• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-----------------------------------------------------------------------------
2  * MurmurHash3 was written by Austin Appleby, and is placed in the public
3  * domain.
4  *
5  * This implementation was written by Shane Day, and is also public domain.
6  *
7  * This is a portable ANSI C implementation of MurmurHash3_x86_32 (Murmur3A)
8  * with support for progressive processing.
9  */
10 
11 /*-----------------------------------------------------------------------------
12 
13 If you want to understand the MurmurHash algorithm you would be much better
14 off reading the original source. Just point your browser at:
15 http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
16 
17 
18 What this version provides?
19 
20 1. Progressive data feeding. Useful when the entire payload to be hashed
21 does not fit in memory or when the data is streamed through the application.
22 Also useful when hashing a number of strings with a common prefix. A partial
23 hash of a prefix string can be generated and reused for each suffix string.
24 
25 2. Portability. Plain old C so that it should compile on any old compiler.
26 Both CPU endian and access-alignment neutral, but avoiding inefficient code
27 when possible depending on CPU capabilities.
28 
29 3. Drop in. I personally like nice self contained public domain code, making it
30 easy to pilfer without loads of refactoring to work properly in the existing
31 application code & makefile structure and mucking around with licence files.
32 Just copy PMurHash.h and PMurHash.c and you're ready to go.
33 
34 
35 How does it work?
36 
37 We can only process entire 32 bit chunks of input, except for the very end
38 that may be shorter. So along with the partial hash we need to give back to
39 the caller a carry containing up to 3 bytes that we were unable to process.
40 This carry also needs to record the number of bytes the carry holds. I use
41 the low 2 bits as a count (0..3) and the carry bytes are shifted into the
42 high byte in stream order.
43 
44 To handle endianess I simply use a macro that reads a uint32_t and define
45 that macro to be a direct read on little endian machines, a read and swap
46 on big endian machines, or a byte-by-byte read if the endianess is unknown.
47 
48 -----------------------------------------------------------------------------*/
49 
50 
51 #include "PMurHash.h"
52 
53 /* I used ugly type names in the header to avoid potential conflicts with
54  * application or system typedefs & defines. Since I'm not including any more
55  * headers below here I can rename these so that the code reads like C99 */
56 #undef uint32_t
57 #define uint32_t MH_UINT32
58 #undef uint8_t
59 #define uint8_t  MH_UINT8
60 
61 /* MSVC warnings we choose to ignore */
62 #if defined(_MSC_VER)
63   #pragma warning(disable: 4127) /* conditional expression is constant */
64 #endif
65 
66 /*-----------------------------------------------------------------------------
67  * Endianess, misalignment capabilities and util macros
68  *
69  * The following 3 macros are defined in this section. The other macros defined
70  * are only needed to help derive these 3.
71  *
72  * READ_UINT32(x)   Read a little endian unsigned 32-bit int
73  * UNALIGNED_SAFE   Defined if READ_UINT32 works on non-word boundaries
74  * ROTL32(x,r)      Rotate x left by r bits
75  */
76 
77 /* Convention is to define __BYTE_ORDER == to one of these values */
78 #if !defined(__BIG_ENDIAN)
79   #define __BIG_ENDIAN 4321
80 #endif
81 #if !defined(__LITTLE_ENDIAN)
82   #define __LITTLE_ENDIAN 1234
83 #endif
84 
85 /* I386 */
86 #if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(i386)
87   #define __BYTE_ORDER __LITTLE_ENDIAN
88   #define UNALIGNED_SAFE
89 #endif
90 
91 /* gcc 'may' define __LITTLE_ENDIAN__ or __BIG_ENDIAN__ to 1 (Note the trailing __),
92  * or even _LITTLE_ENDIAN or _BIG_ENDIAN (Note the single _ prefix) */
