1 /*
2 ** 2007 May 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $
13 **
14 ** This file implements an integration between the ICU library
15 ** ("International Components for Unicode", an open-source library
16 ** for handling unicode data) and SQLite. The integration uses
17 ** ICU to provide the following to SQLite:
18 **
19 ** * An implementation of the SQL regexp() function (and hence REGEXP
20 ** operator) using the ICU uregex_XX() APIs.
21 **
22 ** * Implementations of the SQL scalar upper() and lower() functions
23 ** for case mapping.
24 **
25 ** * Integration of ICU and SQLite collation seqences.
26 **
27 ** * An implementation of the LIKE operator that uses ICU to
28 ** provide case-independent matching.
29 */
30
31 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
32
33 /* Include ICU headers */
34 #include <unicode/utypes.h>
35 #include <unicode/uregex.h>
36 #include <unicode/ustring.h>
37 #include <unicode/ucol.h>
38
39 #include <assert.h>
40
41 #ifndef SQLITE_CORE
42 #include "sqlite3ext.h"
43 SQLITE_EXTENSION_INIT1
44 #else
45 #include "sqlite3.h"
46 #endif
47
48 /*
49 ** Maximum length (in bytes) of the pattern in a LIKE or GLOB
50 ** operator.
51 */
52 #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
53 # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
54 #endif
55
56 /*
57 ** Version of sqlite3_free() that is always a function, never a macro.
58 */
xFree(void * p)59 static void xFree(void *p){
60 sqlite3_free(p);
61 }
62
63 /*
64 ** Compare two UTF-8 strings for equality where the first string is
65 ** a "LIKE" expression. Return true (1) if they are the same and
66 ** false (0) if they are different.
67 */
icuLikeCompare(const uint8_t * zPattern,const uint8_t * zString,const UChar32 uEsc)68 static int icuLikeCompare(
69 const uint8_t *zPattern, /* LIKE pattern */
70 const uint8_t *zString, /* The UTF-8 string to compare against */
71 const UChar32 uEsc /* The escape character */
72 ){
73 static const int MATCH_ONE = (UChar32)'_';
74 static const int MATCH_ALL = (UChar32)'%';
75
76 int iPattern = 0; /* Current byte index in zPattern */
77 int iString = 0; /* Current byte index in zString */
78
79 int prevEscape = 0; /* True if the previous character was uEsc */
80
81 while( zPattern[iPattern]!=0 ){
82
83 /* Read (and consume) the next character from the input pattern. */
84 UChar32 uPattern;
85 U8_NEXT_UNSAFE(zPattern, iPattern, uPattern);
86 assert(uPattern!=0);
87
88 /* There are now 4 possibilities:
89 **
90 ** 1. uPattern is an unescaped match-all character "%",
91 ** 2. uPattern is an unescaped match-one character "_",
92 ** 3. uPattern is an unescaped escape character, or
93 ** 4. uPattern is to be handled as an ordinary character
94 */
95 if( !prevEscape && uPattern==MATCH_ALL ){
96 /* Case 1. */
97 uint8_t c;
98
99 /* Skip any MATCH_ALL or MATCH_ONE characters that follow a
100 ** MATCH_ALL. For each MATCH_ONE, skip one character in the
101 ** test string.
102 */
103 while( (c=zPattern[iPattern]) == MATCH_ALL || c == MATCH_ONE ){
104 if( c==MATCH_ONE ){
105 if( zString[iString]==0 ) return 0;
106 U8_FWD_1_UNSAFE(zString, iString);
107 }
108 iPattern++;
109 }
110
111 if( zPattern[iPattern]==0 ) return 1;
112
113 while( zString[iString] ){
114 if( icuLikeCompare(&zPattern[iPattern], &zString[iString], uEsc) ){
115 return 1;
116 }
117 U8_FWD_1_UNSAFE(zString, iString);
118 }
119 return 0;
120
121 }else if( !prevEscape && uPattern==MATCH_ONE ){
122 /* Case 2. */
123 if( zString[iString]==0 ) return 0;
124 U8_FWD_1_UNSAFE(zString, iString);
125
126 }else if( !prevEscape && uPattern==uEsc){
127 /* Case 3. */
128 prevEscape = 1;
129
130 }else{
131 /* Case 4. */
132 UChar32 uString;
133 U8_NEXT_UNSAFE(zString, iString, uString);
134 uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT);
135 uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT);
136 if( uString!=uPattern ){
137 return 0;
138 }
139 prevEscape = 0;
140 }
141 }
142
143 return zString[iString]==0;
144 }
145
146 /*
147 ** Implementation of the like() SQL function. This function implements
148 ** the build-in LIKE operator. The first argument to the function is the
149 ** pattern and the second argument is the string. So, the SQL statements:
150 **
151 ** A LIKE B
152 **
153 ** is implemented as like(B, A). If there is an escape character E,
154 **
155 ** A LIKE B ESCAPE E
156 **
157 ** is mapped to like(B, A, E).
