• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2006 Oct 10
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This is an SQLite module implementing full-text search.
14 */
15 
16 /*
17 ** The code in this file is only compiled if:
18 **
19 **     * The FTS3 module is being built as an extension
20 **       (in which case SQLITE_CORE is not defined), or
21 **
22 **     * The FTS3 module is being built into the core of
23 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
24 */
25 
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists.  The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable.  Since trees
30 ** are built from the bottom up, things will be described from the
31 ** bottom up.
32 **
33 **
34 **** Varints ****
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint.  We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
38 **
39 ** KEY:
40 **         A = 0xxxxxxx    7 bits of data and one flag bit
41 **         B = 1xxxxxxx    7 bits of data and one flag bit
42 **
43 **  7 bits - A
44 ** 14 bits - BA
45 ** 21 bits - BBA
46 ** and so on.
47 **
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same.  SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
52 **
53 ** Example encodings:
54 **
55 **     1:    0x01
56 **   127:    0x7f
57 **   128:    0x81 0x00
58 **
59 **
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term.  Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document.  The first
65 ** word of the document has a position of 0.
66 **
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option.  But that functionality is no longer supported.
69 **
70 ** A doclist is stored like this:
71 **
72 ** array {
73 **   varint docid;
74 **   array {                (position list for column 0)
75 **     varint position;     (2 more than the delta from previous position)
76 **   }
77 **   array {
78 **     varint POS_COLUMN;   (marks start of position list for new column)
79 **     varint column;       (index of new column)
80 **     array {
81 **       varint position;   (2 more than the delta from previous position)
82 **     }
83 **   }
84 **   varint POS_END;        (marks end of positions for this document.
85 ** }
86 **
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory.  A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array.  POS_END is 0.  POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position.  Example:
95 **
96 **   label:       A B C D E  F  G H   I  J K
97 **   value:     123 5 9 1 1 14 35 0 234 72 0
98 **
99 ** The 123 value is the first docid.  For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3).  The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1.  There are two positions at 12 and 45
103 ** (14-2 and 35-2+12).  The 0 at H indicate the end-of-document.  The
104 ** 234 at I is the next docid.  It has one position 72 (72-2) and then
105 ** terminates with the 0 at K.
106 **
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid.  A "column-list" is the set of positions for a single
109 ** column.  Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
112 **
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
115 **
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer).  Leaf nodes have
121 ** the format:
122 **
123 ** varint iHeight;             (height from leaf level, always 0)
124 ** varint nTerm;               (length of first term)
125 ** char pTerm[nTerm];          (content of first term)
126 ** varint nDoclist;            (length of term's associated doclist)
127 ** char pDoclist[nDoclist];    (content of doclist)
128 ** array {
129 **                             (further terms are delta-encoded)
130 **   varint nPrefix;           (length of prefix shared with previous term)
131 **   varint nSuffix;           (length of unshared suffix)
132 **   char pTermSuffix[nSuffix];(unshared suffix of next term)
133 **   varint nDoclist;          (length of term's associated doclist)
134 **   char pDoclist[nDoclist];  (content of doclist)
135 ** }
136 **
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
138 ** memory.
139 **
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order.  This means that when the end
142 ** of a node is reached, the next term is in the node with the next
143 ** greater node id.
144 **
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist).  The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists.  The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
153 **
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic.  For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes.  My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
158 **
159 **
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree.  Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader.  InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split.  The format of interior
167 ** nodes:
168 **
169 ** varint iHeight;           (height from leaf level, always >0)
170 ** varint iBlockid;          (block id of node's leftmost subtree)
171 ** optional {
172 **   varint nTerm;           (length of first term)
173 **   char pTerm[nTerm];      (content of first term)
174 **   array {
175 **                                (further terms are delta-encoded)
176 **     varint nPrefix;            (length of shared prefix with previous term)
177 **     varint nSuffix;            (length of unshared suffix)
178 **     char pTermSuffix[nSuffix]; (unshared suffix of next term)
179 **   }
180 ** }
181 **
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
184 **
185 ** An interior node encodes n terms separating n+1 subtrees.  The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded.  The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i.  Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
195 **
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny.  The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
202 **
203 **
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
207 ** segment's tree.
208 **
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node.  If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
216 **
217 ** The meta-information in the segment directory is:
218 **   level               - segment level (see below)
219 **   idx                 - index within level
220 **                       - (level,idx uniquely identify a segment)
221 **   start_block         - first leaf node
222 **   leaves_end_block    - last leaf node
223 **   end_block           - last block (including interior nodes)
224 **   root                - contents of root node
225 **
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
228 **
229 **
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches.  Each increase in level represents exponentially
233 ** more documents.
234 **
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment.  Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
242 **
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge.  Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
248 ** deleted.
249 **
250 ** MERGE_COUNT controls how often we merge segments.  16 seems to be
251 ** somewhat of a sweet spot for insertion performance.  32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
256 **
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged.  For instance, with 100k docs
259 ** inserted:
260 **
261 **    MERGE_COUNT   segments
262 **       16           25
263 **        8           12
264 **        4           10
265 **        2            6
266 **
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
271 **
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
275 ** spot around.
276 **
277 **
278 **
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated.  For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist.  Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out.  The
287 ** query logic likewise merges doclists so that newer data knocks out
288 ** older data.
289 **
290 ** TODO(shess) Provide a VACUUM type operation to clear out all
291 ** deletions and duplications.  This would basically be a forced merge
292 ** into a single segment.
293 */
294 #define CHROMIUM_FTS3_CHANGES 1
295 
296 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
297 
298 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
299 # define SQLITE_CORE 1
300 #endif
301 
302 #include "fts3Int.h"
303 
304 #include <assert.h>
305 #include <stdlib.h>
306 #include <stddef.h>
307 #include <stdio.h>
308 #include <string.h>
309 #include <stdarg.h>
310 
311 #include "fts3.h"
312 #ifndef SQLITE_CORE
313 # include "sqlite3ext.h"
314   SQLITE_EXTENSION_INIT1
315 #endif
316 
317 /*
318 ** Write a 64-bit variable-length integer to memory starting at p[0].
319 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
320 ** The number of bytes written is returned.
321 */
sqlite3Fts3PutVarint(char * p,sqlite_int64 v)322 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
323   unsigned char *q = (unsigned char *) p;
324   sqlite_uint64 vu = v;
325   do{
326     *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
327     vu >>= 7;
328   }while( vu!=0 );
329   q[-1] &= 0x7f;  /* turn off high bit in final byte */
330   assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
331   return (int) (q - (unsigned char *)p);
332 }
333 
334 /*
335 ** Read a 64-bit variable-length integer from memory starting at p[0].
336 ** Return the number of bytes read, or 0 on error.
337 ** The value is stored in *v.
338 */
sqlite3Fts3GetVarint(const char * p,sqlite_int64 * v)339 int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
340   const unsigned char *q = (const unsigned char *) p;
341   sqlite_uint64 x = 0, y = 1;
342   while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){
343     x += y * (*q++ & 0x7f);
344     y <<= 7;
345   }
346   x += y * (*q++);
347   *v = (sqlite_int64) x;
348   return (int) (q - (unsigned char *)p);
349 }
350 
351 /*
352 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
353 ** 32-bit integer before it is returned.
354 */
sqlite3Fts3GetVarint32(const char * p,int * pi)355 int sqlite3Fts3GetVarint32(const char *p, int *pi){
356  sqlite_int64 i;
357  int ret = sqlite3Fts3GetVarint(p, &i);
358  *pi = (int) i;
359  return ret;
360 }
361 
362 /*
363 ** Return the number of bytes required to encode v as a varint
364 */
sqlite3Fts3VarintLen(sqlite3_uint64 v)365 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
366   int i = 0;
367   do{
368     i++;
369     v >>= 7;
370   }while( v!=0 );
371   return i;
372 }
373 
374 /*
375 ** Convert an SQL-style quoted string into a normal string by removing
376 ** the quote characters.  The conversion is done in-place.  If the
377 ** input does not begin with a quote character, then this routine
378 ** is a no-op.
379 **
380 ** Examples:
381 **
382 **     "abc"   becomes   abc
383 **     'xyz'   becomes   xyz
384 **     [pqr]   becomes   pqr
385 **     `mno`   becomes   mno
386 **
387 */
sqlite3Fts3Dequote(char * z)388 void sqlite3Fts3Dequote(char *z){
389   char quote;                     /* Quote character (if any ) */
390 
391   quote = z[0];
392   if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
393     int iIn = 1;                  /* Index of next byte to read from input */
394     int iOut = 0;                 /* Index of next byte to write to output */
395 
396     /* If the first byte was a '[', then the close-quote character is a ']' */
397     if( quote=='[' ) quote = ']';
398 
399     while( ALWAYS(z[iIn]) ){
400       if( z[iIn]==quote ){
401         if( z[iIn+1]!=quote ) break;
402         z[iOut++] = quote;
403         iIn += 2;
404       }else{
405         z[iOut++] = z[iIn++];
406       }
407     }
408     z[iOut] = '\0';
409   }
410 }
411 
412 /*
413 ** Read a single varint from the doclist at *pp and advance *pp to point
414 ** to the first byte past the end of the varint.  Add the value of the varint
415 ** to *pVal.
416 */
fts3GetDeltaVarint(char ** pp,sqlite3_int64 * pVal)417 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
418   sqlite3_int64 iVal;
419   *pp += sqlite3Fts3GetVarint(*pp, &iVal);
420   *pVal += iVal;
421 }
422 
423 /*
424 ** As long as *pp has not reached its end (pEnd), then do the same
425 ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
426 ** But if we have reached the end of the varint, just set *pp=0 and
427 ** leave *pVal unchanged.
428 */
fts3GetDeltaVarint2(char ** pp,char * pEnd,sqlite3_int64 * pVal)429 static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){
430   if( *pp>=pEnd ){
431     *pp = 0;
432   }else{
433     fts3GetDeltaVarint(pp, pVal);
434   }
435 }
436 
437 /*
438 ** The xDisconnect() virtual table method.
439 */
fts3DisconnectMethod(sqlite3_vtab * pVtab)440 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
441   Fts3Table *p = (Fts3Table *)pVtab;
442   int i;
443 
444   assert( p->nPendingData==0 );
445   assert( p->pSegments==0 );
446 
447   /* Free any prepared statements held */
448   for(i=0; i<SizeofArray(p->aStmt); i++){
449     sqlite3_finalize(p->aStmt[i]);
450   }
451   sqlite3_free(p->zSegmentsTbl);
452   sqlite3_free(p->zReadExprlist);
453   sqlite3_free(p->zWriteExprlist);
454 
455   /* Invoke the tokenizer destructor to free the tokenizer. */
456   p->pTokenizer->pModule->xDestroy(p->pTokenizer);
457 
458   sqlite3_free(p);
459   return SQLITE_OK;
460 }
461 
462 /*
463 ** Construct one or more SQL statements from the format string given
464 ** and then evaluate those statements. The success code is written
465 ** into *pRc.
466 **
467 ** If *pRc is initially non-zero then this routine is a no-op.
468 */
fts3DbExec(int * pRc,sqlite3 * db,const char * zFormat,...)469 static void fts3DbExec(
470   int *pRc,              /* Success code */
471   sqlite3 *db,           /* Database in which to run SQL */
472   const char *zFormat,   /* Format string for SQL */
473   ...                    /* Arguments to the format string */
474 ){
475   va_list ap;
476   char *zSql;
477   if( *pRc ) return;
478   va_start(ap, zFormat);
479   zSql = sqlite3_vmprintf(zFormat, ap);
480   va_end(ap);
481   if( zSql==0 ){
482     *pRc = SQLITE_NOMEM;
483   }else{
484     *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
485     sqlite3_free(zSql);
486   }
487 }
488 
489 /*
490 ** The xDestroy() virtual table method.
491 */
fts3DestroyMethod(sqlite3_vtab * pVtab)492 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
493   int rc = SQLITE_OK;              /* Return code */
494   Fts3Table *p = (Fts3Table *)pVtab;
495   sqlite3 *db = p->db;
496 
497   /* Drop the shadow tables */
498   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", p->zDb, p->zName);
499   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", p->zDb,p->zName);
500   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p->zDb, p->zName);
501   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p->zDb, p->zName);
502   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", p->zDb, p->zName);
503 
504   /* If everything has worked, invoke fts3DisconnectMethod() to free the
505   ** memory associated with the Fts3Table structure and return SQLITE_OK.
506   ** Otherwise, return an SQLite error code.
507   */
508   return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
509 }
510 
511 
512 /*
513 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
514 ** passed as the first argument. This is done as part of the xConnect()
515 ** and xCreate() methods.
516 **
517 ** If *pRc is non-zero when this function is called, it is a no-op.
518 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
519 ** before returning.
520 */
fts3DeclareVtab(int * pRc,Fts3Table * p)521 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
522   if( *pRc==SQLITE_OK ){
523     int i;                        /* Iterator variable */
524     int rc;                       /* Return code */
525     char *zSql;                   /* SQL statement passed to declare_vtab() */
526     char *zCols;                  /* List of user defined columns */
527 
528     /* Create a list of user columns for the virtual table */
529     zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
530     for(i=1; zCols && i<p->nColumn; i++){
531       zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
532     }
533 
534     /* Create the whole "CREATE TABLE" statement to pass to SQLite */
535     zSql = sqlite3_mprintf(
536         "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols, p->zName
537     );
538     if( !zCols || !zSql ){
539       rc = SQLITE_NOMEM;
540     }else{
541       rc = sqlite3_declare_vtab(p->db, zSql);
542     }
543 
544     sqlite3_free(zSql);
545     sqlite3_free(zCols);
546     *pRc = rc;
547   }
548 }
549 
550 /*
551 ** Create the backing store tables (%_content, %_segments and %_segdir)
552 ** required by the FTS3 table passed as the only argument. This is done
553 ** as part of the vtab xCreate() method.
554 **
555 ** If the p->bHasDocsize boolean is true (indicating that this is an
556 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
557 ** %_stat tables required by FTS4.
558 */
fts3CreateTables(Fts3Table * p)559 static int fts3CreateTables(Fts3Table *p){
560   int rc = SQLITE_OK;             /* Return code */
561   int i;                          /* Iterator variable */
562   char *zContentCols;             /* Columns of %_content table */
563   sqlite3 *db = p->db;            /* The database connection */
564 
565   /* Create a list of user columns for the content table */
566   zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
567   for(i=0; zContentCols && i<p->nColumn; i++){
568     char *z = p->azColumn[i];
569     zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
570   }
571   if( zContentCols==0 ) rc = SQLITE_NOMEM;
572 
573   /* Create the content table */
574   fts3DbExec(&rc, db,
575      "CREATE TABLE %Q.'%q_content'(%s)",
576      p->zDb, p->zName, zContentCols
577   );
578   sqlite3_free(zContentCols);
579   /* Create other tables */
580   fts3DbExec(&rc, db,
581       "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
582       p->zDb, p->zName
583   );
584   fts3DbExec(&rc, db,
585       "CREATE TABLE %Q.'%q_segdir'("
586         "level INTEGER,"
587         "idx INTEGER,"
588         "start_block INTEGER,"
589         "leaves_end_block INTEGER,"
590         "end_block INTEGER,"
591         "root BLOB,"
592         "PRIMARY KEY(level, idx)"
593       ");",
594       p->zDb, p->zName
595   );
596   if( p->bHasDocsize ){
597     fts3DbExec(&rc, db,
598         "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
599         p->zDb, p->zName
600     );
601   }
602   if( p->bHasStat ){
603     fts3DbExec(&rc, db,
604         "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);",
605         p->zDb, p->zName
606     );
607   }
608   return rc;
609 }
610 
611 /*
612 ** Store the current database page-size in bytes in p->nPgsz.
613 **
614 ** If *pRc is non-zero when this function is called, it is a no-op.
615 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
616 ** before returning.