93 #if !defined(__BYTE_ORDER)
94   #if defined(__LITTLE_ENDIAN__) && __LITTLE_ENDIAN__==1 || defined(_LITTLE_ENDIAN) && _LITTLE_ENDIAN==1
95     #define __BYTE_ORDER __LITTLE_ENDIAN
96   #elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1 || defined(_BIG_ENDIAN) && _BIG_ENDIAN==1
97     #define __BYTE_ORDER __BIG_ENDIAN
98   #endif
99 #endif
100 
101 /* gcc (usually) defines xEL/EB macros for ARM and MIPS endianess */
102 #if !defined(__BYTE_ORDER)
103   #if defined(__ARMEL__) || defined(__MIPSEL__)
104     #define __BYTE_ORDER __LITTLE_ENDIAN
105   #endif
106   #if defined(__ARMEB__) || defined(__MIPSEB__)
107     #define __BYTE_ORDER __BIG_ENDIAN
108   #endif
109 #endif
110 
111 /* Now find best way we can to READ_UINT32 */
112 #if __BYTE_ORDER==__LITTLE_ENDIAN
113   /* CPU endian matches murmurhash algorithm, so read 32-bit word directly */
114   #define READ_UINT32(ptr)   (*((uint32_t*)(ptr)))
115 #elif __BYTE_ORDER==__BIG_ENDIAN
116   /* TODO: Add additional cases below where a compiler provided bswap32 is available */
117   #if defined(__GNUC__) && (__GNUC__>4 || (__GNUC__==4 && __GNUC_MINOR__>=3))
118     #define READ_UINT32(ptr)   (__builtin_bswap32(*((uint32_t*)(ptr))))
119   #else
120     /* Without a known fast bswap32 we're just as well off doing this */
121     #define READ_UINT32(ptr)   (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
122     #define UNALIGNED_SAFE
123   #endif
124 #else
125   /* Unknown endianess so last resort is to read individual bytes */
126   #define READ_UINT32(ptr)   (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
127 
128   /* Since we're not doing word-reads we can skip the messing about with realignment */
129   #define UNALIGNED_SAFE
130 #endif
131 
132 /* Find best way to ROTL32 */
133 #if defined(_MSC_VER)
134   #include <stdlib.h>  /* Microsoft put _rotl declaration in here */
135   #define ROTL32(x,r)  _rotl(x,r)
136 #else
137   /* gcc recognises this code and generates a rotate instruction for CPUs with one */
138   #define ROTL32(x,r)  (((uint32_t)x << r) | ((uint32_t)x >> (32 - r)))
139 #endif
140 
141 
142 /*-----------------------------------------------------------------------------
143  * Core murmurhash algorithm macros */
144 
145 #define C1  (0xcc9e2d51)
146 #define C2  (0x1b873593)
147 
148 /* This is the main processing body of the algorithm. It operates
149  * on each full 32-bits of input. */
150 #define DOBLOCK(h1, k1) do{ \
151         k1 *= C1; \
152         k1 = ROTL32(k1,15); \
153         k1 *= C2; \
154         \
155         h1 ^= k1; \
156         h1 = ROTL32(h1,13); \
157         h1 = h1*5+0xe6546b64; \
158     }while(0)
159 
160 
161 /* Append unaligned bytes to carry, forcing hash churn if we have 4 bytes */
162 /* cnt=bytes to process, h1=name of h1 var, c=carry, n=bytes in c, ptr/len=payload */
163 #define DOBYTES(cnt, h1, c, n, ptr, len) do{ \
164     int _i = cnt; \
165     while(_i--) { \
166         c = c>>8 | *ptr++<<24; \
167         n++; len--; \
168         if(n==4) { \
169             DOBLOCK(h1, c); \
170             n = 0; \
171         } \
172     } }while(0)
173 
174 /*---------------------------------------------------------------------------*/
175 
176 /* Main hashing function. Initialise carry to 0 and h1 to 0 or an initial seed
177  * if wanted. Both ph1 and pcarry are required arguments. */
PMurHash32_Process(uint32_t * ph1,uint32_t * pcarry,const void * key,int len)178 void PMurHash32_Process(uint32_t *ph1, uint32_t *pcarry, const void *key, int len)
179 {
180   uint32_t h1 = *ph1;
181   uint32_t c = *pcarry;
182 
183   const uint8_t *ptr = (uint8_t*)key;
184   const uint8_t *end;
185 
186   /* Extract carry count from low 2 bits of c value */
187   int n = c & 3;
188 
189 #if defined(UNALIGNED_SAFE)
190   /* This CPU handles unaligned word access */
191 
192   /* Consume any carry bytes */
193   int i = (4-n) & 3;
194   if(i && i <= len) {