158 */
icuLikeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)159 static void icuLikeFunc(
160 sqlite3_context *context,
161 int argc,
162 sqlite3_value **argv
163 ){
164 const unsigned char *zA = sqlite3_value_text(argv[0]);
165 const unsigned char *zB = sqlite3_value_text(argv[1]);
166 UChar32 uEsc = 0;
167
168 /* Limit the length of the LIKE or GLOB pattern to avoid problems
169 ** of deep recursion and N*N behavior in patternCompare().
170 */
171 if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
172 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
173 return;
174 }
175
176
177 if( argc==3 ){
178 /* The escape character string must consist of a single UTF-8 character.
179 ** Otherwise, return an error.
180 */
181 int nE= sqlite3_value_bytes(argv[2]);
182 const unsigned char *zE = sqlite3_value_text(argv[2]);
183 int i = 0;
184 if( zE==0 ) return;
185 U8_NEXT(zE, i, nE, uEsc);
186 if( i!=nE){
187 sqlite3_result_error(context,
188 "ESCAPE expression must be a single character", -1);
189 return;
190 }
191 }
192
193 if( zA && zB ){
194 sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc));
195 }
196 }
197
198 /*
199 ** This function is called when an ICU function called from within
200 ** the implementation of an SQL scalar function returns an error.
201 **
202 ** The scalar function context passed as the first argument is
203 ** loaded with an error message based on the following two args.
204 */
icuFunctionError(sqlite3_context * pCtx,const char * zName,UErrorCode e)205 static void icuFunctionError(
206 sqlite3_context *pCtx, /* SQLite scalar function context */
207 const char *zName, /* Name of ICU function that failed */
208 UErrorCode e /* Error code returned by ICU function */
209 ){
210 char zBuf[128];
211 sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e));
212 zBuf[127] = '\0';
213 sqlite3_result_error(pCtx, zBuf, -1);
214 }
215
216 /*
217 ** Function to delete compiled regexp objects. Registered as
218 ** a destructor function with sqlite3_set_auxdata().
219 */
icuRegexpDelete(void * p)220 static void icuRegexpDelete(void *p){
221 URegularExpression *pExpr = (URegularExpression *)p;
222 uregex_close(pExpr);
223 }
224
225 /*
226 ** Implementation of SQLite REGEXP operator. This scalar function takes
227 ** two arguments. The first is a regular expression pattern to compile
228 ** the second is a string to match against that pattern. If either
229 ** argument is an SQL NULL, then NULL Is returned. Otherwise, the result
230 ** is 1 if the string matches the pattern, or 0 otherwise.
231 **
232 ** SQLite maps the regexp() function to the regexp() operator such
233 ** that the following two are equivalent:
234 **
235 ** zString REGEXP zPattern
236 ** regexp(zPattern, zString)
237 **
238 ** Uses the following ICU regexp APIs:
239 **
240 ** uregex_open()
241 ** uregex_matches()
242 ** uregex_close()
243 */
icuRegexpFunc(sqlite3_context * p,int nArg,sqlite3_value ** apArg)244 static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){
245 UErrorCode status = U_ZERO_ERROR;
246 URegularExpression *pExpr;
247 UBool res;
248 const UChar *zString = sqlite3_value_text16(apArg[1]);
249
250 (void)nArg; /* Unused parameter */
251
252 /* If the left hand side of the regexp operator is NULL,
253 ** then the result is also NULL.
