatrix::kMTransY];
813 const SkScalar p0 = in[SkMatrix::kMPersp0];
814 const SkScalar p1 = in[SkMatrix::kMPersp1];
815
816 // Perspective matrix would be:
817 // 1 0 0
818 // 0 1 0
819 // p0 p1 p2
820 // But we need the inverse of persp.
821 perspectiveInverse->setAll(one, zero, zero,
822 zero, one, zero,
823 -p0/p2, -p1/p2, 1/p2);
824
825 affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2,
826 ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2,
827 zero, zero, one);
828
829 return true;
830 }
831
SkPDFFunctionShader(SkPDFShader::State * state)832 SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
833 : SkPDFDict("Pattern"),
834 fState(state) {
835 SkString (*codeFunction)(const SkShader::GradientInfo& info,
836 const SkMatrix& perspectiveRemover) = NULL;
837 SkPoint transformPoints[2];
838
839 // Depending on the type of the gradient, we want to transform the
840 // coordinate space in different ways.
841 const SkShader::GradientInfo* info = &fState.get()->fInfo;
842 transformPoints[0] = info->fPoint[0];
843 transformPoints[1] = info->fPoint[1];
844 switch (fState.get()->fType) {
845 case SkShader::kLinear_GradientType:
846 codeFunction = &linearCode;
847 break;
848 case SkShader::kRadial_GradientType:
849 transformPoints[1] = transformPoints[0];
850 transformPoints[1].fX += info->fRadius[0];
851 codeFunction = &radialCode;
852 break;
853 case SkShader::kRadial2_GradientType: {
854 // Bail out if the radii are the same. Empty fResources signals
855 // an error and isValid will return false.
856 if (info->fRadius[0] == info->fRadius[1]) {
857 return;
858 }
859 transformPoints[1] = transformPoints[0];
860 SkScalar dr = info->fRadius[1] - info->fRadius[0];
861 transformPoints[1].fX += dr;
862 codeFunction = &twoPointRadialCode;
863 break;
864 }
865 case SkShader::kConical_GradientType: {
866 transformPoints[1] = transformPoints[0];
867 transformPoints[1].fX += SK_Scalar1;
868 codeFunction = &twoPointConicalCode;
869 break;
870 }
871 case SkShader::kSweep_GradientType:
872 transformPoints[1] = transformPoints[0];
873 transformPoints[1].fX += SK_Scalar1;
874 codeFunction = &sweepCode;
875 break;
876 case SkShader::kColor_GradientType:
877 case SkShader::kNone_GradientType:
878 default:
879 return;
880 }
881
882 // Move any scaling (assuming a unit gradient) or translation
883 // (and rotation for linear gradient), of the final gradient from
884 // info->fPoints to the matrix (updating bbox appropriately). Now
885 // the gradient can be drawn on on the unit segment.
886 SkMatrix mapperMatrix;
887 unitToPointsMatrix(transformPoints, &mapperMatrix);
888
889 SkMatrix finalMatrix = fState.get()->fCanvasTransform;
890 finalMatrix.preConcat(fState.get()->fShaderTransform);
891 finalMatrix.preConcat(mapperMatrix);
892
893 // Preserves as much as posible in the final matrix, and only removes
894 // the perspective. The inverse of the perspective is stored in
895 // perspectiveInverseOnly matrix and has 3 useful numbers
896 // (p0, p1, p2), while everything else is either 0 or 1.
897 // In this way the shader will handle it eficiently, with minimal code.
898 SkMatrix perspectiveInverseOnly = SkMatrix::I();
899 if (finalMatrix.hasPerspective()) {
900 if (!split_perspective(finalMatrix,
901 &finalMatrix, &perspectiveInverseOnly)) {
902 return;
903 }
904 }
905
906 SkRect bbox;
907 bbox.set(fState.get()->fBBox);
908 if (!inverseTransformBBox(finalMatrix, &bbox)) {
909 return;
910 }
911
912 SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
913 domain->reserve(4);
914 domain->appendScalar(bbox.fLeft);
915 domain->appendScalar(bbox.fRight);
916 domain->appendScalar(bbox.fTop);
917 domain->appendScalar(bbox.fBottom);
918
919 SkString functionCode;
920 // The two point radial gradient further references fState.get()->fInfo
921 // in translating from x, y coordinates to the t parameter. So, we have
922 // to transform the points and radii according to the calculated matrix.