617 */
fts3DatabasePageSize(int * pRc,Fts3Table * p)618 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
619   if( *pRc==SQLITE_OK ){
620     int rc;                       /* Return code */
621     char *zSql;                   /* SQL text "PRAGMA %Q.page_size" */
622     sqlite3_stmt *pStmt;          /* Compiled "PRAGMA %Q.page_size" statement */
623 
624     zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
625     if( !zSql ){
626       rc = SQLITE_NOMEM;
627     }else{
628       rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
629       if( rc==SQLITE_OK ){
630         sqlite3_step(pStmt);
631         p->nPgsz = sqlite3_column_int(pStmt, 0);
632         rc = sqlite3_finalize(pStmt);
633       }else if( rc==SQLITE_AUTH ){
634         p->nPgsz = 1024;
635         rc = SQLITE_OK;
636       }
637     }
638     assert( p->nPgsz>0 || rc!=SQLITE_OK );
639     sqlite3_free(zSql);
640     *pRc = rc;
641   }
642 }
643 
644 /*
645 ** "Special" FTS4 arguments are column specifications of the following form:
646 **
647 **   <key> = <value>
648 **
649 ** There may not be whitespace surrounding the "=" character. The <value>
650 ** term may be quoted, but the <key> may not.
651 */
fts3IsSpecialColumn(const char * z,int * pnKey,char ** pzValue)652 static int fts3IsSpecialColumn(
653   const char *z,
654   int *pnKey,
655   char **pzValue
656 ){
657   char *zValue;
658   const char *zCsr = z;
659 
660   while( *zCsr!='=' ){
661     if( *zCsr=='\0' ) return 0;
662     zCsr++;
663   }
664 
665   *pnKey = (int)(zCsr-z);
666   zValue = sqlite3_mprintf("%s", &zCsr[1]);
667   if( zValue ){
668     sqlite3Fts3Dequote(zValue);
669   }
670   *pzValue = zValue;
671   return 1;
672 }
673 
674 /*
675 ** Append the output of a printf() style formatting to an existing string.
676 */
fts3Appendf(int * pRc,char ** pz,const char * zFormat,...)677 static void fts3Appendf(
678   int *pRc,                       /* IN/OUT: Error code */
679   char **pz,                      /* IN/OUT: Pointer to string buffer */
680   const char *zFormat,            /* Printf format string to append */
681   ...                             /* Arguments for printf format string */
682 ){
683   if( *pRc==SQLITE_OK ){
684     va_list ap;
685     char *z;
686     va_start(ap, zFormat);
687     z = sqlite3_vmprintf(zFormat, ap);
688     if( z && *pz ){
689       char *z2 = sqlite3_mprintf("%s%s", *pz, z);
690       sqlite3_free(z);
691       z = z2;
692     }
693     if( z==0 ) *pRc = SQLITE_NOMEM;
694     sqlite3_free(*pz);
695     *pz = z;
696   }
697 }
698 
699 /*
700 ** Return a copy of input string zInput enclosed in double-quotes (") and
701 ** with all double quote characters escaped. For example:
702 **
703 **     fts3QuoteId("un \"zip\"")   ->    "un \"\"zip\"\""
704 **
705 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
706 ** is the callers responsibility to call sqlite3_free() to release this
707 ** memory.
708 */
fts3QuoteId(char const * zInput)709 static char *fts3QuoteId(char const *zInput){
710   int nRet;
711   char *zRet;
712   nRet = 2 + strlen(zInput)*2 + 1;
713   zRet = sqlite3_malloc(nRet);
714   if( zRet ){
715     int i;
716     char *z = zRet;
717     *(z++) = '"';
718     for(i=0; zInput[i]; i++){
719       if( zInput[i]=='"' ) *(z++) = '"';
720       *(z++) = zInput[i];
721     }
722     *(z++) = '"';
723     *(z++) = '\0';
724   }
725   return zRet;
726 }
727 
728 /*
729 ** Return a list of comma separated SQL expressions that could be used
730 ** in a SELECT statement such as the following:
731 **
732 **     SELECT <list of expressions> FROM %_content AS x ...
733 **
734 ** to return the docid, followed by each column of text data in order
735 ** from left to write. If parameter zFunc is not NULL, then instead of
736 ** being returned directly each column of text data is passed to an SQL
737 ** function named zFunc first. For example, if zFunc is "unzip" and the
738 ** table has the three user-defined columns "a", "b", and "c", the following
739 ** string is returned:
740 **
741 **     "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')"
742 **
743 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
744 ** is the responsibility of the caller to eventually free it.
745 **
746 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
747 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
748 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
749 ** no error occurs, *pRc is left unmodified.
750 */
fts3ReadExprList(Fts3Table * p,const char * zFunc,int * pRc)751 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
752   char *zRet = 0;
753   char *zFree = 0;
754   char *zFunction;
755   int i;
756 
757   if( !zFunc ){
758     zFunction = "";
759   }else{
760     zFree = zFunction = fts3QuoteId(zFunc);
761   }
762   fts3Appendf(pRc, &zRet, "docid");
763   for(i=0; i<p->nColumn; i++){
764     fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
765   }
766   sqlite3_free(zFree);
767   return zRet;
768 }
769 
770 /*
771 ** Return a list of N comma separated question marks, where N is the number
772 ** of columns in the %_content table (one for the docid plus one for each
773 ** user-defined text column).
774 **
775 ** If argument zFunc is not NULL, then all but the first question mark
776 ** is preceded by zFunc and an open bracket, and followed by a closed
777 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
778 ** user-defined text columns, the following string is returned:
779 **
780 **     "?, zip(?), zip(?), zip(?)"
781 **
782 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
783 ** is the responsibility of the caller to eventually free it.
784 **
785 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
786 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
787 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
788 ** no error occurs, *pRc is left unmodified.
789 */
fts3WriteExprList(Fts3Table * p,const char * zFunc,int * pRc)790 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
791   char *zRet = 0;
792   char *zFree = 0;
793   char *zFunction;
794   int i;
795 
796   if( !zFunc ){
797     zFunction = "";
798   }else{
799     zFree = zFunction = fts3QuoteId(zFunc);
800   }
801   fts3Appendf(pRc, &zRet, "?");
802   for(i=0; i<p->nColumn; i++){
803     fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
804   }
805   sqlite3_free(zFree);
806   return zRet;
807 }
808 
809 /*
810 ** This function is the implementation of both the xConnect and xCreate
811 ** methods of the FTS3 virtual table.
812 **
813 ** The argv[] array contains the following:
814 **
815 **   argv[0]   -> module name  ("fts3" or "fts4")
816 **   argv[1]   -> database name
817 **   argv[2]   -> table name
818 **   argv[...] -> "column name" and other module argument fields.
819 */
fts3InitVtab(int isCreate,sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVTab,char ** pzErr)820 static int fts3InitVtab(
821   int isCreate,                   /* True for xCreate, false for xConnect */
822   sqlite3 *db,                    /* The SQLite database connection */
823   void *pAux,                     /* Hash table containing tokenizers */
824   int argc,                       /* Number of elements in argv array */
825   const char * const *argv,       /* xCreate/xConnect argument array */
826   sqlite3_vtab **ppVTab,          /* Write the resulting vtab structure here */
827   char **pzErr                    /* Write any error message here */
828 ){
829   Fts3Hash *pHash = (Fts3Hash *)pAux;
830   Fts3Table *p = 0;               /* Pointer to allocated vtab */
831   int rc = SQLITE_OK;             /* Return code */
832   int i;                          /* Iterator variable */
833   int nByte;                      /* Size of allocation used for *p */
834   int iCol;                       /* Column index */
835   int nString = 0;                /* Bytes required to hold all column names */
836   int nCol = 0;                   /* Number of columns in the FTS table */
837   char *zCsr;                     /* Space for holding column names */
838   int nDb;                        /* Bytes required to hold database name */
839   int nName;                      /* Bytes required to hold table name */
840   int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
841   int bNoDocsize = 0;             /* True to omit %_docsize table */
842   const char **aCol;              /* Array of column names */
843   sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */
844 
845   char *zCompress = 0;
846   char *zUncompress = 0;
847 
848   assert( strlen(argv[0])==4 );
849   assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
850        || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
851   );
852 
853   nDb = (int)strlen(argv[1]) + 1;
854   nName = (int)strlen(argv[2]) + 1;
855 
856   aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) );
857   if( !aCol ) return SQLITE_NOMEM;
858   memset((void *)aCol, 0, sizeof(const char *) * (argc-2));
859 
860   /* Loop through all of the arguments passed by the user to the FTS3/4
861   ** module (i.e. all the column names and special arguments). This loop
862   ** does the following:
863   **
864   **   + Figures out the number of columns the FTSX table will have, and
865   **     the number of bytes of space that must be allocated to store copies
866   **     of the column names.
867   **
868   **   + If there is a tokenizer specification included in the arguments,
869   **     initializes the tokenizer pTokenizer.
870   */
871   for(i=3; rc==SQLITE_OK && i<argc; i++){
872     char const *z = argv[i];
873     int nKey;
874     char *zVal;
875 
876     /* Check if this is a tokenizer specification */
877     if( !pTokenizer
878      && strlen(z)>8
879      && 0==sqlite3_strnicmp(z, "tokenize", 8)
880      && 0==sqlite3Fts3IsIdChar(z[8])
881     ){
882       rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
883     }
884 
885     /* Check if it is an FTS4 special argument. */
886     else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
887       if( !zVal ){
888         rc = SQLITE_NOMEM;
889         goto fts3_init_out;
890       }
891       if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){
892         if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){
893           bNoDocsize = 1;
894         }else{
895           *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
896           rc = SQLITE_ERROR;
897         }
898       }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){
899         zCompress = zVal;
900         zVal = 0;
901       }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){
902         zUncompress = zVal;
903         zVal = 0;
904       }else{
905         *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
906         rc = SQLITE_ERROR;
907       }
908       sqlite3_free(zVal);
909     }
910 
911     /* Otherwise, the argument is a column name. */
912     else {
913       nString += (int)(strlen(z) + 1);
914       aCol[nCol++] = z;
915     }
916   }
917   if( rc!=SQLITE_OK ) goto fts3_init_out;
918 
919   if( nCol==0 ){
920     assert( nString==0 );
921     aCol[0] = "content";
922     nString = 8;
923     nCol = 1;
924   }
925 
926   if( pTokenizer==0 ){
927     rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
928     if( rc!=SQLITE_OK ) goto fts3_init_out;
929   }
930   assert( pTokenizer );
931 
932 
933   /* Allocate and populate the Fts3Table structure. */
934   nByte = sizeof(Fts3Table) +              /* Fts3Table */
935           nCol * sizeof(char *) +              /* azColumn */
936           nName +                              /* zName */
937           nDb +                                /* zDb */
938           nString;                             /* Space for azColumn strings */
939   p = (Fts3Table*)sqlite3_malloc(nByte);
940   if( p==0 ){
941     rc = SQLITE_NOMEM;
942     goto fts3_init_out;
943   }
944   memset(p, 0, nByte);
945   p->db = db;
946   p->nColumn = nCol;
947   p->nPendingData = 0;
948   p->azColumn = (char **)&p[1];
949   p->pTokenizer = pTokenizer;
950   p->nNodeSize = 1000;
951   p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
952   p->bHasDocsize = (isFts4 && bNoDocsize==0);
953   p->bHasStat = isFts4;
954   fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);
955 
956   /* Fill in the zName and zDb fields of the vtab structure. */
957   zCsr = (char *)&p->azColumn[nCol];
958   p->zName = zCsr;
959   memcpy(zCsr, argv[2], nName);
960   zCsr += nName;
961   p->zDb = zCsr;
962   memcpy(zCsr, argv[1], nDb);
963   zCsr += nDb;
964 
965   /* Fill in the azColumn array */
966   for(iCol=0; iCol<nCol; iCol++){
967     char *z;
968     int n;
969     z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
970     memcpy(zCsr, z, n);
971     zCsr[n] = '\0';
972     sqlite3Fts3Dequote(zCsr);
973     p->azColumn[iCol] = zCsr;
974     zCsr += n+1;
975     assert( zCsr <= &((char *)p)[nByte] );
976   }
977 
978   if( (zCompress==0)!=(zUncompress==0) ){
979     char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
980     rc = SQLITE_ERROR;
981     *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
982   }
983   p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
984   p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
985   if( rc!=SQLITE_OK ) goto fts3_init_out;
986 
987   /* If this is an xCreate call, create the underlying tables in the
988   ** database. TODO: For xConnect(), it could verify that said tables exist.
989   */
990   if( isCreate ){
991     rc = fts3CreateTables(p);
992   }
993 
994   /* Figure out the page-size for the database. This is required in order to
995   ** estimate the cost of loading large doclists from the database (see
996   ** function sqlite3Fts3SegReaderCost() for details).
997   */
998   fts3DatabasePageSize(&rc, p);
999 
1000   /* Declare the table schema to SQLite. */
1001   fts3DeclareVtab(&rc, p);
1002 
1003 fts3_init_out:
1004   sqlite3_free(zCompress);
1005   sqlite3_free(zUncompress);
1006   sqlite3_free((void *)aCol);
1007   if( rc!=SQLITE_OK ){
1008     if( p ){
1009       fts3DisconnectMethod((sqlite3_vtab *)p);
1010     }else if( pTokenizer ){
1011       pTokenizer->pModule->xDestroy(pTokenizer);
1012     }
1013   }else{
1014     *ppVTab = &p->base;
1015   }
1016   return rc;
1017 }
1018 
1019 /*
1020 ** The xConnect() and xCreate() methods for the virtual table. All the
1021 ** work is done in function fts3InitVtab().
1022 */
fts3ConnectMethod(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)1023 static int fts3ConnectMethod(
1024   sqlite3 *db,                    /* Database connection */
1025   void *pAux,                     /* Pointer to tokenizer hash table */
1026   int argc,                       /* Number of elements in argv array */
1027   const char * const *argv,       /* xCreate/xConnect argument array */
1028   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
1029   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
1030 ){
1031   return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
1032 }
fts3CreateMethod(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)1033 static int fts3CreateMethod(
1034   sqlite3 *db,                    /* Database connection */
1035   void *pAux,                     /* Pointer to tokenizer hash table */
1036   int argc,                       /* Number of elements in argv array */
1037   const char * const *argv,       /* xCreate/xConnect argument array */
1038   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
1039   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
1040 ){
1041   return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
1042 }
1043 
1044 /*
1045 ** Implementation of the xBestIndex method for FTS3 tables. There
1046 ** are three possible strategies, in order of preference:
1047 **
1048 **   1. Direct lookup by rowid or docid.
1049 **   2. Full-text search using a MATCH operator on a non-docid column.
1050 **   3. Linear scan of %_content table.
1051 */
fts3BestIndexMethod(sqlite3_vtab * pVTab,sqlite3_index_info * pInfo)1052 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1053   Fts3Table *p = (Fts3Table *)pVTab;
1054   int i;                          /* Iterator variable */
1055   int iCons = -1;                 /* Index of constraint to use */
1056 
1057   /* By default use a full table scan. This is an expensive option,
1058   ** so search through the constraints to see if a more efficient
1059   ** strategy is possible.
1060   */
1061   pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1062   pInfo->estimatedCost = 500000;
1063   for(i=0; i<pInfo->nConstraint; i++){
1064     struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
1065     if( pCons->usable==0 ) continue;
1066 
1067     /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1068     if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
1069      && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
1070     ){
1071       pInfo->idxNum = FTS3_DOCID_SEARCH;
1072       pInfo->estimatedCost = 1.0;
1073       iCons = i;
1074     }
1075 
1076     /* A MATCH constraint. Use a full-text search.
1077     **
1078     ** If there is more than one MATCH constraint available, use the first
1079     ** one encountered. If there is both a MATCH constraint and a direct
1080     ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1081     ** though the rowid/docid lookup is faster than a MATCH query, selecting
1082     ** it would lead to an "unable to use function MATCH in the requested
1083     ** context" error.
1084     */
1085     if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
1086      && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
1087     ){
1088       pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
1089       pInfo->estimatedCost = 2.0;
1090       iCons = i;
1091       break;
1092     }
1093   }
1094 
1095   if( iCons>=0 ){
1096     pInfo->aConstraintUsage[iCons].argvIndex = 1;
1097     pInfo->aConstraintUsage[iCons].omit = 1;
1098   }
1099   return SQLITE_OK;
1100 }
1101 
1102 /*
1103 ** Implementation of xOpen method.