195     DOBYTES(i, h1, c, n, ptr, len);
196   }
197 
198   /* Process 32-bit chunks */
199   end = ptr + len/4*4;
200   for( ; ptr < end ; ptr+=4) {
201     uint32_t k1 = READ_UINT32(ptr);
202     DOBLOCK(h1, k1);
203   }
204 
205 #else /*UNALIGNED_SAFE*/
206   /* This CPU does not handle unaligned word access */
207 
208   /* Consume enough so that the next data byte is word aligned */
209   int i = -(long)ptr & 3;
210   if(i && i <= len) {
211       DOBYTES(i, h1, c, n, ptr, len);
212   }
213 
214   /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */
215   end = ptr + len/4*4;
216   switch(n) { /* how many bytes in c */
217   case 0: /* c=[----]  w=[3210]  b=[3210]=w            c'=[----] */
218     for( ; ptr < end ; ptr+=4) {
219       uint32_t k1 = READ_UINT32(ptr);
220       DOBLOCK(h1, k1);
221     }
222     break;
223   case 1: /* c=[0---]  w=[4321]  b=[3210]=c>>24|w<<8   c'=[4---] */
224     for( ; ptr < end ; ptr+=4) {
225       uint32_t k1 = c>>24;
226       c = READ_UINT32(ptr);
227       k1 |= c<<8;
228       DOBLOCK(h1, k1);
229     }
230     break;
231   case 2: /* c=[10--]  w=[5432]  b=[3210]=c>>16|w<<16  c'=[54--] */
232     for( ; ptr < end ; ptr+=4) {
233       uint32_t k1 = c>>16;
234       c = READ_UINT32(ptr);
235       k1 |= c<<16;
236       DOBLOCK(h1, k1);
237     }
238     break;
239   case 3: /* c=[210-]  w=[6543]  b=[3210]=c>>8|w<<24   c'=[654-] */
240     for( ; ptr < end ; ptr+=4) {
241       uint32_t k1 = c>>8;
242       c = READ_UINT32(ptr);
243       k1 |= c<<24;
244       DOBLOCK(h1, k1);
245     }
246   }
247 #endif /*UNALIGNED_SAFE*/
248 
249   /* Advance over whole 32-bit chunks, possibly leaving 1..3 bytes */
250   len -= len/4*4;
251 
252   /* Append any remaining bytes into carry */
253   DOBYTES(len, h1, c, n, ptr, len);
254 
255   /* Copy out new running hash and carry */
256   *ph1 = h1;
257   *pcarry = (c & ~0xff) | n;
258 }
259 
260 /*---------------------------------------------------------------------------*/
261 
262 /* Finalize a hash. To match the original Murmur3A the total_length must be provided */
PMurHash32_Result(uint32_t h,uint32_t carry,uint32_t total_length)263 uint32_t PMurHash32_Result(uint32_t h, uint32_t carry, uint32_t total_length)
264 {
265   uint32_t k1;
266   int n = carry & 3;
267   if(n) {
268     k1 = carry >> (4-n)*8;
269     k1 *= C1; k1 = ROTL32(k1,15); k1 *= C2; h ^= k1;
270   }
271   h ^= total_length;
272 
273   /* fmix */
274   h ^= h >> 16;
275   h *= 0x85ebca6b;
276   h ^= h >> 13;
277   h *= 0xc2b2ae35;
278   h ^= h >> 16;
279 
280   return h;
281 }
282 
283 /*---------------------------------------------------------------------------*/
284 
285 /* Murmur3A compatable all-at-once */
PMurHash32(uint32_t seed,const void * key,int len)286 uint32_t PMurHash32(uint32_t seed, const void *key, int len)
287 {
288   uint32_t h1=seed, carry=0;
289   PMurHash32_Process(&h1, &carry, key, len);
290   return PMurHash32_Result(h1, carry, len);
291 }
292 
293 /*---------------------------------------------------------------------------*/
294 
295 /* Provide an API suitable for smhasher */
PMurHash32_test(const void * key,int len,uint32_t seed,void * out)296 void PMurHash32_test(const void *key, int len, uint32_t seed, void *out)
297 {
298   uint32_t h1=seed, carry=0;
299   const uint8_t *ptr = (uint8_t*)key;
300   const uint8_t *end = ptr + len;
301 
302 #if 0 /* Exercise the progressive processing */
303   while(ptr < end) {
304     //const uint8_t *mid = ptr + rand()%(end-ptr)+1;
305     const uint8_t *mid = ptr + (rand()&0xF);
306     mid = mid<end?mid:end;
307     PMurHash32_Process(&h1, &carry, ptr, mid-ptr);
308     ptr = mid;
309   }
310 #else
311   PMurHash32_Process(&h1, &carry, ptr, (int)(end-ptr));
312 #endif
313   h1 = PMurHash32_Result(h1, carry, len);
314   *(uint32_t*)out = h1;
315 }
316 
317 /*---------------------------------------------------------------------------*/
318