923 if (fState.get()->fType == SkShader::kRadial2_GradientType) {
924 SkShader::GradientInfo twoPointRadialInfo = *info;
925 SkMatrix inverseMapperMatrix;
926 if (!mapperMatrix.invert(&inverseMapperMatrix)) {
927 return;
928 }
929 inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
930 twoPointRadialInfo.fRadius[0] =
931 inverseMapperMatrix.mapRadius(info->fRadius[0]);
932 twoPointRadialInfo.fRadius[1] =
933 inverseMapperMatrix.mapRadius(info->fRadius[1]);
934 functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
935 } else {
936 functionCode = codeFunction(*info, perspectiveInverseOnly);
937 }
938
939 SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
940 pdfShader->insertInt("ShadingType", 1);
941 pdfShader->insertName("ColorSpace", "DeviceRGB");
942 pdfShader->insert("Domain", domain.get());
943
944 SkPDFStream* function = makePSFunction(functionCode, domain.get());
945 pdfShader->insert("Function", new SkPDFObjRef(function))->unref();
946 fResources.push(function); // Pass ownership to resource list.
947
948 insertInt("PatternType", 2);
949 insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref();
950 insert("Shading", pdfShader.get());
951 }
952
SkPDFImageShader(SkPDFShader::State * state)953 SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) {
954 fState.get()->fImage.lockPixels();
955
956 // The image shader pattern cell will be drawn into a separate device
957 // in pattern cell space (no scaling on the bitmap, though there may be
958 // translations so that all content is in the device, coordinates > 0).
959
960 // Map clip bounds to shader space to ensure the device is large enough
961 // to handle fake clamping.
962 SkMatrix finalMatrix = fState.get()->fCanvasTransform;
963 finalMatrix.preConcat(fState.get()->fShaderTransform);
964 SkRect deviceBounds;
965 deviceBounds.set(fState.get()->fBBox);
966 if (!inverseTransformBBox(finalMatrix, &deviceBounds)) {
967 return;
968 }
969
970 const SkBitmap* image = &fState.get()->fImage;
971 SkRect bitmapBounds;
972 image->getBounds(&bitmapBounds);
973
974 // For tiling modes, the bounds should be extended to include the bitmap,
975 // otherwise the bitmap gets clipped out and the shader is empty and awful.
976 // For clamp modes, we're only interested in the clip region, whether
977 // or not the main bitmap is in it.
978 SkShader::TileMode tileModes[2];
979 tileModes[0] = fState.get()->fImageTileModes[0];
980 tileModes[1] = fState.get()->fImageTileModes[1];
981 if (tileModes[0] != SkShader::kClamp_TileMode ||
982 tileModes[1] != SkShader::kClamp_TileMode) {
983 deviceBounds.join(bitmapBounds);
984 }
985
986 SkMatrix unflip;
987 unflip.setTranslate(0, SkScalarRoundToScalar(deviceBounds.height()));
988 unflip.preScale(SK_Scalar1, -SK_Scalar1);
989 SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()),
990 SkScalarRoundToInt(deviceBounds.height()));
991 // TODO(edisonn): should we pass here the DCT encoder of the destination device?
992 // TODO(edisonn): NYI Perspective, use SkPDFDeviceFlattener.
993 SkPDFDevice pattern(size, size, unflip);
994 SkCanvas canvas(&pattern);
995
996 SkRect patternBBox;
997 image->getBounds(&patternBBox);
998
999 // Translate the canvas so that the bitmap origin is at (0, 0).
1000 canvas.translate(-deviceBounds.left(), -deviceBounds.top());
1001 patternBBox.offset(-deviceBounds.left(), -deviceBounds.top());
1002 // Undo the translation in the final matrix
1003 finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top());
1004
1005 // If the bitmap is out of bounds (i.e. clamp mode where we only see the
1006 // stretched sides), canvas will clip this out and the extraneous data
1007 // won't be saved to the PDF.
1008 canvas.drawBitmap(*image, 0, 0);
1009
1010 SkScalar width = SkIntToScalar(image->width());
1011 SkScalar height = SkIntToScalar(image->height());
1012
1013 // Tiling is implied. First we handle mirroring.