1104 */
fts3OpenMethod(sqlite3_vtab * pVTab,sqlite3_vtab_cursor ** ppCsr)1105 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1106   sqlite3_vtab_cursor *pCsr;               /* Allocated cursor */
1107 
1108   UNUSED_PARAMETER(pVTab);
1109 
1110   /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1111   ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1112   ** if the allocation fails, return SQLITE_NOMEM.
1113   */
1114   *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
1115   if( !pCsr ){
1116     return SQLITE_NOMEM;
1117   }
1118   memset(pCsr, 0, sizeof(Fts3Cursor));
1119   return SQLITE_OK;
1120 }
1121 
1122 /*
1123 ** Close the cursor.  For additional information see the documentation
1124 ** on the xClose method of the virtual table interface.
1125 */
fts3CloseMethod(sqlite3_vtab_cursor * pCursor)1126 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
1127   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
1128   assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1129   sqlite3_finalize(pCsr->pStmt);
1130   sqlite3Fts3ExprFree(pCsr->pExpr);
1131   sqlite3Fts3FreeDeferredTokens(pCsr);
1132   sqlite3_free(pCsr->aDoclist);
1133   sqlite3_free(pCsr->aMatchinfo);
1134   sqlite3_free(pCsr);
1135   return SQLITE_OK;
1136 }
1137 
1138 /*
1139 ** Position the pCsr->pStmt statement so that it is on the row
1140 ** of the %_content table that contains the last match.  Return
1141 ** SQLITE_OK on success.
1142 */
fts3CursorSeek(sqlite3_context * pContext,Fts3Cursor * pCsr)1143 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
1144   if( pCsr->isRequireSeek ){
1145     pCsr->isRequireSeek = 0;
1146     sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
1147     if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
1148       return SQLITE_OK;
1149     }else{
1150       int rc = sqlite3_reset(pCsr->pStmt);
1151       if( rc==SQLITE_OK ){
1152         /* If no row was found and no error has occured, then the %_content
1153         ** table is missing a row that is present in the full-text index.
1154         ** The data structures are corrupt.
1155         */
1156         rc = SQLITE_CORRUPT;
1157       }
1158       pCsr->isEof = 1;
1159       if( pContext ){
1160         sqlite3_result_error_code(pContext, rc);
1161       }
1162       return rc;
1163     }
1164   }else{
1165     return SQLITE_OK;
1166   }
1167 }
1168 
1169 /*
1170 ** This function is used to process a single interior node when searching
1171 ** a b-tree for a term or term prefix. The node data is passed to this
1172 ** function via the zNode/nNode parameters. The term to search for is
1173 ** passed in zTerm/nTerm.
1174 **
1175 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1176 ** of the child node that heads the sub-tree that may contain the term.
1177 **
1178 ** If piLast is not NULL, then *piLast is set to the right-most child node
1179 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1180 ** a prefix.
1181 **
1182 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1183 */
fts3ScanInteriorNode(const char * zTerm,int nTerm,const char * zNode,int nNode,sqlite3_int64 * piFirst,sqlite3_int64 * piLast)1184 static int fts3ScanInteriorNode(
1185   const char *zTerm,              /* Term to select leaves for */
1186   int nTerm,                      /* Size of term zTerm in bytes */
1187   const char *zNode,              /* Buffer containing segment interior node */
1188   int nNode,                      /* Size of buffer at zNode */
1189   sqlite3_int64 *piFirst,         /* OUT: Selected child node */
1190   sqlite3_int64 *piLast           /* OUT: Selected child node */
1191 ){
1192   int rc = SQLITE_OK;             /* Return code */
1193   const char *zCsr = zNode;       /* Cursor to iterate through node */
1194   const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
1195   char *zBuffer = 0;              /* Buffer to load terms into */
1196   int nAlloc = 0;                 /* Size of allocated buffer */
1197   int isFirstTerm = 1;            /* True when processing first term on page */
1198   sqlite3_int64 iChild;           /* Block id of child node to descend to */
1199 
1200   /* Skip over the 'height' varint that occurs at the start of every
1201   ** interior node. Then load the blockid of the left-child of the b-tree
1202   ** node into variable iChild.
1203   **
1204   ** Even if the data structure on disk is corrupted, this (reading two
1205   ** varints from the buffer) does not risk an overread. If zNode is a
1206   ** root node, then the buffer comes from a SELECT statement. SQLite does
1207   ** not make this guarantee explicitly, but in practice there are always
1208   ** either more than 20 bytes of allocated space following the nNode bytes of
1209   ** contents, or two zero bytes. Or, if the node is read from the %_segments
1210   ** table, then there are always 20 bytes of zeroed padding following the
1211   ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1212   */
1213   zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1214   zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1215   if( zCsr>zEnd ){
1216     return SQLITE_CORRUPT;
1217   }
1218 
1219   while( zCsr<zEnd && (piFirst || piLast) ){
1220     int cmp;                      /* memcmp() result */
1221     int nSuffix;                  /* Size of term suffix */
1222     int nPrefix = 0;              /* Size of term prefix */
1223     int nBuffer;                  /* Total term size */
1224 
1225     /* Load the next term on the node into zBuffer. Use realloc() to expand
1226     ** the size of zBuffer if required.  */
1227     if( !isFirstTerm ){
1228       zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
1229     }
1230     isFirstTerm = 0;
1231     zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
1232 
1233     /* NOTE(shess): Previous code checked for negative nPrefix and
1234     ** nSuffix and suffix overrunning zEnd.  Additionally corrupt if
1235     ** the prefix is longer than the previous term, or if the suffix
1236     ** causes overflow.
1237     */
1238     if( nPrefix<0 || nSuffix<0 /* || nPrefix>nBuffer */
1239      || &zCsr[nSuffix]<zCsr || &zCsr[nSuffix]>zEnd ){
1240       rc = SQLITE_CORRUPT;
1241       goto finish_scan;
1242     }
1243     if( nPrefix+nSuffix>nAlloc ){
1244       char *zNew;
1245       nAlloc = (nPrefix+nSuffix) * 2;
1246       zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
1247       if( !zNew ){
1248         rc = SQLITE_NOMEM;
1249         goto finish_scan;
1250       }
1251       zBuffer = zNew;
1252     }
1253     memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
1254     nBuffer = nPrefix + nSuffix;
1255     zCsr += nSuffix;
1256 
1257     /* Compare the term we are searching for with the term just loaded from
1258     ** the interior node. If the specified term is greater than or equal
1259     ** to the term from the interior node, then all terms on the sub-tree
1260     ** headed by node iChild are smaller than zTerm. No need to search
1261     ** iChild.
1262     **
1263     ** If the interior node term is larger than the specified term, then
1264     ** the tree headed by iChild may contain the specified term.
1265     */
1266     cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
1267     if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
1268       *piFirst = iChild;
1269       piFirst = 0;
1270     }
1271 
1272     if( piLast && cmp<0 ){
1273       *piLast = iChild;
1274       piLast = 0;
1275     }
1276 
1277     iChild++;
1278   };
1279 
1280   if( piFirst ) *piFirst = iChild;
1281   if( piLast ) *piLast = iChild;
1282 
1283  finish_scan:
1284   sqlite3_free(zBuffer);
1285   return rc;
1286 }
1287 
1288 
1289 /*
1290 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1291 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1292 ** contains a term. This function searches the sub-tree headed by the zNode
1293 ** node for the range of leaf nodes that may contain the specified term
1294 ** or terms for which the specified term is a prefix.
1295 **
1296 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
1297 ** left-most leaf node in the tree that may contain the specified term.
1298 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
1299 ** right-most leaf node that may contain a term for which the specified
1300 ** term is a prefix.
1301 **
1302 ** It is possible that the range of returned leaf nodes does not contain
1303 ** the specified term or any terms for which it is a prefix. However, if the
1304 ** segment does contain any such terms, they are stored within the identified
1305 ** range. Because this function only inspects interior segment nodes (and
1306 ** never loads leaf nodes into memory), it is not possible to be sure.
1307 **
1308 ** If an error occurs, an error code other than SQLITE_OK is returned.
1309 */
fts3SelectLeaf(Fts3Table * p,const char * zTerm,int nTerm,const char * zNode,int nNode,sqlite3_int64 * piLeaf,sqlite3_int64 * piLeaf2)1310 static int fts3SelectLeaf(
1311   Fts3Table *p,                   /* Virtual table handle */
1312   const char *zTerm,              /* Term to select leaves for */
1313   int nTerm,                      /* Size of term zTerm in bytes */
1314   const char *zNode,              /* Buffer containing segment interior node */
1315   int nNode,                      /* Size of buffer at zNode */
1316   sqlite3_int64 *piLeaf,          /* Selected leaf node */
1317   sqlite3_int64 *piLeaf2          /* Selected leaf node */
1318 ){
1319   int rc;                         /* Return code */
1320   int iHeight;                    /* Height of this node in tree */
1321 
1322   assert( piLeaf || piLeaf2 );
1323 
1324   sqlite3Fts3GetVarint32(zNode, &iHeight);
1325   rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
1326   assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
1327 
1328   if( rc==SQLITE_OK && iHeight>1 ){
1329     char *zBlob = 0;              /* Blob read from %_segments table */
1330     int nBlob;                    /* Size of zBlob in bytes */
1331 
1332     if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
1333       rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
1334       if( rc==SQLITE_OK ){
1335         rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
1336       }
1337       sqlite3_free(zBlob);
1338       piLeaf = 0;
1339       zBlob = 0;
1340     }
1341 
1342     if( rc==SQLITE_OK ){
1343       rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
1344     }
1345     if( rc==SQLITE_OK ){
1346       rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
1347     }
1348     sqlite3_free(zBlob);
1349   }
1350 
1351   return rc;
1352 }
1353 
1354 /*
1355 ** This function is used to create delta-encoded serialized lists of FTS3
1356 ** varints. Each call to this function appends a single varint to a list.
1357 */
fts3PutDeltaVarint(char ** pp,sqlite3_int64 * piPrev,sqlite3_int64 iVal)1358 static void fts3PutDeltaVarint(
1359   char **pp,                      /* IN/OUT: Output pointer */
1360   sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
1361   sqlite3_int64 iVal              /* Write this value to the list */
1362 ){
1363   assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
1364   *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
1365   *piPrev = iVal;
1366 }
1367 
1368 /*
1369 ** When this function is called, *ppPoslist is assumed to point to the
1370 ** start of a position-list. After it returns, *ppPoslist points to the
1371 ** first byte after the position-list.
1372 **
1373 ** A position list is list of positions (delta encoded) and columns for
1374 ** a single document record of a doclist.  So, in other words, this
1375 ** routine advances *ppPoslist so that it points to the next docid in
1376 ** the doclist, or to the first byte past the end of the doclist.
1377 **
1378 ** If pp is not NULL, then the contents of the position list are copied
1379 ** to *pp. *pp is set to point to the first byte past the last byte copied
1380 ** before this function returns.
1381 */
fts3PoslistCopy(char ** pp,char ** ppPoslist)1382 static void fts3PoslistCopy(char **pp, char **ppPoslist){
1383   char *pEnd = *ppPoslist;
1384   char c = 0;
1385 
1386   /* The end of a position list is marked by a zero encoded as an FTS3
1387   ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
1388   ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
1389   ** of some other, multi-byte, value.
1390   **
1391   ** The following while-loop moves pEnd to point to the first byte that is not
1392   ** immediately preceded by a byte with the 0x80 bit set. Then increments
1393   ** pEnd once more so that it points to the byte immediately following the
1394   ** last byte in the position-list.
1395   */
1396   while( *pEnd | c ){
1397     c = *pEnd++ & 0x80;
1398     testcase( c!=0 && (*pEnd)==0 );
1399   }
1400   pEnd++;  /* Advance past the POS_END terminator byte */
1401 
1402   if( pp ){
1403     int n = (int)(pEnd - *ppPoslist);
1404     char *p = *pp;
1405     memcpy(p, *ppPoslist, n);
1406     p += n;
1407     *pp = p;
1408   }
1409   *ppPoslist = pEnd;
1410 }
1411 
1412 /*
1413 ** When this function is called, *ppPoslist is assumed to point to the
1414 ** start of a column-list. After it returns, *ppPoslist points to the
1415 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
1416 **
1417 ** A column-list is list of delta-encoded positions for a single column
1418 ** within a single document within a doclist.
1419 **
1420 ** The column-list is terminated either by a POS_COLUMN varint (1) or
1421 ** a POS_END varint (0).  This routine leaves *ppPoslist pointing to
1422 ** the POS_COLUMN or POS_END that terminates the column-list.
1423 **
1424 ** If pp is not NULL, then the contents of the column-list are copied
1425 ** to *pp. *pp is set to point to the first byte past the last byte copied
1426 ** before this function returns.  The POS_COLUMN or POS_END terminator
1427 ** is not copied into *pp.
1428 */
fts3ColumnlistCopy(char ** pp,char ** ppPoslist)1429 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
1430   char *pEnd = *ppPoslist;
1431   char c = 0;
1432 
1433   /* A column-list is terminated by either a 0x01 or 0x00 byte that is
1434   ** not part of a multi-byte varint.
1435   */
1436   while( 0xFE & (*pEnd | c) ){
1437     c = *pEnd++ & 0x80;
1438     testcase( c!=0 && ((*pEnd)&0xfe)==0 );
1439   }
1440   if( pp ){
1441     int n = (int)(pEnd - *ppPoslist);
1442     char *p = *pp;
1443     memcpy(p, *ppPoslist, n);
1444     p += n;
1445     *pp = p;
1446   }
1447   *ppPoslist = pEnd;
1448 }
1449 
1450 /*
1451 ** Value used to signify the end of an position-list. This is safe because
1452 ** it is not possible to have a document with 2^31 terms.
1453 */
1454 #define POSITION_LIST_END 0x7fffffff
1455 
1456 /*
1457 ** This function is used to help parse position-lists. When this function is
1458 ** called, *pp may point to the start of the next varint in the position-list
1459 ** being parsed, or it may point to 1 byte past the end of the position-list
1460 ** (in which case **pp will be a terminator bytes POS_END (0) or
1461 ** (1)).
1462 **
1463 ** If *pp points past the end of the current position-list, set *pi to
1464 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
1465 ** increment the current value of *pi by the value read, and set *pp to
1466 ** point to the next value before returning.
1467 **
1468 ** Before calling this routine *pi must be initialized to the value of
1469 ** the previous position, or zero if we are reading the first position
1470 ** in the position-list.  Because positions are delta-encoded, the value
1471 ** of the previous position is needed in order to compute the value of
1472 ** the next position.
1473 */
fts3ReadNextPos(char ** pp,sqlite3_int64 * pi)1474 static void fts3ReadNextPos(
1475   char **pp,                    /* IN/OUT: Pointer into position-list buffer */
1476   sqlite3_int64 *pi             /* IN/OUT: Value read from position-list */
1477 ){
1478   if( (**pp)&0xFE ){
1479     fts3GetDeltaVarint(pp, pi);
1480     *pi -= 2;
1481   }else{
1482     *pi = POSITION_LIST_END;
1483   }
1484 }
1485 
1486 /*
1487 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
1488 ** the value of iCol encoded as a varint to *pp.   This will start a new
1489 ** column list.
1490 **
1491 ** Set *pp to point to the byte just after the last byte written before
1492 ** returning (do not modify it if iCol==0). Return the total number of bytes
1493 ** written (0 if iCol==0).
1494 */
fts3PutColNumber(char ** pp,int iCol)1495 static int fts3PutColNumber(char **pp, int iCol){
1496   int n = 0;                      /* Number of bytes written */
1497   if( iCol ){
1498     char *p = *pp;                /* Output pointer */
1499     n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
1500     *p = 0x01;
1501     *pp = &p[n];
1502   }
1503   return n;
1504 }
1505 
1506 /*
1507 ** Compute the union of two position lists.  The output written
1508 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
1509 ** order and with any duplicates removed.  All pointers are
1510 ** updated appropriately.   The caller is responsible for insuring
1511 ** that there is enough space in *pp to hold the complete output.