254 */
255 if( !zString ){
256 return;
257 }
258
259 pExpr = sqlite3_get_auxdata(p, 0);
260 if( !pExpr ){
261 const UChar *zPattern = sqlite3_value_text16(apArg[0]);
262 if( !zPattern ){
263 return;
264 }
265 pExpr = uregex_open(zPattern, -1, 0, 0, &status);
266
267 if( U_SUCCESS(status) ){
268 sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
269 }else{
270 assert(!pExpr);
271 icuFunctionError(p, "uregex_open", status);
272 return;
273 }
274 }
275
276 /* Configure the text that the regular expression operates on. */
277 uregex_setText(pExpr, zString, -1, &status);
278 if( !U_SUCCESS(status) ){
279 icuFunctionError(p, "uregex_setText", status);
280 return;
281 }
282
283 /* Attempt the match */
284 res = uregex_matches(pExpr, 0, &status);
285 if( !U_SUCCESS(status) ){
286 icuFunctionError(p, "uregex_matches", status);
287 return;
288 }
289
290 /* Set the text that the regular expression operates on to a NULL
291 ** pointer. This is not really necessary, but it is tidier than
292 ** leaving the regular expression object configured with an invalid
293 ** pointer after this function returns.
294 */
295 uregex_setText(pExpr, 0, 0, &status);
296
297 /* Return 1 or 0. */
298 sqlite3_result_int(p, res ? 1 : 0);
299 }
300
301 /*
302 ** Implementations of scalar functions for case mapping - upper() and
303 ** lower(). Function upper() converts its input to upper-case (ABC).
304 ** Function lower() converts to lower-case (abc).
305 **
306 ** ICU provides two types of case mapping, "general" case mapping and
307 ** "language specific". Refer to ICU documentation for the differences
308 ** between the two.
309 **
310 ** To utilise "general" case mapping, the upper() or lower() scalar
311 ** functions are invoked with one argument:
312 **
313 ** upper('ABC') -> 'abc'
314 ** lower('abc') -> 'ABC'
315 **
316 ** To access ICU "language specific" case mapping, upper() or lower()
317 ** should be invoked with two arguments. The second argument is the name
318 ** of the locale to use. Passing an empty string ("") or SQL NULL value
319 ** as the second argument is the same as invoking the 1 argument version
320 ** of upper() or lower().
321 **
322 ** lower('I', 'en_us') -> 'i'
323 ** lower('I', 'tr_tr') -> 'ı' (small dotless i)
324 **
325 ** http://www.icu-project.org/userguide/posix.html#case_mappings
326 */
icuCaseFunc16(sqlite3_context * p,int nArg,sqlite3_value ** apArg)327 static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){
328 const UChar *zInput;
329 UChar *zOutput;
330 int nInput;
331 int nOutput;
332
333 UErrorCode status = U_ZERO_ERROR;
334 const char *zLocale = 0;
335
336 assert(nArg==1 || nArg==2);
337 if( nArg==2 ){
338 zLocale = (const char *)sqlite3_value_text(apArg[1]);
339 }
340
341 zInput = sqlite3_value_text16(apArg[0]);
342 if( !zInput ){
343 return;
344 }
345 nInput = sqlite3_value_bytes16(apArg[0]);
346
347 nOutput = nInput * 2 + 2;
348 zOutput = sqlite3_malloc(nOutput);
349 if( !zOutput ){
350 return;
351 }
352
353 if( sqlite3_user_data(p) ){
354 u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
355 }else{
356 u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
357 }
358
359 if( !U_SUCCESS(status) ){
360 icuFunctionError(p, "u_strToLower()/u_strToUpper", status);
361 return;
362 }
363
364 sqlite3_result_text16(p, zOutput, -1, xFree);
365 }
366
367 /*
368 ** Collation sequence destructor function. The pCtx argument points to
369 ** a UCollator structure previously allocated using ucol_open().
370 */
icuCollationDel(void * pCtx)371 static void icuCollationDel(void *pCtx){
372 UCollator *p = (UCollator *)pCtx;
373 ucol_close(p);
374 }
375
376 /*
377 ** Collation sequence comparison function. The pCtx argument points to
378 ** a UCollator structure previously allocated using ucol_open().