1014 if (tileModes[0] == SkShader::kMirror_TileMode) {
1015 SkMatrix xMirror;
1016 xMirror.setScale(-1, 1);
1017 xMirror.postTranslate(2 * width, 0);
1018 canvas.drawBitmapMatrix(*image, xMirror);
1019 patternBBox.fRight += width;
1020 }
1021 if (tileModes[1] == SkShader::kMirror_TileMode) {
1022 SkMatrix yMirror;
1023 yMirror.setScale(SK_Scalar1, -SK_Scalar1);
1024 yMirror.postTranslate(0, 2 * height);
1025 canvas.drawBitmapMatrix(*image, yMirror);
1026 patternBBox.fBottom += height;
1027 }
1028 if (tileModes[0] == SkShader::kMirror_TileMode &&
1029 tileModes[1] == SkShader::kMirror_TileMode) {
1030 SkMatrix mirror;
1031 mirror.setScale(-1, -1);
1032 mirror.postTranslate(2 * width, 2 * height);
1033 canvas.drawBitmapMatrix(*image, mirror);
1034 }
1035
1036 // Then handle Clamping, which requires expanding the pattern canvas to
1037 // cover the entire surfaceBBox.
1038
1039 // If both x and y are in clamp mode, we start by filling in the corners.
1040 // (Which are just a rectangles of the corner colors.)
1041 if (tileModes[0] == SkShader::kClamp_TileMode &&
1042 tileModes[1] == SkShader::kClamp_TileMode) {
1043 SkPaint paint;
1044 SkRect rect;
1045 rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0);
1046 if (!rect.isEmpty()) {
1047 paint.setColor(image->getColor(0, 0));
1048 canvas.drawRect(rect, paint);
1049 }
1050
1051 rect = SkRect::MakeLTRB(width, deviceBounds.top(),
1052 deviceBounds.right(), 0);
1053 if (!rect.isEmpty()) {
1054 paint.setColor(image->getColor(image->width() - 1, 0));
1055 canvas.drawRect(rect, paint);
1056 }
1057
1058 rect = SkRect::MakeLTRB(width, height,
1059 deviceBounds.right(), deviceBounds.bottom());
1060 if (!rect.isEmpty()) {
1061 paint.setColor(image->getColor(image->width() - 1,
1062 image->height() - 1));
1063 canvas.drawRect(rect, paint);
1064 }
1065
1066 rect = SkRect::MakeLTRB(deviceBounds.left(), height,
1067 0, deviceBounds.bottom());
1068 if (!rect.isEmpty()) {
1069 paint.setColor(image->getColor(0, image->height() - 1));
1070 canvas.drawRect(rect, paint);
1071 }
1072 }
1073
1074 // Then expand the left, right, top, then bottom.
1075 if (tileModes[0] == SkShader::kClamp_TileMode) {
1076 SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
1077 if (deviceBounds.left() < 0) {
1078 SkBitmap left;
1079 SkAssertResult(image->extractSubset(&left, subset));
1080
1081 SkMatrix leftMatrix;
1082 leftMatrix.setScale(-deviceBounds.left(), 1);
1083 leftMatrix.postTranslate(deviceBounds.left(), 0);
1084 canvas.drawBitmapMatrix(left, leftMatrix);
1085
1086 if (tileModes[1] == SkShader::kMirror_TileMode) {
1087 leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
1088 leftMatrix.postTranslate(0, 2 * height);
1089 canvas.drawBitmapMatrix(left, leftMatrix);
1090 }
1091 patternBBox.fLeft = 0;
1092 }
1093
1094 if (deviceBounds.right() > width) {
1095 SkBitmap right;
1096 subset.offset(image->width() - 1, 0);
1097 SkAssertResult(image->extractSubset(&right, subset));
1098
1099 SkMatrix rightMatrix;
1100 rightMatrix.setScale(deviceBounds.right() - width, 1);
1101 rightMatrix.postTranslate(width, 0);
1102 canvas.drawBitmapMatrix(right, rightMatrix);
1103
1104 if (tileModes[1] == SkShader::kMirror_TileMode) {
1105 rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
1106 rightMatrix.postTranslate(0, 2 * height);
1107 canvas.drawBitmapMatrix(right, rightMatrix);
1108 }
1109 patternBBox.fRight = deviceBounds.width();
1110 }
1111 }
1112
1113 if (tileModes[1] == SkShader::kClamp_TileMode) {
1114 SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
1115 if (deviceBounds.top() < 0) {
1116 SkBitmap top;
1117 SkAssertResult(image->extractSubset(&top, subset));
1118
1119 SkMatrix topMatrix;
1120 topMatrix.setScale(SK_Scalar1, -deviceBounds.top());
1121 topMatrix.postTranslate(0, deviceBounds.top());
1122 canvas.drawBitmapMatrix(top, topMatrix);
1123