1512 */
fts3PoslistMerge(char ** pp,char ** pp1,char ** pp2)1513 static void fts3PoslistMerge(
1514   char **pp,                      /* Output buffer */
1515   char **pp1,                     /* Left input list */
1516   char **pp2                      /* Right input list */
1517 ){
1518   char *p = *pp;
1519   char *p1 = *pp1;
1520   char *p2 = *pp2;
1521 
1522   while( *p1 || *p2 ){
1523     int iCol1;         /* The current column index in pp1 */
1524     int iCol2;         /* The current column index in pp2 */
1525 
1526     if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1);
1527     else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
1528     else iCol1 = 0;
1529 
1530     if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2);
1531     else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
1532     else iCol2 = 0;
1533 
1534     if( iCol1==iCol2 ){
1535       sqlite3_int64 i1 = 0;       /* Last position from pp1 */
1536       sqlite3_int64 i2 = 0;       /* Last position from pp2 */
1537       sqlite3_int64 iPrev = 0;
1538       int n = fts3PutColNumber(&p, iCol1);
1539       p1 += n;
1540       p2 += n;
1541 
1542       /* At this point, both p1 and p2 point to the start of column-lists
1543       ** for the same column (the column with index iCol1 and iCol2).
1544       ** A column-list is a list of non-negative delta-encoded varints, each
1545       ** incremented by 2 before being stored. Each list is terminated by a
1546       ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
1547       ** and writes the results to buffer p. p is left pointing to the byte
1548       ** after the list written. No terminator (POS_END or POS_COLUMN) is
1549       ** written to the output.
1550       */
1551       fts3GetDeltaVarint(&p1, &i1);
1552       fts3GetDeltaVarint(&p2, &i2);
1553       do {
1554         fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
1555         iPrev -= 2;
1556         if( i1==i2 ){
1557           fts3ReadNextPos(&p1, &i1);
1558           fts3ReadNextPos(&p2, &i2);
1559         }else if( i1<i2 ){
1560           fts3ReadNextPos(&p1, &i1);
1561         }else{
1562           fts3ReadNextPos(&p2, &i2);
1563         }
1564       }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
1565     }else if( iCol1<iCol2 ){
1566       p1 += fts3PutColNumber(&p, iCol1);
1567       fts3ColumnlistCopy(&p, &p1);
1568     }else{
1569       p2 += fts3PutColNumber(&p, iCol2);
1570       fts3ColumnlistCopy(&p, &p2);
1571     }
1572   }
1573 
1574   *p++ = POS_END;
1575   *pp = p;
1576   *pp1 = p1 + 1;
1577   *pp2 = p2 + 1;
1578 }
1579 
1580 /*
1581 ** nToken==1 searches for adjacent positions.
1582 **
1583 ** This function is used to merge two position lists into one. When it is
1584 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
1585 ** the part of a doclist that follows each document id. For example, if a row
1586 ** contains:
1587 **
1588 **     'a b c'|'x y z'|'a b b a'
1589 **
1590 ** Then the position list for this row for token 'b' would consist of:
1591 **
1592 **     0x02 0x01 0x02 0x03 0x03 0x00
1593 **
1594 ** When this function returns, both *pp1 and *pp2 are left pointing to the
1595 ** byte following the 0x00 terminator of their respective position lists.
1596 **
1597 ** If isSaveLeft is 0, an entry is added to the output position list for
1598 ** each position in *pp2 for which there exists one or more positions in
1599 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
1600 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
1601 ** slots before it.
1602 */
fts3PoslistPhraseMerge(char ** pp,int nToken,int isSaveLeft,int isExact,char ** pp1,char ** pp2)1603 static int fts3PoslistPhraseMerge(
1604   char **pp,                      /* IN/OUT: Preallocated output buffer */
1605   int nToken,                     /* Maximum difference in token positions */
1606   int isSaveLeft,                 /* Save the left position */
1607   int isExact,                    /* If *pp1 is exactly nTokens before *pp2 */
1608   char **pp1,                     /* IN/OUT: Left input list */
1609   char **pp2                      /* IN/OUT: Right input list */
1610 ){
1611   char *p = (pp ? *pp : 0);
1612   char *p1 = *pp1;
1613   char *p2 = *pp2;
1614   int iCol1 = 0;
1615   int iCol2 = 0;
1616 
1617   /* Never set both isSaveLeft and isExact for the same invocation. */
1618   assert( isSaveLeft==0 || isExact==0 );
1619 
1620   assert( *p1!=0 && *p2!=0 );
1621   if( *p1==POS_COLUMN ){
1622     p1++;
1623     p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1624   }
1625   if( *p2==POS_COLUMN ){
1626     p2++;
1627     p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1628   }
1629 
1630   while( 1 ){
1631     if( iCol1==iCol2 ){
1632       char *pSave = p;
1633       sqlite3_int64 iPrev = 0;
1634       sqlite3_int64 iPos1 = 0;
1635       sqlite3_int64 iPos2 = 0;
1636 
1637       if( pp && iCol1 ){
1638         *p++ = POS_COLUMN;
1639         p += sqlite3Fts3PutVarint(p, iCol1);
1640       }
1641 
1642       assert( *p1!=POS_END && *p1!=POS_COLUMN );
1643       assert( *p2!=POS_END && *p2!=POS_COLUMN );
1644       fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
1645       fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
1646 
1647       while( 1 ){
1648         if( iPos2==iPos1+nToken
1649          || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
1650         ){
1651           sqlite3_int64 iSave;
1652           if( !pp ){
1653             fts3PoslistCopy(0, &p2);
1654             fts3PoslistCopy(0, &p1);
1655             *pp1 = p1;
1656             *pp2 = p2;
1657             return 1;
1658           }
1659           iSave = isSaveLeft ? iPos1 : iPos2;
1660           fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
1661           pSave = 0;
1662         }
1663         if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
1664           if( (*p2&0xFE)==0 ) break;
1665           fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
1666         }else{
1667           if( (*p1&0xFE)==0 ) break;
1668           fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
1669         }
1670       }
1671 
1672       if( pSave ){
1673         assert( pp && p );
1674         p = pSave;
1675       }
1676 
1677       fts3ColumnlistCopy(0, &p1);
1678       fts3ColumnlistCopy(0, &p2);
1679       assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
1680       if( 0==*p1 || 0==*p2 ) break;
1681 
1682       p1++;
1683       p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1684       p2++;
1685       p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1686     }
1687 
1688     /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
1689     ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
1690     ** end of the position list, or the 0x01 that precedes the next
1691     ** column-number in the position list.
1692     */
1693     else if( iCol1<iCol2 ){
1694       fts3ColumnlistCopy(0, &p1);
1695       if( 0==*p1 ) break;
1696       p1++;
1697       p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1698     }else{
1699       fts3ColumnlistCopy(0, &p2);
1700       if( 0==*p2 ) break;
1701       p2++;
1702       p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1703     }
1704   }
1705 
1706   fts3PoslistCopy(0, &p2);
1707   fts3PoslistCopy(0, &p1);
1708   *pp1 = p1;
1709   *pp2 = p2;
1710   if( !pp || *pp==p ){
1711     return 0;
1712   }
1713   *p++ = 0x00;
1714   *pp = p;
1715   return 1;
1716 }
1717 
1718 /*
1719 ** Merge two position-lists as required by the NEAR operator.
1720 */
fts3PoslistNearMerge(char ** pp,char * aTmp,int nRight,int nLeft,char ** pp1,char ** pp2)1721 static int fts3PoslistNearMerge(
1722   char **pp,                      /* Output buffer */
1723   char *aTmp,                     /* Temporary buffer space */
1724   int nRight,                     /* Maximum difference in token positions */
1725   int nLeft,                      /* Maximum difference in token positions */
1726   char **pp1,                     /* IN/OUT: Left input list */
1727   char **pp2                      /* IN/OUT: Right input list */
1728 ){
1729   char *p1 = *pp1;
1730   char *p2 = *pp2;
1731 
1732   if( !pp ){
1733     if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1;
1734     *pp1 = p1;
1735     *pp2 = p2;
1736     return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1);
1737   }else{
1738     char *pTmp1 = aTmp;
1739     char *pTmp2;
1740     char *aTmp2;
1741     int res = 1;
1742 
1743     fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
1744     aTmp2 = pTmp2 = pTmp1;
1745     *pp1 = p1;
1746     *pp2 = p2;
1747     fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
1748     if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
1749       fts3PoslistMerge(pp, &aTmp, &aTmp2);
1750     }else if( pTmp1!=aTmp ){
1751       fts3PoslistCopy(pp, &aTmp);
1752     }else if( pTmp2!=aTmp2 ){
1753       fts3PoslistCopy(pp, &aTmp2);
1754     }else{
1755       res = 0;
1756     }
1757 
1758     return res;
1759   }
1760 }
1761 
1762 /*
1763 ** Values that may be used as the first parameter to fts3DoclistMerge().
1764 */
1765 #define MERGE_NOT        2        /* D + D -> D */
1766 #define MERGE_AND        3        /* D + D -> D */
1767 #define MERGE_OR         4        /* D + D -> D */
1768 #define MERGE_POS_OR     5        /* P + P -> P */
1769 #define MERGE_PHRASE     6        /* P + P -> D */
1770 #define MERGE_POS_PHRASE 7        /* P + P -> P */
1771 #define MERGE_NEAR       8        /* P + P -> D */
1772 #define MERGE_POS_NEAR   9        /* P + P -> P */
1773 
1774 /*
1775 ** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2
1776 ** (size n2 bytes). The output is written to pre-allocated buffer aBuffer,
1777 ** which is guaranteed to be large enough to hold the results. The number
1778 ** of bytes written to aBuffer is stored in *pnBuffer before returning.
1779 **
1780 ** If successful, SQLITE_OK is returned. Otherwise, if a malloc error
1781 ** occurs while allocating a temporary buffer as part of the merge operation,
1782 ** SQLITE_NOMEM is returned.
1783 */
fts3DoclistMerge(int mergetype,int nParam1,int nParam2,char * aBuffer,int * pnBuffer,char * a1,int n1,char * a2,int n2,int * pnDoc)1784 static int fts3DoclistMerge(
1785   int mergetype,                  /* One of the MERGE_XXX constants */
1786   int nParam1,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1787   int nParam2,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1788   char *aBuffer,                  /* Pre-allocated output buffer */
1789   int *pnBuffer,                  /* OUT: Bytes written to aBuffer */
1790   char *a1,                       /* Buffer containing first doclist */
1791   int n1,                         /* Size of buffer a1 */
1792   char *a2,                       /* Buffer containing second doclist */
1793   int n2,                         /* Size of buffer a2 */
1794   int *pnDoc                      /* OUT: Number of docids in output */
1795 ){
1796   sqlite3_int64 i1 = 0;
1797   sqlite3_int64 i2 = 0;
1798   sqlite3_int64 iPrev = 0;
1799 
1800   char *p = aBuffer;
1801   char *p1 = a1;
1802   char *p2 = a2;
1803   char *pEnd1 = &a1[n1];
1804   char *pEnd2 = &a2[n2];
1805   int nDoc = 0;
1806 
1807   assert( mergetype==MERGE_OR     || mergetype==MERGE_POS_OR
1808        || mergetype==MERGE_AND    || mergetype==MERGE_NOT
1809        || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
1810        || mergetype==MERGE_NEAR   || mergetype==MERGE_POS_NEAR
1811   );
1812 
1813   if( !aBuffer ){
1814     *pnBuffer = 0;
1815     return SQLITE_NOMEM;
1816   }
1817 
1818   /* Read the first docid from each doclist */
1819   fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1820   fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1821 
1822   switch( mergetype ){
1823     case MERGE_OR:
1824     case MERGE_POS_OR:
1825       while( p1 || p2 ){
1826         if( p2 && p1 && i1==i2 ){
1827           fts3PutDeltaVarint(&p, &iPrev, i1);
1828           if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2);
1829           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1830           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1831         }else if( !p2 || (p1 && i1<i2) ){
1832           fts3PutDeltaVarint(&p, &iPrev, i1);
1833           if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1);
1834           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1835         }else{
1836           fts3PutDeltaVarint(&p, &iPrev, i2);
1837           if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2);
1838           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1839         }
1840       }
1841       break;
1842 
1843     case MERGE_AND:
1844       while( p1 && p2 ){
1845         if( i1==i2 ){
1846           fts3PutDeltaVarint(&p, &iPrev, i1);
1847           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1848           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1849           nDoc++;
1850         }else if( i1<i2 ){
1851           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1852         }else{
1853           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1854         }
1855       }
1856       break;
1857 
1858     case MERGE_NOT:
1859       while( p1 ){
1860         if( p2 && i1==i2 ){
1861           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1862           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1863         }else if( !p2 || i1<i2 ){
1864           fts3PutDeltaVarint(&p, &iPrev, i1);
1865           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1866         }else{
1867           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1868         }
1869       }
1870       break;
1871 
1872     case MERGE_POS_PHRASE:
1873     case MERGE_PHRASE: {
1874       char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p);
1875       while( p1 && p2 ){
1876         if( i1==i2 ){
1877           char *pSave = p;
1878           sqlite3_int64 iPrevSave = iPrev;
1879           fts3PutDeltaVarint(&p, &iPrev, i1);
1880           if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
1881             p = pSave;
1882             iPrev = iPrevSave;
1883           }else{
1884             nDoc++;
1885           }
1886           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1887           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1888         }else if( i1<i2 ){
1889           fts3PoslistCopy(0, &p1);
1890           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1891         }else{
1892           fts3PoslistCopy(0, &p2);
1893           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1894         }
1895       }
1896       break;
1897     }
1898 
1899     default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
1900       char *aTmp = 0;
1901       char **ppPos = 0;
1902 
1903       if( mergetype==MERGE_POS_NEAR ){
1904         ppPos = &p;
1905         aTmp = sqlite3_malloc(2*(n1+n2+1));
1906         if( !aTmp ){
1907           return SQLITE_NOMEM;
1908         }
1909       }
1910 
1911       while( p1 && p2 ){
1912         if( i1==i2 ){
1913           char *pSave = p;
1914           sqlite3_int64 iPrevSave = iPrev;
1915           fts3PutDeltaVarint(&p, &iPrev, i1);
1916 
1917           if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){
1918             iPrev = iPrevSave;
1919             p = pSave;
1920           }
1921 
1922           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1923           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1924         }else if( i1<i2 ){
1925           fts3PoslistCopy(0, &p1);
1926           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1927         }else{
1928           fts3PoslistCopy(0, &p2);
1929           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1930         }
1931       }
1932       sqlite3_free(aTmp);
1933       break;
1934     }
1935   }
1936 
1937   if( pnDoc ) *pnDoc = nDoc;
1938   *pnBuffer = (int)(p-aBuffer);
1939   return SQLITE_OK;
1940 }
1941 
1942 /*
1943 ** A pointer to an instance of this structure is used as the context
1944 ** argument to sqlite3Fts3SegReaderIterate()
1945 */
1946 typedef struct TermSelect TermSelect;
1947 struct TermSelect {
1948   int isReqPos;
1949   char *aaOutput[16];             /* Malloc'd output buffer */
1950   int anOutput[16];               /* Size of output in bytes */
1951 };
1952 
1953 /*
1954 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
1955 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
1956 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
1957 **
1958 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
1959 ** the responsibility of the caller to free any doclists left in the
1960 ** TermSelect.aaOutput[] array.
1961 */
fts3TermSelectMerge(TermSelect * pTS)1962 static int fts3TermSelectMerge(TermSelect *pTS){
1963   int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
1964   char *aOut = 0;
1965   int nOut = 0;
1966   int i;
1967 
1968   /* Loop through the doclists in the aaOutput[] array. Merge them all
1969   ** into a single doclist.