379 */
icuCollationColl(void * pCtx,int nLeft,const void * zLeft,int nRight,const void * zRight)380 static int icuCollationColl(
381 void *pCtx,
382 int nLeft,
383 const void *zLeft,
384 int nRight,
385 const void *zRight
386 ){
387 UCollationResult res;
388 UCollator *p = (UCollator *)pCtx;
389 res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2);
390 switch( res ){
391 case UCOL_LESS: return -1;
392 case UCOL_GREATER: return +1;
393 case UCOL_EQUAL: return 0;
394 }
395 assert(!"Unexpected return value from ucol_strcoll()");
396 return 0;
397 }
398
399 /*
400 ** Implementation of the scalar function icu_load_collation().
401 **
402 ** This scalar function is used to add ICU collation based collation
403 ** types to an SQLite database connection. It is intended to be called
404 ** as follows:
405 **
406 ** SELECT icu_load_collation(<locale>, <collation-name>);
407 **
408 ** Where <locale> is a string containing an ICU locale identifier (i.e.
409 ** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the
410 ** collation sequence to create.
411 */
icuLoadCollation(sqlite3_context * p,int nArg,sqlite3_value ** apArg)412 static void icuLoadCollation(
413 sqlite3_context *p,
414 int nArg,
415 sqlite3_value **apArg
416 ){
417 sqlite3 *db = (sqlite3 *)sqlite3_user_data(p);
418 UErrorCode status = U_ZERO_ERROR;
419 const char *zLocale; /* Locale identifier - (eg. "jp_JP") */
420 const char *zName; /* SQL Collation sequence name (eg. "japanese") */
421 UCollator *pUCollator; /* ICU library collation object */
422 int rc; /* Return code from sqlite3_create_collation_x() */
423
424 assert(nArg==2);
425 zLocale = (const char *)sqlite3_value_text(apArg[0]);
426 zName = (const char *)sqlite3_value_text(apArg[1]);
427
428 if( !zLocale || !zName ){
429 return;
430 }
431
432 pUCollator = ucol_open(zLocale, &status);
433 if( !U_SUCCESS(status) ){
434 icuFunctionError(p, "ucol_open", status);
435 return;
436 }
437 assert(p);
438
439 rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator,
440 icuCollationColl, icuCollationDel
441 );
442 if( rc!=SQLITE_OK ){
443 ucol_close(pUCollator);
444 sqlite3_result_error(p, "Error registering collation function", -1);
445 }
446 }
447
448 /*
449 ** Register the ICU extension functions with database db.
450 */
sqlite3IcuInit(sqlite3 * db)451 int sqlite3IcuInit(sqlite3 *db){
452 struct IcuScalar {
453 const char *zName; /* Function name */
454 int nArg; /* Number of arguments */
455 int enc; /* Optimal text encoding */
456 void *pContext; /* sqlite3_user_data() context */
457 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
458 } scalars[] = {
459 {"regexp", 2, SQLITE_ANY, 0, icuRegexpFunc},
460
461 {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16},
462 {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16},
463 {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16},
464 {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16},
465
466 {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16},
467 {"lower", 2, SQLITE_UTF8, 0, icuCaseFunc16},
468 {"upper", 1, SQLITE_UTF8, (void*)1, icuCaseFunc16},
469 {"upper", 2, SQLITE_UTF8, (void*)1, icuCaseFunc16},
470
471 {"like", 2, SQLITE_UTF8, 0, icuLikeFunc},
472 {"like", 3, SQLITE_UTF8, 0, icuLikeFunc},
473
474 {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation},
475 };
476
477 int rc = SQLITE_OK;
478 int i;
479
480 for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){
481 struct IcuScalar *p = &scalars[i];
482 rc = sqlite3_create_function(
483 db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0
484 );
485 }
486
487 return rc;
488 }
489
490 #if !SQLITE_CORE
sqlite3_extension_init(sqlite3 * db,char ** pzErrMsg,const sqlite3_api_routines * pApi)491 int sqlite3_extension_init(
492 sqlite3 *db,
493 char **pzErrMsg,
494 const sqlite3_api_routines *pApi
495 ){
496 SQLITE_EXTENSION_INIT2(pApi)
497 return sqlite3IcuInit(db);
498 }
499 #endif
500
501 #endif
502