1124 if (tileModes[0] == SkShader::kMirror_TileMode) {
1125 topMatrix.postScale(-1, 1);
1126 topMatrix.postTranslate(2 * width, 0);
1127 canvas.drawBitmapMatrix(top, topMatrix);
1128 }
1129 patternBBox.fTop = 0;
1130 }
1131
1132 if (deviceBounds.bottom() > height) {
1133 SkBitmap bottom;
1134 subset.offset(0, image->height() - 1);
1135 SkAssertResult(image->extractSubset(&bottom, subset));
1136
1137 SkMatrix bottomMatrix;
1138 bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height);
1139 bottomMatrix.postTranslate(0, height);
1140 canvas.drawBitmapMatrix(bottom, bottomMatrix);
1141
1142 if (tileModes[0] == SkShader::kMirror_TileMode) {
1143 bottomMatrix.postScale(-1, 1);
1144 bottomMatrix.postTranslate(2 * width, 0);
1145 canvas.drawBitmapMatrix(bottom, bottomMatrix);
1146 }
1147 patternBBox.fBottom = deviceBounds.height();
1148 }
1149 }
1150
1151 // Put the canvas into the pattern stream (fContent).
1152 SkAutoTUnref<SkStream> content(pattern.content());
1153 setData(content.get());
1154 SkPDFResourceDict* resourceDict = pattern.getResourceDict();
1155 resourceDict->getReferencedResources(fResources, &fResources, false);
1156
1157 populate_tiling_pattern_dict(this, patternBBox,
1158 pattern.getResourceDict(), finalMatrix);
1159
1160 fState.get()->fImage.unlockPixels();
1161 }
1162
makePSFunction(const SkString & psCode,SkPDFArray * domain)1163 SkPDFStream* SkPDFFunctionShader::makePSFunction(const SkString& psCode, SkPDFArray* domain) {
1164 SkAutoDataUnref funcData(SkData::NewWithCopy(psCode.c_str(), psCode.size()));
1165 SkPDFStream* result = new SkPDFStream(funcData.get());
1166 result->insertInt("FunctionType", 4);
1167 result->insert("Domain", domain);
1168 result->insert("Range", RangeObject());
1169 return result;
1170 }
1171
ShaderCanonicalEntry(SkPDFObject * pdfShader,const State * state)1172 SkPDFShader::ShaderCanonicalEntry::ShaderCanonicalEntry(SkPDFObject* pdfShader, const State* state)
1173 : fPDFShader(pdfShader)
1174 , fState(state)
1175 {}
1176
operator ==(const ShaderCanonicalEntry & b) const1177 bool SkPDFShader::ShaderCanonicalEntry::operator==(const ShaderCanonicalEntry& b) const {
1178 return fPDFShader == b.fPDFShader ||
1179 (fState != NULL && b.fState != NULL && *fState == *b.fState);
1180 }
1181
operator ==(const SkPDFShader::State & b) const1182 bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
1183 if (fType != b.fType ||
1184 fCanvasTransform != b.fCanvasTransform ||
1185 fShaderTransform != b.fShaderTransform ||
1186 fBBox != b.fBBox) {
1187 return false;
1188 }
1189
1190 if (fType == SkShader::kNone_GradientType) {
1191 if (fPixelGeneration != b.fPixelGeneration ||
1192 fPixelGeneration == 0 ||
1193 fImageTileModes[0] != b.fImageTileModes[0] ||
1194 fImageTileModes[1] != b.fImageTileModes[1]) {
1195 return false;
1196 }
1197 } else {
1198 if (fInfo.fColorCount != b.fInfo.fColorCount ||
1199 memcmp(fInfo.fColors, b.fInfo.fColors,
1200 sizeof(SkColor) * fInfo.fColorCount) != 0 ||
1201 memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
1202 sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
1203 fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
1204 fInfo.fTileMode != b.fInfo.fTileMode) {
1205 return false;
1206 }
1207
1208 switch (fType) {
1209 case SkShader::kLinear_GradientType:
1210 if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
1211 return false;
1212 }
1213 break;
1214 case SkShader::kRadial_GradientType:
1215 if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
1216 return false;
1217 }
1218 break;
1219 case SkShader::kRadial2_GradientType:
1220 case SkShader::kConical_GradientType:
1221 if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
1222 fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
1223 fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
1224 return false;
1225 }
1226 break;
1227 case SkShader::kSweep_GradientType:
1228 case SkShader::kNone_GradientType:
1229 case SkShader::kColor_GradientType:
1230 break;
1231 }
1232 }
1233 return true;
1234 }
1235
State(const SkShader & shader,const SkMatrix & canvasTransform,const SkIRect & bbox)1236 SkPDFShader::State::State(const SkShader& shader,
1237 const SkMatrix& canvasTransform, const SkIRect& bbox)
1238 : fCanvasTransform(canvasTransform),
1239 fBBox(bbox),
1240 fPixelGeneration(0) {
1241 fInfo.fColorCount = 0;
1242 fInfo.fColors = NULL;
1243 fInfo.fColorOffsets = NULL;
1244 fShaderTransform = shader.getLocalMatrix();
1245 fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode;
1246
1247 fType = shader.asAGradient(&fInfo);
1248
1249 if (fType == SkShader::kNone_GradientType) {
1250 SkShader::BitmapType bitmapType;
1251 SkMatrix matrix;
1252 bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes);
1253 if (bitmapType != SkShader::kDefault_BitmapType) {
1254 fImage.reset();
1255 return;
1256 }
1257 SkASSERT(matrix.isIdentity());
1258 fPixelGeneration = fImage.getGenerationID();
1259 } else {
1260 AllocateGradientInfoStorage();
1261 shader.asAGradient(&fInfo);
1262 }
1263 }
1264
State(const SkPDFShader::State & other)1265 SkPDFShader::State::State(const SkPDFShader::State& other)
1266 : fType(other.fType),
1267 fCanvasTransform(other.fCanvasTransform),
1268 fShaderTransform(other.fShaderTransform),
1269 fBBox(other.fBBox)
1270 {
1271 // Only gradients supported for now, since that is all that is used.
1272 // If needed, image state copy constructor can be added here later.
1273 SkASSERT(fType != SkShader::kNone_GradientType);
1274
1275 if (fType != SkShader::kNone_GradientType) {
1276 fInfo = other.fInfo;
1277
1278 AllocateGradientInfoStorage();
1279 for (int i = 0; i < fInfo.fColorCount; i++) {
1280 fInfo.fColors[i] = other.fInfo.fColors[i];
1281 fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i];
1282 }
1283 }
1284 }
1285
1286 /**
1287 * Create a copy of this gradient state with alpha assigned to RGB luminousity.
1288 * Only valid for gradient states.
1289 */
CreateAlphaToLuminosityState() const1290 SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const {
1291 SkASSERT(fType != SkShader::kNone_GradientType);
1292
1293 SkPDFShader::State* newState = new SkPDFShader::State(*this);
1294
1295 for (int i = 0; i < fInfo.fColorCount; i++) {
1296 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1297 newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
1298 }
1299
1300 return newState;
1301 }
1302
1303 /**
1304 * Create a copy of this gradient state with alpha set to fully opaque
1305 * Only valid for gradient states.
1306 */
CreateOpaqueState() const1307 SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const {
1308 SkASSERT(fType != SkShader::kNone_GradientType);
1309
1310 SkPDFShader::State* newState = new SkPDFShader::State(*this);
1311 for (int i = 0; i < fInfo.fColorCount; i++) {
1312 newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i],
1313 SK_AlphaOPAQUE);
1314 }
1315
1316 return newState;
1317 }
1318
1319 /**
1320 * Returns true if state is a gradient and the gradient has alpha.
1321 */
GradientHasAlpha() const1322 bool SkPDFShader::State::GradientHasAlpha() const {
1323 if (fType == SkShader::kNone_GradientType) {
1324 return false;
1325 }
1326
1327 for (int i = 0; i < fInfo.fColorCount; i++) {
1328 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1329 if (alpha != SK_AlphaOPAQUE) {
1330 return true;
1331 }
1332 }
1333 return false;
1334 }
1335
AllocateGradientInfoStorage()1336 void SkPDFShader::State::AllocateGradientInfoStorage() {
1337 fColorData.set(sk_malloc_throw(
1338 fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
1339 fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get());
1340 fInfo.fColorOffsets =
1341 reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount);
1342 }
1343