1970   */
1971   for(i=0; i<SizeofArray(pTS->aaOutput); i++){
1972     if( pTS->aaOutput[i] ){
1973       if( !aOut ){
1974         aOut = pTS->aaOutput[i];
1975         nOut = pTS->anOutput[i];
1976         pTS->aaOutput[i] = 0;
1977       }else{
1978         int nNew = nOut + pTS->anOutput[i];
1979         char *aNew = sqlite3_malloc(nNew);
1980         if( !aNew ){
1981           sqlite3_free(aOut);
1982           return SQLITE_NOMEM;
1983         }
1984         fts3DoclistMerge(mergetype, 0, 0,
1985             aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0
1986         );
1987         sqlite3_free(pTS->aaOutput[i]);
1988         sqlite3_free(aOut);
1989         pTS->aaOutput[i] = 0;
1990         aOut = aNew;
1991         nOut = nNew;
1992       }
1993     }
1994   }
1995 
1996   pTS->aaOutput[0] = aOut;
1997   pTS->anOutput[0] = nOut;
1998   return SQLITE_OK;
1999 }
2000 
2001 /*
2002 ** This function is used as the sqlite3Fts3SegReaderIterate() callback when
2003 ** querying the full-text index for a doclist associated with a term or
2004 ** term-prefix.
2005 */
fts3TermSelectCb(Fts3Table * p,void * pContext,char * zTerm,int nTerm,char * aDoclist,int nDoclist)2006 static int fts3TermSelectCb(
2007   Fts3Table *p,                   /* Virtual table object */
2008   void *pContext,                 /* Pointer to TermSelect structure */
2009   char *zTerm,
2010   int nTerm,
2011   char *aDoclist,
2012   int nDoclist
2013 ){
2014   TermSelect *pTS = (TermSelect *)pContext;
2015 
2016   UNUSED_PARAMETER(p);
2017   UNUSED_PARAMETER(zTerm);
2018   UNUSED_PARAMETER(nTerm);
2019 
2020   if( pTS->aaOutput[0]==0 ){
2021     /* If this is the first term selected, copy the doclist to the output
2022     ** buffer using memcpy(). TODO: Add a way to transfer control of the
2023     ** aDoclist buffer from the caller so as to avoid the memcpy().
2024     */
2025     pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
2026     pTS->anOutput[0] = nDoclist;
2027     if( pTS->aaOutput[0] ){
2028       memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2029     }else{
2030       return SQLITE_NOMEM;
2031     }
2032   }else{
2033     int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
2034     char *aMerge = aDoclist;
2035     int nMerge = nDoclist;
2036     int iOut;
2037 
2038     for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
2039       char *aNew;
2040       int nNew;
2041       if( pTS->aaOutput[iOut]==0 ){
2042         assert( iOut>0 );
2043         pTS->aaOutput[iOut] = aMerge;
2044         pTS->anOutput[iOut] = nMerge;
2045         break;
2046       }
2047 
2048       nNew = nMerge + pTS->anOutput[iOut];
2049       aNew = sqlite3_malloc(nNew);
2050       if( !aNew ){
2051         if( aMerge!=aDoclist ){
2052           sqlite3_free(aMerge);
2053         }
2054         return SQLITE_NOMEM;
2055       }
2056       fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew,
2057           pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0
2058       );
2059 
2060       if( iOut>0 ) sqlite3_free(aMerge);
2061       sqlite3_free(pTS->aaOutput[iOut]);
2062       pTS->aaOutput[iOut] = 0;
2063 
2064       aMerge = aNew;
2065       nMerge = nNew;
2066       if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
2067         pTS->aaOutput[iOut] = aMerge;
2068         pTS->anOutput[iOut] = nMerge;
2069       }
2070     }
2071   }
2072   return SQLITE_OK;
2073 }
2074 
fts3DeferredTermSelect(Fts3DeferredToken * pToken,int isTermPos,int * pnOut,char ** ppOut)2075 static int fts3DeferredTermSelect(
2076   Fts3DeferredToken *pToken,      /* Phrase token */
2077   int isTermPos,                  /* True to include positions */
2078   int *pnOut,                     /* OUT: Size of list */
2079   char **ppOut                    /* OUT: Body of list */
2080 ){
2081   char *aSource;
2082   int nSource;
2083 
2084   aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource);
2085   if( !aSource ){
2086     *pnOut = 0;
2087     *ppOut = 0;
2088   }else if( isTermPos ){
2089     *ppOut = sqlite3_malloc(nSource);
2090     if( !*ppOut ) return SQLITE_NOMEM;
2091     memcpy(*ppOut, aSource, nSource);
2092     *pnOut = nSource;
2093   }else{
2094     sqlite3_int64 docid;
2095     *pnOut = sqlite3Fts3GetVarint(aSource, &docid);
2096     *ppOut = sqlite3_malloc(*pnOut);
2097     if( !*ppOut ) return SQLITE_NOMEM;
2098     sqlite3Fts3PutVarint(*ppOut, docid);
2099   }
2100 
2101   return SQLITE_OK;
2102 }
2103 
sqlite3Fts3SegReaderCursor(Fts3Table * p,int iLevel,const char * zTerm,int nTerm,int isPrefix,int isScan,Fts3SegReaderCursor * pCsr)2104 int sqlite3Fts3SegReaderCursor(
2105   Fts3Table *p,                   /* FTS3 table handle */
2106   int iLevel,                     /* Level of segments to scan */
2107   const char *zTerm,              /* Term to query for */
2108   int nTerm,                      /* Size of zTerm in bytes */
2109   int isPrefix,                   /* True for a prefix search */
2110   int isScan,                     /* True to scan from zTerm to EOF */
2111   Fts3SegReaderCursor *pCsr       /* Cursor object to populate */
2112 ){
2113   int rc = SQLITE_OK;
2114   int rc2;
2115   int iAge = 0;
2116   sqlite3_stmt *pStmt = 0;
2117   Fts3SegReader *pPending = 0;
2118 
2119   assert( iLevel==FTS3_SEGCURSOR_ALL
2120       ||  iLevel==FTS3_SEGCURSOR_PENDING
2121       ||  iLevel>=0
2122   );
2123   assert( FTS3_SEGCURSOR_PENDING<0 );
2124   assert( FTS3_SEGCURSOR_ALL<0 );
2125   assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) );
2126   assert( isPrefix==0 || isScan==0 );
2127 
2128 
2129   memset(pCsr, 0, sizeof(Fts3SegReaderCursor));
2130 
2131   /* If iLevel is less than 0, include a seg-reader for the pending-terms. */
2132   assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 );
2133   if( iLevel<0 && isScan==0 ){
2134     rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending);
2135     if( rc==SQLITE_OK && pPending ){
2136       int nByte = (sizeof(Fts3SegReader *) * 16);
2137       pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
2138       if( pCsr->apSegment==0 ){
2139         rc = SQLITE_NOMEM;
2140       }else{
2141         pCsr->apSegment[0] = pPending;
2142         pCsr->nSegment = 1;
2143         pPending = 0;
2144       }
2145     }
2146   }
2147 
2148   if( iLevel!=FTS3_SEGCURSOR_PENDING ){
2149     if( rc==SQLITE_OK ){
2150       rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt);
2151     }
2152     while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
2153 
2154       /* Read the values returned by the SELECT into local variables. */
2155       sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
2156       sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
2157       sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
2158       int nRoot = sqlite3_column_bytes(pStmt, 4);
2159       char const *zRoot = sqlite3_column_blob(pStmt, 4);
2160 
2161       /* If nSegment is a multiple of 16 the array needs to be extended. */
2162       if( (pCsr->nSegment%16)==0 ){
2163         Fts3SegReader **apNew;
2164         int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
2165         apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
2166         if( !apNew ){
2167           rc = SQLITE_NOMEM;
2168           goto finished;
2169         }
2170         pCsr->apSegment = apNew;
2171       }
2172 
2173       /* If zTerm is not NULL, and this segment is not stored entirely on its
2174       ** root node, the range of leaves scanned can be reduced. Do this. */
2175       if( iStartBlock && zTerm ){
2176         sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
2177         rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
2178         if( rc!=SQLITE_OK ) goto finished;
2179         if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
2180       }
2181 
2182       rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock,
2183           iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment]
2184       );
2185       if( rc!=SQLITE_OK ) goto finished;
2186       pCsr->nSegment++;
2187       iAge++;
2188     }
2189   }
2190 
2191  finished:
2192   rc2 = sqlite3_reset(pStmt);
2193   if( rc==SQLITE_DONE ) rc = rc2;
2194   sqlite3Fts3SegReaderFree(pPending);
2195 
2196   return rc;
2197 }
2198 
2199 
fts3TermSegReaderCursor(Fts3Cursor * pCsr,const char * zTerm,int nTerm,int isPrefix,Fts3SegReaderCursor ** ppSegcsr)2200 static int fts3TermSegReaderCursor(
2201   Fts3Cursor *pCsr,               /* Virtual table cursor handle */
2202   const char *zTerm,              /* Term to query for */
2203   int nTerm,                      /* Size of zTerm in bytes */
2204   int isPrefix,                   /* True for a prefix search */
2205   Fts3SegReaderCursor **ppSegcsr  /* OUT: Allocated seg-reader cursor */
2206 ){
2207   Fts3SegReaderCursor *pSegcsr;   /* Object to allocate and return */
2208   int rc = SQLITE_NOMEM;          /* Return code */
2209 
2210   pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor));
2211   if( pSegcsr ){
2212     Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2213     int i;
2214     int nCost = 0;
2215     rc = sqlite3Fts3SegReaderCursor(
2216         p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr);
2217 
2218     for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){
2219       rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost);
2220     }
2221     pSegcsr->nCost = nCost;
2222   }
2223 
2224   *ppSegcsr = pSegcsr;
2225   return rc;
2226 }
2227 
fts3SegReaderCursorFree(Fts3SegReaderCursor * pSegcsr)2228 static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){
2229   sqlite3Fts3SegReaderFinish(pSegcsr);
2230   sqlite3_free(pSegcsr);
2231 }
2232 
2233 /*
2234 ** This function retreives the doclist for the specified term (or term
2235 ** prefix) from the database.
2236 **
2237 ** The returned doclist may be in one of two formats, depending on the
2238 ** value of parameter isReqPos. If isReqPos is zero, then the doclist is
2239 ** a sorted list of delta-compressed docids (a bare doclist). If isReqPos
2240 ** is non-zero, then the returned list is in the same format as is stored
2241 ** in the database without the found length specifier at the start of on-disk
2242 ** doclists.
2243 */
fts3TermSelect(Fts3Table * p,Fts3PhraseToken * pTok,int iColumn,int isReqPos,int * pnOut,char ** ppOut)2244 static int fts3TermSelect(
2245   Fts3Table *p,                   /* Virtual table handle */
2246   Fts3PhraseToken *pTok,          /* Token to query for */
2247   int iColumn,                    /* Column to query (or -ve for all columns) */
2248   int isReqPos,                   /* True to include position lists in output */
2249   int *pnOut,                     /* OUT: Size of buffer at *ppOut */
2250   char **ppOut                    /* OUT: Malloced result buffer */
2251 ){
2252   int rc;                         /* Return code */
2253   Fts3SegReaderCursor *pSegcsr;   /* Seg-reader cursor for this term */
2254   TermSelect tsc;                 /* Context object for fts3TermSelectCb() */
2255   Fts3SegFilter filter;           /* Segment term filter configuration */
2256 
2257   pSegcsr = pTok->pSegcsr;
2258   memset(&tsc, 0, sizeof(TermSelect));
2259   tsc.isReqPos = isReqPos;
2260 
2261   filter.flags = FTS3_SEGMENT_IGNORE_EMPTY
2262         | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
2263         | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0)
2264         | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
2265   filter.iCol = iColumn;
2266   filter.zTerm = pTok->z;
2267   filter.nTerm = pTok->n;
2268 
2269   rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
2270   while( SQLITE_OK==rc
2271       && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
2272   ){
2273     rc = fts3TermSelectCb(p, (void *)&tsc,
2274         pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
2275     );
2276   }
2277 
2278   if( rc==SQLITE_OK ){
2279     rc = fts3TermSelectMerge(&tsc);
2280   }
2281   if( rc==SQLITE_OK ){
2282     *ppOut = tsc.aaOutput[0];
2283     *pnOut = tsc.anOutput[0];
2284   }else{
2285     int i;
2286     for(i=0; i<SizeofArray(tsc.aaOutput); i++){
2287       sqlite3_free(tsc.aaOutput[i]);
2288     }
2289   }
2290 
2291   fts3SegReaderCursorFree(pSegcsr);
2292   pTok->pSegcsr = 0;
2293   return rc;
2294 }
2295 
2296 /*
2297 ** This function counts the total number of docids in the doclist stored
2298 ** in buffer aList[], size nList bytes.
2299 **
2300 ** If the isPoslist argument is true, then it is assumed that the doclist
2301 ** contains a position-list following each docid. Otherwise, it is assumed
2302 ** that the doclist is simply a list of docids stored as delta encoded
2303 ** varints.
2304 */
fts3DoclistCountDocids(int isPoslist,char * aList,int nList)2305 static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
2306   int nDoc = 0;                   /* Return value */
2307   if( aList ){
2308     char *aEnd = &aList[nList];   /* Pointer to one byte after EOF */
2309     char *p = aList;              /* Cursor */
2310     if( !isPoslist ){
2311       /* The number of docids in the list is the same as the number of
2312       ** varints. In FTS3 a varint consists of a single byte with the 0x80
2313       ** bit cleared and zero or more bytes with the 0x80 bit set. So to
2314       ** count the varints in the buffer, just count the number of bytes
2315       ** with the 0x80 bit clear.  */
2316       while( p<aEnd ) nDoc += (((*p++)&0x80)==0);
2317     }else{
2318       while( p<aEnd ){
2319         nDoc++;
2320         while( (*p++)&0x80 );     /* Skip docid varint */
2321         fts3PoslistCopy(0, &p);   /* Skip over position list */
2322       }
2323     }
2324   }
2325 
2326   return nDoc;
2327 }
2328 
2329 /*
2330 ** Call sqlite3Fts3DeferToken() for each token in the expression pExpr.
2331 */
fts3DeferExpression(Fts3Cursor * pCsr,Fts3Expr * pExpr)2332 static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){
2333   int rc = SQLITE_OK;
2334   if( pExpr ){
2335     rc = fts3DeferExpression(pCsr, pExpr->pLeft);
2336     if( rc==SQLITE_OK ){
2337       rc = fts3DeferExpression(pCsr, pExpr->pRight);
2338     }
2339     if( pExpr->eType==FTSQUERY_PHRASE ){
2340       int iCol = pExpr->pPhrase->iColumn;
2341       int i;
2342       for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){
2343         Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
2344         if( pToken->pDeferred==0 ){
2345           rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol);
2346         }
2347       }
2348     }
2349   }
2350   return rc;
2351 }
2352 
2353 /*
2354 ** This function removes the position information from a doclist. When
2355 ** called, buffer aList (size *pnList bytes) contains a doclist that includes
2356 ** position information. This function removes the position information so
2357 ** that aList contains only docids, and adjusts *pnList to reflect the new
2358 ** (possibly reduced) size of the doclist.
2359 */
fts3DoclistStripPositions(char * aList,int * pnList)2360 static void fts3DoclistStripPositions(
2361   char *aList,                    /* IN/OUT: Buffer containing doclist */
2362   int *pnList                     /* IN/OUT: Size of doclist in bytes */
2363 ){
2364   if( aList ){
2365     char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
2366     char *p = aList;              /* Input cursor */
2367     char *pOut = aList;           /* Output cursor */
2368 
2369     while( p<aEnd ){
2370       sqlite3_int64 delta;
2371       p += sqlite3Fts3GetVarint(p, &delta);
2372       fts3PoslistCopy(0, &p);
2373       pOut += sqlite3Fts3PutVarint(pOut, delta);
2374     }
2375 
2376     *pnList = (int)(pOut - aList);
2377   }
2378 }
2379 
2380 /*
2381 ** Return a DocList corresponding to the phrase *pPhrase.
2382 **
2383 ** If this function returns SQLITE_OK, but *pnOut is set to a negative value,
2384 ** then no tokens in the phrase were looked up in the full-text index. This
2385 ** is only possible when this function is called from within xFilter(). The
2386 ** caller should assume that all documents match the phrase. The actual
2387 ** filtering will take place in xNext().
2388 */
fts3PhraseSelect(Fts3Cursor * pCsr,Fts3Phrase * pPhrase,int isReqPos,char ** paOut,int * pnOut)2389 static int fts3PhraseSelect(
2390   Fts3Cursor *pCsr,               /* Virtual table cursor handle */
2391   Fts3Phrase *pPhrase,            /* Phrase to return a doclist for */
2392   int isReqPos,                   /* True if output should contain positions */
2393   char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
2394   int *pnOut                      /* OUT: Size of buffer at *paOut */
2395 ){
2396   char *pOut = 0;
2397   int nOut = 0;
2398   int rc = SQLITE_OK;
2399   int ii;
2400   int iCol = pPhrase->iColumn;
2401   int isTermPos = (pPhrase->nToken>1 || isReqPos);
2402   Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2403   int isFirst = 1;
2404 
2405   int iPrevTok = 0;
2406   int nDoc = 0;
2407 
2408   /* If this is an xFilter() evaluation, create a segment-reader for each
2409   ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo
2410   ** evaluation, only create segment-readers if there are no Fts3DeferredToken
2411   ** objects attached to the phrase-tokens.
2412   */
2413   for(ii=0; ii<pPhrase->nToken; ii++){
2414     Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
2415     if( pTok->pSegcsr==0 ){
2416       if( (pCsr->eEvalmode==FTS3_EVAL_FILTER)
2417        || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0)
2418        || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext)
2419       ){
2420         rc = fts3TermSegReaderCursor(
2421             pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
2422         );
2423         if( rc!=SQLITE_OK ) return rc;
2424       }
2425     }
2426   }
2427 
2428   for(ii=0; ii<pPhrase->nToken; ii++){
2429     Fts3PhraseToken *pTok;        /* Token to find doclist for */
2430     int iTok = 0;                 /* The token being queried this iteration */
2431     char *pList = 0;              /* Pointer to token doclist */
2432     int nList = 0;                /* Size of buffer at pList */
2433 
2434     /* Select a token to process. If this is an xFilter() call, then tokens
2435     ** are processed in order from least to most costly. Otherwise, tokens
2436     ** are processed in the order in which they occur in the phrase.
2437     */
2438     if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){
2439       assert( isReqPos );
2440       iTok = ii;
2441       pTok = &pPhrase->aToken[iTok];
2442       if( pTok->bFulltext==0 ) continue;
2443     }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){
2444       iTok = ii;
2445       pTok = &pPhrase->aToken[iTok];
2446     }else{
2447       int nMinCost = 0x7FFFFFFF;
2448       int jj;
2449 
2450       /* Find the remaining token with the lowest cost. */
2451       for(jj=0; jj<pPhrase->nToken; jj++){
2452         Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr;
2453         if( pSegcsr && pSegcsr->nCost<nMinCost ){
2454           iTok = jj;
2455           nMinCost = pSegcsr->nCost;
2456         }
2457       }
2458       pTok = &pPhrase->aToken[iTok];
2459 
2460       /* This branch is taken if it is determined that loading the doclist
2461       ** for the next token would require more IO than loading all documents
2462       ** currently identified by doclist pOut/nOut. No further doclists will
2463       ** be loaded from the full-text index for this phrase.
2464       */
2465       if( nMinCost>nDoc && ii>0 ){
2466         rc = fts3DeferExpression(pCsr, pCsr->pExpr);
2467         break;
2468       }
2469     }
2470 
2471     if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){
2472       rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList);
2473     }else{
2474       if( pTok->pSegcsr ){
2475         rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList);
2476       }
2477       pTok->bFulltext = 1;
2478     }
2479     assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 );
2480     if( rc!=SQLITE_OK ) break;
2481 
2482     if( isFirst ){
2483       pOut = pList;
2484       nOut = nList;
2485       if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){
2486         nDoc = fts3DoclistCountDocids(1, pOut, nOut);
2487       }
2488       isFirst = 0;
2489       iPrevTok = iTok;
2490     }else{
2491       /* Merge the new term list and the current output. */
2492       char *aLeft, *aRight;
2493       int nLeft, nRight;
2494       int nDist;
2495       int mt;
2496 
2497       /* If this is the final token of the phrase, and positions were not
2498       ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE.
2499       ** This drops the position information from the output list.
2500       */
2501       mt = MERGE_POS_PHRASE;
2502       if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE;
2503 
2504       assert( iPrevTok!=iTok );
2505       if( iPrevTok<iTok ){
2506         aLeft = pOut;
2507         nLeft = nOut;
2508         aRight = pList;
2509         nRight = nList;
2510         nDist = iTok-iPrevTok;
2511         iPrevTok = iTok;
2512       }else{
2513         aRight = pOut;
2514         nRight = nOut;
2515         aLeft = pList;
2516         nLeft = nList;
2517         nDist = iPrevTok-iTok;
2518       }
2519       pOut = aRight;
2520       fts3DoclistMerge(
2521           mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc
2522       );
2523       sqlite3_free(aLeft);
2524     }
2525     assert( nOut==0 || pOut!=0 );
2526   }
2527 
2528   if( rc==SQLITE_OK ){
2529     if( ii!=pPhrase->nToken ){
2530       assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 );
2531       fts3DoclistStripPositions(pOut, &nOut);
2532     }
2533     *paOut = pOut;
2534     *pnOut = nOut;
2535   }else{
2536     sqlite3_free(pOut);
2537   }
2538   return rc;
2539 }
2540 
2541 /*
2542 ** This function merges two doclists according to the requirements of a
2543 ** NEAR operator.
2544 **
2545 ** Both input doclists must include position information. The output doclist
2546 ** includes position information if the first argument to this function
2547 ** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
2548 */
fts3NearMerge(int mergetype,int nNear,int nTokenLeft,char * aLeft,int nLeft,int nTokenRight,char * aRight,int nRight,char ** paOut,int * pnOut)2549 static int fts3NearMerge(
2550   int mergetype,                  /* MERGE_POS_NEAR or MERGE_NEAR */
2551   int nNear,                      /* Parameter to NEAR operator */
2552   int nTokenLeft,                 /* Number of tokens in LHS phrase arg */
2553   char *aLeft,                    /* Doclist for LHS (incl. positions) */
2554   int nLeft,                      /* Size of LHS doclist in bytes */
2555   int nTokenRight,                /* As nTokenLeft */
2556   char *aRight,                   /* As aLeft */
2557   int nRight,                     /* As nRight */
2558   char **paOut,                   /* OUT: Results of merge (malloced) */
2559   int *pnOut                      /* OUT: Sized of output buffer */
2560 ){
2561   char *aOut;                     /* Buffer to write output doclist to */
2562   int rc;                         /* Return code */
2563 
2564   assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );
2565 
2566   aOut = sqlite3_malloc(nLeft+nRight+1);
2567   if( aOut==0 ){
2568     rc = SQLITE_NOMEM;
2569   }else{
2570     rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft,
2571       aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
2572     );
2573     if( rc!=SQLITE_OK ){
2574       sqlite3_free(aOut);
2575       aOut = 0;
2576     }
2577   }
2578 
2579   *paOut = aOut;
2580   return rc;
2581 }
2582 
2583 /*
2584 ** This function is used as part of the processing for the snippet() and
2585 ** offsets() functions.
2586 **
2587 ** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
2588 ** have their respective doclists (including position information) loaded
2589 ** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
2590 ** each doclist that are not within nNear tokens of a corresponding entry
2591 ** in the other doclist.
2592 */
sqlite3Fts3ExprNearTrim(Fts3Expr * pLeft,Fts3Expr * pRight,int nNear)2593 int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
2594   int rc;                         /* Return code */
2595 
2596   assert( pLeft->eType==FTSQUERY_PHRASE );
2597   assert( pRight->eType==FTSQUERY_PHRASE );
2598   assert( pLeft->isLoaded && pRight->isLoaded );
2599 
2600   if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
2601     sqlite3_free(pLeft->aDoclist);
2602     sqlite3_free(pRight->aDoclist);
2603     pRight->aDoclist = 0;
2604     pLeft->aDoclist = 0;
2605     rc = SQLITE_OK;
2606   }else{
2607     char *aOut;                   /* Buffer in which to assemble new doclist */
2608     int nOut;                     /* Size of buffer aOut in bytes */
2609 
2610     rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
2611         pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
2612         pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
2613         &aOut, &nOut
2614     );
2615     if( rc!=SQLITE_OK ) return rc;
2616     sqlite3_free(pRight->aDoclist);
2617     pRight->aDoclist = aOut;
2618     pRight->nDoclist = nOut;
2619 
2620     rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
2621         pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
2622         pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
2623         &aOut, &nOut
2624     );
2625     sqlite3_free(pLeft->aDoclist);
2626     pLeft->aDoclist = aOut;
2627     pLeft->nDoclist = nOut;
2628   }
2629   return rc;
2630 }
2631 
2632 
2633 /*
2634 ** Allocate an Fts3SegReaderArray for each token in the expression pExpr.
2635 ** The allocated objects are stored in the Fts3PhraseToken.pArray member
2636 ** variables of each token structure.
2637 */
fts3ExprAllocateSegReaders(Fts3Cursor * pCsr,Fts3Expr * pExpr,int * pnExpr)2638 static int fts3ExprAllocateSegReaders(
2639   Fts3Cursor *pCsr,               /* FTS3 table */
2640   Fts3Expr *pExpr,                /* Expression to create seg-readers for */
2641   int *pnExpr                     /* OUT: Number of AND'd expressions */
2642 ){
2643   int rc = SQLITE_OK;             /* Return code */
2644 
2645   assert( pCsr->eEvalmode==FTS3_EVAL_FILTER );
2646   if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
2647     (*pnExpr)++;
2648     pnExpr = 0;
2649   }
2650 
2651   if( pExpr->eType==FTSQUERY_PHRASE ){
2652     Fts3Phrase *pPhrase = pExpr->pPhrase;
2653     int ii;
2654 
2655     for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
2656       Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
2657       if( pTok->pSegcsr==0 ){
2658         rc = fts3TermSegReaderCursor(
2659             pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
2660         );
2661       }
2662     }
2663   }else{
2664     rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
2665     if( rc==SQLITE_OK ){
2666       rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
2667     }
2668   }
2669   return rc;
2670 }
2671 
2672 /*
2673 ** Free the Fts3SegReaderArray objects associated with each token in the
2674 ** expression pExpr. In other words, this function frees the resources
2675 ** allocated by fts3ExprAllocateSegReaders().
2676 */
fts3ExprFreeSegReaders(Fts3Expr * pExpr)2677 static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
2678   if( pExpr ){
2679     Fts3Phrase *pPhrase = pExpr->pPhrase;
2680     if( pPhrase ){
2681       int kk;
2682       for(kk=0; kk<pPhrase->nToken; kk++){
2683         fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr);
2684         pPhrase->aToken[kk].pSegcsr = 0;
2685       }
2686     }
2687     fts3ExprFreeSegReaders(pExpr->pLeft);
2688     fts3ExprFreeSegReaders(pExpr->pRight);
2689   }
2690 }
2691 
2692 /*
2693 ** Return the sum of the costs of all tokens in the expression pExpr. This
2694 ** function must be called after Fts3SegReaderArrays have been allocated
2695 ** for all tokens using fts3ExprAllocateSegReaders().
2696 */
fts3ExprCost(Fts3Expr * pExpr)2697 static int fts3ExprCost(Fts3Expr *pExpr){
2698   int nCost;                      /* Return value */
2699   if( pExpr->eType==FTSQUERY_PHRASE ){
2700     Fts3Phrase *pPhrase = pExpr->pPhrase;
2701     int ii;
2702     nCost = 0;
2703     for(ii=0; ii<pPhrase->nToken; ii++){
2704       Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr;
2705       if( pSegcsr ) nCost += pSegcsr->nCost;
2706     }
2707   }else{
2708     nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
2709   }
2710   return nCost;
2711 }
2712 
2713 /*
2714 ** The following is a helper function (and type) for fts3EvalExpr(). It
2715 ** must be called after Fts3SegReaders have been allocated for every token
2716 ** in the expression. See the context it is called from in fts3EvalExpr()
2717 ** for further explanation.
2718 */
2719 typedef struct ExprAndCost ExprAndCost;
2720 struct ExprAndCost {
2721   Fts3Expr *pExpr;
2722   int nCost;
2723 };
fts3ExprAssignCosts(Fts3Expr * pExpr,ExprAndCost ** ppExprCost)2724 static void fts3ExprAssignCosts(
2725   Fts3Expr *pExpr,                /* Expression to create seg-readers for */
2726   ExprAndCost **ppExprCost        /* OUT: Write to *ppExprCost */
2727 ){
2728   if( pExpr->eType==FTSQUERY_AND ){
2729     fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
2730     fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
2731   }else{
2732     (*ppExprCost)->pExpr = pExpr;
2733     (*ppExprCost)->nCost = fts3ExprCost(pExpr);
2734     (*ppExprCost)++;
2735   }
2736 }
2737 
2738 /*
2739 ** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
2740 ** the resulting doclist in *paOut and *pnOut. This routine mallocs for
2741 ** the space needed to store the output. The caller is responsible for
2742 ** freeing the space when it has finished.
2743 **
2744 ** This function is called in two distinct contexts:
2745 **
2746 **   * From within the virtual table xFilter() method. In this case, the
2747 **     output doclist contains entries for all rows in the table, based on
2748 **     data read from the full-text index.
2749 **
2750 **     In this case, if the query expression contains one or more tokens that
2751 **     are very common, then the returned doclist may contain a superset of
2752 **     the documents that actually match the expression.
2753 **
2754 **   * From within the virtual table xNext() method. This call is only made
2755 **     if the call from within xFilter() found that there were very common
2756 **     tokens in the query expression and did return a superset of the
2757 **     matching documents. In this case the returned doclist contains only
2758 **     entries that correspond to the current row of the table. Instead of
2759 **     reading the data for each token from the full-text index, the data is
2760 **     already available in-memory in the Fts3PhraseToken.pDeferred structures.
2761 **     See fts3EvalDeferred() for how it gets there.
2762 **
2763 ** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
2764 ** required) Fts3Cursor.doDeferred==1.
2765 **
2766 ** If the SQLite invokes the snippet(), offsets() or matchinfo() function
2767 ** as part of a SELECT on an FTS3 table, this function is called on each
2768 ** individual phrase expression in the query. If there were very common tokens
2769 ** found in the xFilter() call, then this function is called once for phrase
2770 ** for each row visited, and the returned doclist contains entries for the
2771 ** current row only. Otherwise, if there were no very common tokens, then this
2772 ** function is called once only for each phrase in the query and the returned
2773 ** doclist contains entries for all rows of the table.
2774 **
2775 ** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
2776 ** result of a snippet(), offsets() or matchinfo() invocation.
2777 */
fts3EvalExpr(Fts3Cursor * p,Fts3Expr * pExpr,char ** paOut,int * pnOut,int isReqPos)2778 static int fts3EvalExpr(
2779   Fts3Cursor *p,                  /* Virtual table cursor handle */
2780   Fts3Expr *pExpr,                /* Parsed fts3 expression */
2781   char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
2782   int *pnOut,                     /* OUT: Size of buffer at *paOut */
2783   int isReqPos                    /* Require positions in output buffer */
2784 ){
2785   int rc = SQLITE_OK;             /* Return code */
2786 
2787   /* Zero the output parameters. */
2788   *paOut = 0;
2789   *pnOut = 0;
2790 
2791   if( pExpr ){
2792     assert( pExpr->eType==FTSQUERY_NEAR   || pExpr->eType==FTSQUERY_OR
2793          || pExpr->eType==FTSQUERY_AND    || pExpr->eType==FTSQUERY_NOT
2794          || pExpr->eType==FTSQUERY_PHRASE
2795     );
2796     assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 );
2797 
2798     if( pExpr->eType==FTSQUERY_PHRASE ){
2799       rc = fts3PhraseSelect(p, pExpr->pPhrase,
2800           isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR),
2801           paOut, pnOut
2802       );
2803       fts3ExprFreeSegReaders(pExpr);
2804     }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){
2805       ExprAndCost *aExpr = 0;     /* Array of AND'd expressions and costs */
2806       int nExpr = 0;              /* Size of aExpr[] */
2807       char *aRet = 0;             /* Doclist to return to caller */
2808       int nRet = 0;               /* Length of aRet[] in bytes */
2809       int nDoc = 0x7FFFFFFF;
2810 
2811       assert( !isReqPos );
2812 
2813       rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr);
2814       if( rc==SQLITE_OK ){
2815         assert( nExpr>1 );
2816         aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr);
2817         if( !aExpr ) rc = SQLITE_NOMEM;
2818       }
2819       if( rc==SQLITE_OK ){
2820         int ii;                   /* Used to iterate through expressions */
2821 
2822         fts3ExprAssignCosts(pExpr, &aExpr);
2823         aExpr -= nExpr;
2824         for(ii=0; ii<nExpr; ii++){
2825           char *aNew;
2826           int nNew;
2827           int jj;
2828           ExprAndCost *pBest = 0;
2829 
2830           for(jj=0; jj<nExpr; jj++){
2831             ExprAndCost *pCand = &aExpr[jj];
2832             if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){
2833               pBest = pCand;
2834             }
2835           }
2836 
2837           if( pBest->nCost>nDoc ){
2838             rc = fts3DeferExpression(p, p->pExpr);
2839             break;
2840           }else{
2841             rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
2842             if( rc!=SQLITE_OK ) break;
2843             pBest->pExpr = 0;
2844             if( ii==0 ){
2845               aRet = aNew;
2846               nRet = nNew;
2847               nDoc = fts3DoclistCountDocids(0, aRet, nRet);
2848             }else{
2849               fts3DoclistMerge(
2850                   MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc
2851               );
2852               sqlite3_free(aNew);
2853             }
2854           }
2855         }
2856       }
2857 
2858       if( rc==SQLITE_OK ){
2859         *paOut = aRet;
2860         *pnOut = nRet;
2861       }else{
2862         assert( *paOut==0 );
2863         sqlite3_free(aRet);
2864       }
2865       sqlite3_free(aExpr);
2866       fts3ExprFreeSegReaders(pExpr);
2867 
2868     }else{
2869       char *aLeft;
2870       char *aRight;
2871       int nLeft;
2872       int nRight;
2873 
2874       assert( pExpr->eType==FTSQUERY_NEAR
2875            || pExpr->eType==FTSQUERY_OR
2876            || pExpr->eType==FTSQUERY_NOT
2877            || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT)
2878       );
2879 
2880       if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos))
2881        && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos))
2882       ){
2883         switch( pExpr->eType ){
2884           case FTSQUERY_NEAR: {
2885             Fts3Expr *pLeft;
2886             Fts3Expr *pRight;
2887             int mergetype = MERGE_NEAR;
2888             if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
2889               mergetype = MERGE_POS_NEAR;
2890             }
2891             pLeft = pExpr->pLeft;
2892             while( pLeft->eType==FTSQUERY_NEAR ){
2893               pLeft=pLeft->pRight;
2894             }
2895             pRight = pExpr->pRight;
2896             assert( pRight->eType==FTSQUERY_PHRASE );
2897             assert( pLeft->eType==FTSQUERY_PHRASE );
2898 
2899             rc = fts3NearMerge(mergetype, pExpr->nNear,
2900                 pLeft->pPhrase->nToken, aLeft, nLeft,
2901                 pRight->pPhrase->nToken, aRight, nRight,
2902                 paOut, pnOut
2903             );
2904             sqlite3_free(aLeft);
2905             break;
2906           }
2907 
2908           case FTSQUERY_OR: {
2909             /* Allocate a buffer for the output. The maximum size is the
2910             ** sum of the sizes of the two input buffers. The +1 term is
2911             ** so that a buffer of zero bytes is never allocated - this can
2912             ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
2913             */
2914             char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
2915             rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
2916                 aLeft, nLeft, aRight, nRight, 0
2917             );
2918             *paOut = aBuffer;
2919             sqlite3_free(aLeft);
2920             break;
2921           }
2922 
2923           default: {
2924             assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
2925             fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
2926                 aLeft, nLeft, aRight, nRight, 0
2927             );
2928             *paOut = aLeft;
2929             break;
2930           }
2931         }
2932       }
2933       sqlite3_free(aRight);
2934     }
2935   }
2936 
2937   assert( rc==SQLITE_OK || *paOut==0 );
2938   return rc;
2939 }
2940 
2941 /*
2942 ** This function is called from within xNext() for each row visited by
2943 ** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
2944 ** was able to determine the exact set of matching rows, this function sets
2945 ** *pbRes to true and returns SQLITE_IO immediately.
2946 **
2947 ** Otherwise, if evaluating the query expression within xFilter() returned a
2948 ** superset of the matching documents instead of an exact set (this happens
2949 ** when the query includes very common tokens and it is deemed too expensive to
2950 ** load their doclists from disk), this function tests if the current row
2951 ** really does match the FTS3 query.
2952 **
2953 ** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
2954 ** is returned and *pbRes is set to true if the current row matches the
2955 ** FTS3 query (and should be included in the results returned to SQLite), or
2956 ** false otherwise.
2957 */
fts3EvalDeferred(Fts3Cursor * pCsr,int * pbRes)2958 static int fts3EvalDeferred(
2959   Fts3Cursor *pCsr,               /* FTS3 cursor pointing at row to test */
2960   int *pbRes                      /* OUT: Set to true if row is a match */
2961 ){
2962   int rc = SQLITE_OK;
2963   if( pCsr->pDeferred==0 ){
2964     *pbRes = 1;
2965   }else{
2966     rc = fts3CursorSeek(0, pCsr);
2967     if( rc==SQLITE_OK ){
2968       sqlite3Fts3FreeDeferredDoclists(pCsr);
2969       rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
2970     }
2971     if( rc==SQLITE_OK ){
2972       char *a = 0;
2973       int n = 0;
2974       rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0);
2975       assert( n>=0 );
2976       *pbRes = (n>0);
2977       sqlite3_free(a);
2978     }
2979   }
2980   return rc;
2981 }
2982 
2983 /*
2984 ** Advance the cursor to the next row in the %_content table that
2985 ** matches the search criteria.  For a MATCH search, this will be
2986 ** the next row that matches. For a full-table scan, this will be
2987 ** simply the next row in the %_content table.  For a docid lookup,
2988 ** this routine simply sets the EOF flag.
2989 **
2990 ** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
2991 ** even if we reach end-of-file.  The fts3EofMethod() will be called
2992 ** subsequently to determine whether or not an EOF was hit.
2993 */
fts3NextMethod(sqlite3_vtab_cursor * pCursor)2994 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
2995   int res;
2996   int rc = SQLITE_OK;             /* Return code */
2997   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
2998 
2999   pCsr->eEvalmode = FTS3_EVAL_NEXT;
3000   do {
3001     if( pCsr->aDoclist==0 ){
3002       if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
3003         pCsr->isEof = 1;
3004         rc = sqlite3_reset(pCsr->pStmt);
3005         break;
3006       }
3007       pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
3008     }else{
3009       if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
3010         pCsr->isEof = 1;
3011         break;
3012       }
3013       sqlite3_reset(pCsr->pStmt);
3014       fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
3015       pCsr->isRequireSeek = 1;
3016       pCsr->isMatchinfoNeeded = 1;
3017     }
3018   }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );
3019 
3020   return rc;
3021 }
3022 
3023 /*
3024 ** This is the xFilter interface for the virtual table.  See
3025 ** the virtual table xFilter method documentation for additional
3026 ** information.
3027 **
3028 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3029 ** the %_content table.
3030 **
3031 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3032 ** in the %_content table.
3033 **
3034 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index.  The
3035 ** column on the left-hand side of the MATCH operator is column
3036 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed.  argv[0] is the right-hand
3037 ** side of the MATCH operator.
3038 */
fts3FilterMethod(sqlite3_vtab_cursor * pCursor,int idxNum,const char * idxStr,int nVal,sqlite3_value ** apVal)3039 static int fts3FilterMethod(
3040   sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
3041   int idxNum,                     /* Strategy index */
3042   const char *idxStr,             /* Unused */
3043   int nVal,                       /* Number of elements in apVal */
3044   sqlite3_value **apVal           /* Arguments for the indexing scheme */
3045 ){
3046   const char *azSql[] = {
3047     "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
3048     "SELECT %s FROM %Q.'%q_content' AS x ",                /* full-scan */
3049   };
3050   int rc;                         /* Return code */
3051   char *zSql;                     /* SQL statement used to access %_content */
3052   Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3053   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3054 
3055   UNUSED_PARAMETER(idxStr);
3056   UNUSED_PARAMETER(nVal);
3057 
3058   assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
3059   assert( nVal==0 || nVal==1 );
3060   assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
3061   assert( p->pSegments==0 );
3062 
3063   /* In case the cursor has been used before, clear it now. */
3064   sqlite3_finalize(pCsr->pStmt);
3065   sqlite3_free(pCsr->aDoclist);
3066   sqlite3Fts3ExprFree(pCsr->pExpr);
3067   memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
3068 
3069   if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
3070     int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
3071     const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);
3072 
3073     if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
3074       return SQLITE_NOMEM;
3075     }
3076 
3077     rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn,
3078         iCol, zQuery, -1, &pCsr->pExpr
3079     );
3080     if( rc!=SQLITE_OK ){
3081       if( rc==SQLITE_ERROR ){
3082         p->base.zErrMsg = sqlite3_mprintf("malformed MATCH expression: [%s]",
3083                                           zQuery);
3084       }
3085       return rc;
3086     }
3087 
3088     rc = sqlite3Fts3ReadLock(p);
3089     if( rc!=SQLITE_OK ) return rc;
3090 
3091     rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);
3092     sqlite3Fts3SegmentsClose(p);
3093     if( rc!=SQLITE_OK ) return rc;
3094     pCsr->pNextId = pCsr->aDoclist;
3095     pCsr->iPrevId = 0;
3096   }
3097 
3098   /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3099   ** statement loops through all rows of the %_content table. For a
3100   ** full-text query or docid lookup, the statement retrieves a single
3101   ** row by docid.
3102   */
3103   zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH];
3104   zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName);
3105   if( !zSql ){
3106     rc = SQLITE_NOMEM;
3107   }else{
3108     rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
3109     sqlite3_free(zSql);
3110   }
3111   if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){
3112     rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
3113   }
3114   pCsr->eSearch = (i16)idxNum;
3115 
3116   if( rc!=SQLITE_OK ) return rc;
3117   return fts3NextMethod(pCursor);
3118 }
3119 
3120 /*
3121 ** This is the xEof method of the virtual table. SQLite calls this
3122 ** routine to find out if it has reached the end of a result set.
3123 */
fts3EofMethod(sqlite3_vtab_cursor * pCursor)3124 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
3125   return ((Fts3Cursor *)pCursor)->isEof;
3126 }
3127 
3128 /*
3129 ** This is the xRowid method. The SQLite core calls this routine to
3130 ** retrieve the rowid for the current row of the result set. fts3
3131 ** exposes %_content.docid as the rowid for the virtual table. The
3132 ** rowid should be written to *pRowid.
3133 */
fts3RowidMethod(sqlite3_vtab_cursor * pCursor,sqlite_int64 * pRowid)3134 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3135   Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3136   if( pCsr->aDoclist ){
3137     *pRowid = pCsr->iPrevId;
3138   }else{
3139     /* This branch runs if the query is implemented using a full-table scan
3140     ** (not using the full-text index). In this case grab the rowid from the
3141     ** SELECT statement.
3142     */
3143     assert( pCsr->isRequireSeek==0 );
3144     *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
3145   }
3146   return SQLITE_OK;
3147 }
3148 
3149 /*
3150 ** This is the xColumn method, called by SQLite to request a value from
3151 ** the row that the supplied cursor currently points to.
3152 */
fts3ColumnMethod(sqlite3_vtab_cursor * pCursor,sqlite3_context * pContext,int iCol)3153 static int fts3ColumnMethod(
3154   sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
3155   sqlite3_context *pContext,      /* Context for sqlite3_result_xxx() calls */
3156   int iCol                        /* Index of column to read value from */
3157 ){
3158   int rc;                         /* Return Code */
3159   Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3160   Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3161 
3162   /* The column value supplied by SQLite must be in range. */
3163   assert( iCol>=0 && iCol<=p->nColumn+1 );
3164 
3165   if( iCol==p->nColumn+1 ){
3166     /* This call is a request for the "docid" column. Since "docid" is an
3167     ** alias for "rowid", use the xRowid() method to obtain the value.
3168     */
3169     sqlite3_int64 iRowid;
3170     rc = fts3RowidMethod(pCursor, &iRowid);
3171     sqlite3_result_int64(pContext, iRowid);
3172   }else if( iCol==p->nColumn ){
3173     /* The extra column whose name is the same as the table.
3174     ** Return a blob which is a pointer to the cursor.
3175     */
3176     sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
3177     rc = SQLITE_OK;
3178   }else{
3179     rc = fts3CursorSeek(0, pCsr);
3180     if( rc==SQLITE_OK ){
3181       sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
3182     }
3183   }
3184   return rc;
3185 }
3186 
3187 /*
3188 ** This function is the implementation of the xUpdate callback used by
3189 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3190 ** inserted, updated or deleted.
3191 */
fts3UpdateMethod(sqlite3_vtab * pVtab,int nArg,sqlite3_value ** apVal,sqlite_int64 * pRowid)3192 static int fts3UpdateMethod(
3193   sqlite3_vtab *pVtab,            /* Virtual table handle */
3194   int nArg,                       /* Size of argument array */
3195   sqlite3_value **apVal,          /* Array of arguments */
3196   sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
3197 ){
3198   return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
3199 }
3200 
3201 /*
3202 ** Implementation of xSync() method. Flush the contents of the pending-terms
3203 ** hash-table to the database.
3204 */
fts3SyncMethod(sqlite3_vtab * pVtab)3205 static int fts3SyncMethod(sqlite3_vtab *pVtab){
3206   int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);
3207   sqlite3Fts3SegmentsClose((Fts3Table *)pVtab);
3208   return rc;
3209 }
3210 
3211 /*
3212 ** Implementation of xBegin() method. This is a no-op.
3213 */
fts3BeginMethod(sqlite3_vtab * pVtab)3214 static int fts3BeginMethod(sqlite3_vtab *pVtab){
3215   UNUSED_PARAMETER(pVtab);
3216   assert( ((Fts3Table *)pVtab)->nPendingData==0 );
3217   return SQLITE_OK;
3218 }
3219 
3220 /*
3221 ** Implementation of xCommit() method. This is a no-op. The contents of
3222 ** the pending-terms hash-table have already been flushed into the database
3223 ** by fts3SyncMethod().
3224 */
fts3CommitMethod(sqlite3_vtab * pVtab)3225 static int fts3CommitMethod(sqlite3_vtab *pVtab){
3226   UNUSED_PARAMETER(pVtab);
3227   assert( ((Fts3Table *)pVtab)->nPendingData==0 );
3228   return SQLITE_OK;
3229 }
3230 
3231 /*
3232 ** Implementation of xRollback(). Discard the contents of the pending-terms
3233 ** hash-table. Any changes made to the database are reverted by SQLite.
3234 */
fts3RollbackMethod(sqlite3_vtab * pVtab)3235 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
3236   sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab);
3237   return SQLITE_OK;
3238 }
3239 
3240 /*
3241 ** Load the doclist associated with expression pExpr to pExpr->aDoclist.
3242 ** The loaded doclist contains positions as well as the document ids.
3243 ** This is used by the matchinfo(), snippet() and offsets() auxillary
3244 ** functions.
3245 */
sqlite3Fts3ExprLoadDoclist(Fts3Cursor * pCsr,Fts3Expr * pExpr)3246 int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *pCsr, Fts3Expr *pExpr){
3247   int rc;
3248   assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
3249   assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
3250   rc = fts3EvalExpr(pCsr, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1);
3251   return rc;
3252 }
3253 
sqlite3Fts3ExprLoadFtDoclist(Fts3Cursor * pCsr,Fts3Expr * pExpr,char ** paDoclist,int * pnDoclist)3254 int sqlite3Fts3ExprLoadFtDoclist(
3255   Fts3Cursor *pCsr,
3256   Fts3Expr *pExpr,
3257   char **paDoclist,
3258   int *pnDoclist
3259 ){
3260   int rc;
3261   assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
3262   assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
3263   pCsr->eEvalmode = FTS3_EVAL_MATCHINFO;
3264   rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1);
3265   pCsr->eEvalmode = FTS3_EVAL_NEXT;
3266   return rc;
3267 }
3268 
3269 /*
3270 ** After ExprLoadDoclist() (see above) has been called, this function is
3271 ** used to iterate/search through the position lists that make up the doclist
3272 ** stored in pExpr->aDoclist.
3273 */
sqlite3Fts3FindPositions(Fts3Expr * pExpr,sqlite3_int64 iDocid,int iCol)3274 char *sqlite3Fts3FindPositions(
3275   Fts3Expr *pExpr,                /* Access this expressions doclist */
3276   sqlite3_int64 iDocid,           /* Docid associated with requested pos-list */
3277   int iCol                        /* Column of requested pos-list */
3278 ){
3279   assert( pExpr->isLoaded );
3280   if( pExpr->aDoclist ){
3281     char *pEnd = &pExpr->aDoclist[pExpr->nDoclist];
3282     char *pCsr;
3283 
3284     if( pExpr->pCurrent==0 ){
3285       pExpr->pCurrent = pExpr->aDoclist;
3286       pExpr->iCurrent = 0;
3287       pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent);
3288     }
3289     pCsr = pExpr->pCurrent;
3290     assert( pCsr );
3291 
3292     while( pCsr<pEnd ){
3293       if( pExpr->iCurrent<iDocid ){
3294         fts3PoslistCopy(0, &pCsr);
3295         if( pCsr<pEnd ){
3296           fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
3297         }
3298         pExpr->pCurrent = pCsr;
3299       }else{
3300         if( pExpr->iCurrent==iDocid ){
3301           int iThis = 0;
3302           if( iCol<0 ){
3303             /* If iCol is negative, return a pointer to the start of the
3304             ** position-list (instead of a pointer to the start of a list
3305             ** of offsets associated with a specific column).
3306             */
3307             return pCsr;
3308           }
3309           while( iThis<iCol ){
3310             fts3ColumnlistCopy(0, &pCsr);
3311             if( *pCsr==0x00 ) return 0;
3312             pCsr++;
3313             pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis);
3314           }
3315           if( iCol==iThis && (*pCsr&0xFE) ) return pCsr;
3316         }
3317         return 0;
3318       }
3319     }
3320   }
3321 
3322   return 0;
3323 }
3324 
3325 /*
3326 ** Helper function used by the implementation of the overloaded snippet(),
3327 ** offsets() and optimize() SQL functions.
3328 **
3329 ** If the value passed as the third argument is a blob of size
3330 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3331 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3332 ** message is written to context pContext and SQLITE_ERROR returned. The
3333 ** string passed via zFunc is used as part of the error message.
3334 */
fts3FunctionArg(sqlite3_context * pContext,const char * zFunc,sqlite3_value * pVal,Fts3Cursor ** ppCsr)3335 static int fts3FunctionArg(
3336   sqlite3_context *pContext,      /* SQL function call context */
3337   const char *zFunc,              /* Function name */
3338   sqlite3_value *pVal,            /* argv[0] passed to function */
3339   Fts3Cursor **ppCsr              /* OUT: Store cursor handle here */
3340 ){
3341   Fts3Cursor *pRet;
3342   if( sqlite3_value_type(pVal)!=SQLITE_BLOB
3343    || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
3344   ){
3345     char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
3346     sqlite3_result_error(pContext, zErr, -1);
3347     sqlite3_free(zErr);
3348     return SQLITE_ERROR;
3349   }
3350   memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
3351   *ppCsr = pRet;
3352   return SQLITE_OK;
3353 }
3354 
3355 /*
3356 ** Implementation of the snippet() function for FTS3
3357 */
fts3SnippetFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3358 static void fts3SnippetFunc(
3359   sqlite3_context *pContext,      /* SQLite function call context */
3360   int nVal,                       /* Size of apVal[] array */
3361   sqlite3_value **apVal           /* Array of arguments */
3362 ){
3363   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
3364   const char *zStart = "<b>";
3365   const char *zEnd = "</b>";
3366   const char *zEllipsis = "<b>...</b>";
3367   int iCol = -1;
3368   int nToken = 15;                /* Default number of tokens in snippet */
3369 
3370   /* There must be at least one argument passed to this function (otherwise
3371   ** the non-overloaded version would have been called instead of this one).
3372   */
3373   assert( nVal>=1 );
3374 
3375   if( nVal>6 ){
3376     sqlite3_result_error(pContext,
3377         "wrong number of arguments to function snippet()", -1);
3378     return;
3379   }
3380   if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
3381 
3382   switch( nVal ){
3383     case 6: nToken = sqlite3_value_int(apVal[5]);
3384     case 5: iCol = sqlite3_value_int(apVal[4]);
3385     case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
3386     case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
3387     case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
3388   }
3389   if( !zEllipsis || !zEnd || !zStart ){
3390     sqlite3_result_error_nomem(pContext);
3391   }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3392     sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
3393   }
3394 }
3395 
3396 /*
3397 ** Implementation of the offsets() function for FTS3
3398 */
fts3OffsetsFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3399 static void fts3OffsetsFunc(
3400   sqlite3_context *pContext,      /* SQLite function call context */
3401   int nVal,                       /* Size of argument array */
3402   sqlite3_value **apVal           /* Array of arguments */
3403 ){
3404   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
3405 
3406   UNUSED_PARAMETER(nVal);
3407 
3408   assert( nVal==1 );
3409   if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
3410   assert( pCsr );
3411   if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3412     sqlite3Fts3Offsets(pContext, pCsr);
3413   }
3414 }
3415 
3416 /*
3417 ** Implementation of the special optimize() function for FTS3. This
3418 ** function merges all segments in the database to a single segment.
3419 ** Example usage is:
3420 **
3421 **   SELECT optimize(t) FROM t LIMIT 1;
3422 **
3423 ** where 't' is the name of an FTS3 table.
3424 */
fts3OptimizeFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3425 static void fts3OptimizeFunc(
3426   sqlite3_context *pContext,      /* SQLite function call context */
3427   int nVal,                       /* Size of argument array */
3428   sqlite3_value **apVal           /* Array of arguments */
3429 ){
3430   int rc;                         /* Return code */
3431   Fts3Table *p;                   /* Virtual table handle */
3432   Fts3Cursor *pCursor;            /* Cursor handle passed through apVal[0] */
3433 
3434   UNUSED_PARAMETER(nVal);
3435 
3436   assert( nVal==1 );
3437   if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
3438   p = (Fts3Table *)pCursor->base.pVtab;
3439   assert( p );
3440 
3441   rc = sqlite3Fts3Optimize(p);
3442 
3443   switch( rc ){
3444     case SQLITE_OK:
3445       sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
3446       break;
3447     case SQLITE_DONE:
3448       sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
3449       break;
3450     default:
3451       sqlite3_result_error_code(pContext, rc);
3452       break;
3453   }
3454 }
3455 
3456 /*
3457 ** Implementation of the matchinfo() function for FTS3
3458 */
fts3MatchinfoFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3459 static void fts3MatchinfoFunc(
3460   sqlite3_context *pContext,      /* SQLite function call context */
3461   int nVal,                       /* Size of argument array */
3462   sqlite3_value **apVal           /* Array of arguments */
3463 ){
3464   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
3465   assert( nVal==1 || nVal==2 );
3466   if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
3467     const char *zArg = 0;
3468     if( nVal>1 ){
3469       zArg = (const char *)sqlite3_value_text(apVal[1]);
3470     }
3471     sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
3472   }
3473 }
3474 
3475 /*
3476 ** This routine implements the xFindFunction method for the FTS3
3477 ** virtual table.
3478 */
fts3FindFunctionMethod(sqlite3_vtab * pVtab,int nArg,const char * zName,void (** pxFunc)(sqlite3_context *,int,sqlite3_value **),void ** ppArg)3479 static int fts3FindFunctionMethod(
3480   sqlite3_vtab *pVtab,            /* Virtual table handle */
3481   int nArg,                       /* Number of SQL function arguments */
3482   const char *zName,              /* Name of SQL function */
3483   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
3484   void **ppArg                    /* Unused */
3485 ){
3486   struct Overloaded {
3487     const char *zName;
3488     void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
3489   } aOverload[] = {
3490     { "snippet", fts3SnippetFunc },
3491     { "offsets", fts3OffsetsFunc },
3492     { "optimize", fts3OptimizeFunc },
3493     { "matchinfo", fts3MatchinfoFunc },
3494   };
3495   int i;                          /* Iterator variable */
3496 
3497   UNUSED_PARAMETER(pVtab);
3498   UNUSED_PARAMETER(nArg);
3499   UNUSED_PARAMETER(ppArg);
3500 
3501   for(i=0; i<SizeofArray(aOverload); i++){
3502     if( strcmp(zName, aOverload[i].zName)==0 ){
3503       *pxFunc = aOverload[i].xFunc;
3504       return 1;
3505     }
3506   }
3507 
3508   /* No function of the specified name was found. Return 0. */
3509   return 0;
3510 }
3511 
3512 /*
3513 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3514 */
fts3RenameMethod(sqlite3_vtab * pVtab,const char * zName)3515 static int fts3RenameMethod(
3516   sqlite3_vtab *pVtab,            /* Virtual table handle */
3517   const char *zName               /* New name of table */
3518 ){
3519   Fts3Table *p = (Fts3Table *)pVtab;
3520   sqlite3 *db = p->db;            /* Database connection */
3521   int rc;                         /* Return Code */
3522 
3523   rc = sqlite3Fts3PendingTermsFlush(p);
3524   if( rc!=SQLITE_OK ){
3525     return rc;
3526   }
3527 
3528   fts3DbExec(&rc, db,
3529     "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';",
3530     p->zDb, p->zName, zName
3531   );
3532   if( p->bHasDocsize ){
3533     fts3DbExec(&rc, db,
3534       "ALTER TABLE %Q.'%q_docsize'  RENAME TO '%q_docsize';",
3535       p->zDb, p->zName, zName
3536     );
3537   }
3538   if( p->bHasStat ){
3539     fts3DbExec(&rc, db,
3540       "ALTER TABLE %Q.'%q_stat'  RENAME TO '%q_stat';",
3541       p->zDb, p->zName, zName
3542     );
3543   }
3544   fts3DbExec(&rc, db,
3545     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3546     p->zDb, p->zName, zName
3547   );
3548   fts3DbExec(&rc, db,
3549     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';",
3550     p->zDb, p->zName, zName
3551   );
3552   return rc;
3553 }
3554 
3555 static const sqlite3_module fts3Module = {
3556   /* iVersion      */ 0,
3557   /* xCreate       */ fts3CreateMethod,
3558   /* xConnect      */ fts3ConnectMethod,
3559   /* xBestIndex    */ fts3BestIndexMethod,
3560   /* xDisconnect   */ fts3DisconnectMethod,
3561   /* xDestroy      */ fts3DestroyMethod,
3562   /* xOpen         */ fts3OpenMethod,
3563   /* xClose        */ fts3CloseMethod,
3564   /* xFilter       */ fts3FilterMethod,
3565   /* xNext         */ fts3NextMethod,
3566   /* xEof          */ fts3EofMethod,
3567   /* xColumn       */ fts3ColumnMethod,
3568   /* xRowid        */ fts3RowidMethod,
3569   /* xUpdate       */ fts3UpdateMethod,
3570   /* xBegin        */ fts3BeginMethod,
3571   /* xSync         */ fts3SyncMethod,
3572   /* xCommit       */ fts3CommitMethod,
3573   /* xRollback     */ fts3RollbackMethod,
3574   /* xFindFunction */ fts3FindFunctionMethod,
3575   /* xRename */       fts3RenameMethod,
3576 };
3577 
3578 /*
3579 ** This function is registered as the module destructor (called when an
3580 ** FTS3 enabled database connection is closed). It frees the memory
3581 ** allocated for the tokenizer hash table.
3582 */
hashDestroy(void * p)3583 static void hashDestroy(void *p){
3584   Fts3Hash *pHash = (Fts3Hash *)p;
3585   sqlite3Fts3HashClear(pHash);
3586   sqlite3_free(pHash);
3587 }
3588 
3589 /*
3590 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
3591 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
3592 ** respectively. The following three forward declarations are for functions
3593 ** declared in these files used to retrieve the respective implementations.
3594 **
3595 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
3596 ** to by the argument to point to the "simple" tokenizer implementation.
3597 ** And so on.
3598 */
3599 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3600 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3601 #ifdef SQLITE_ENABLE_ICU
3602 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3603 #endif
3604 
3605 /*
3606 ** Initialise the fts3 extension. If this extension is built as part
3607 ** of the sqlite library, then this function is called directly by
3608 ** SQLite. If fts3 is built as a dynamically loadable extension, this
3609 ** function is called by the sqlite3_extension_init() entry point.
3610 */
sqlite3Fts3Init(sqlite3 * db)3611 int sqlite3Fts3Init(sqlite3 *db){
3612   int rc = SQLITE_OK;
3613   Fts3Hash *pHash = 0;
3614   const sqlite3_tokenizer_module *pSimple = 0;
3615   const sqlite3_tokenizer_module *pPorter = 0;
3616 
3617 #ifdef SQLITE_ENABLE_ICU
3618   const sqlite3_tokenizer_module *pIcu = 0;
3619   sqlite3Fts3IcuTokenizerModule(&pIcu);
3620 #endif
3621 
3622   rc = sqlite3Fts3InitAux(db);
3623   if( rc!=SQLITE_OK ) return rc;
3624 
3625   sqlite3Fts3SimpleTokenizerModule(&pSimple);
3626   sqlite3Fts3PorterTokenizerModule(&pPorter);
3627 
3628   /* Allocate and initialise the hash-table used to store tokenizers. */
3629   pHash = sqlite3_malloc(sizeof(Fts3Hash));
3630   if( !pHash ){
3631     rc = SQLITE_NOMEM;
3632   }else{
3633     sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
3634   }
3635 
3636   /* Load the built-in tokenizers into the hash table */
3637   if( rc==SQLITE_OK ){
3638     if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
3639      || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
3640 #ifdef SQLITE_ENABLE_ICU
3641      || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
3642 #endif
3643     ){
3644       rc = SQLITE_NOMEM;
3645     }
3646   }
3647 
3648 #ifdef SQLITE_TEST
3649   if( rc==SQLITE_OK ){
3650     rc = sqlite3Fts3ExprInitTestInterface(db);
3651   }
3652 #endif
3653 
3654   /* Create the virtual table wrapper around the hash-table and overload
3655   ** the two scalar functions. If this is successful, register the
3656   ** module with sqlite.
3657   */
3658   if( SQLITE_OK==rc
3659 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
3660       /* fts3_tokenizer() disabled for security reasons. */
3661 #else
3662    && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
3663 #endif
3664    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
3665    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
3666    && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
3667    && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
3668    && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
3669   ){
3670     rc = sqlite3_create_module_v2(
3671         db, "fts3", &fts3Module, (void *)pHash, hashDestroy
3672     );
3673 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
3674     /* Disable fts4 pending review. */
3675 #else
3676     if( rc==SQLITE_OK ){
3677       rc = sqlite3_create_module_v2(
3678           db, "fts4", &fts3Module, (void *)pHash, 0
3679       );
3680     }
3681 #endif
3682     return rc;
3683   }
3684 
3685   /* An error has occurred. Delete the hash table and return the error code. */
3686   assert( rc!=SQLITE_OK );
3687   if( pHash ){
3688     sqlite3Fts3HashClear(pHash);
3689     sqlite3_free(pHash);
3690   }
3691   return rc;
3692 }
3693 
3694 #if !SQLITE_CORE
sqlite3_extension_init(sqlite3 * db,char ** pzErrMsg,const sqlite3_api_routines * pApi)3695 int sqlite3_extension_init(
3696   sqlite3 *db,
3697   char **pzErrMsg,
3698   const sqlite3_api_routines *pApi
3699 ){
3700   SQLITE_EXTENSION_INIT2(pApi)
3701   return sqlite3Fts3Init(db);
3702 }
3703 #endif
3704 
3705 #endif
3706