• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# 2010 July 16
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file implements tests to verify that the "testable statements" in
13# the lang_select.html document are correct.
14#
15
16set testdir [file dirname $argv0]
17source $testdir/tester.tcl
18
19do_execsql_test e_select-1.0 {
20  CREATE TABLE t1(a, b);
21  INSERT INTO t1 VALUES('a', 'one');
22  INSERT INTO t1 VALUES('b', 'two');
23  INSERT INTO t1 VALUES('c', 'three');
24
25  CREATE TABLE t2(a, b);
26  INSERT INTO t2 VALUES('a', 'I');
27  INSERT INTO t2 VALUES('b', 'II');
28  INSERT INTO t2 VALUES('c', 'III');
29
30  CREATE TABLE t3(a, c);
31  INSERT INTO t3 VALUES('a', 1);
32  INSERT INTO t3 VALUES('b', 2);
33
34  CREATE TABLE t4(a, c);
35  INSERT INTO t4 VALUES('a', NULL);
36  INSERT INTO t4 VALUES('b', 2);
37} {}
38set t1_cross_t2 [list                \
39   a one   a I      a one   b II     \
40   a one   c III    b two   a I      \
41   b two   b II     b two   c III    \
42   c three a I      c three b II     \
43   c three c III                     \
44]
45set t1_cross_t1 [list                  \
46   a one   a one      a one   b two    \
47   a one   c three    b two   a one    \
48   b two   b two      b two   c three  \
49   c three a one      c three b two    \
50   c three c three                     \
51]
52
53
54# This proc is a specialized version of [do_execsql_test].
55#
56# The second argument to this proc must be a SELECT statement that
57# features a cross join of some time. Instead of the usual ",",
58# "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be
59# substituted.
60#
61# This test runs the SELECT three times - once with:
62#
63#   * s/%JOIN%/,/
64#   * s/%JOIN%/JOIN/
65#   * s/%JOIN%/INNER JOIN/
66#   * s/%JOIN%/CROSS JOIN/
67#
68# and checks that each time the results of the SELECT are $res.
69#
70proc do_join_test {tn select res} {
71  foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
72    set S [string map [list %JOIN% $joinop] $select]
73    uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
74  }
75}
76
77#-------------------------------------------------------------------------
78# The following tests check that all paths on the syntax diagrams on
79# the lang_select.html page may be taken.
80#
81# EVIDENCE-OF: R-18428-22111 -- syntax diagram join-constraint
82#
83do_join_test e_select-0.1.1 {
84  SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
85} {3}
86do_join_test e_select-0.1.2 {
87  SELECT count(*) FROM t1 %JOIN% t2 USING (a)
88} {3}
89do_join_test e_select-0.1.3 {
90  SELECT count(*) FROM t1 %JOIN% t2
91} {9}
92do_catchsql_test e_select-0.1.4 {
93  SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
94} {1 {cannot have both ON and USING clauses in the same join}}
95do_catchsql_test e_select-0.1.5 {
96  SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
97} {1 {near "ON": syntax error}}
98
99# EVIDENCE-OF: R-44854-11739 -- syntax diagram select-core
100#
101#   0: SELECT ...
102#   1: SELECT DISTINCT ...
103#   2: SELECT ALL ...
104#
105#   0: No FROM clause
106#   1: Has FROM clause
107#
108#   0: No WHERE clause
109#   1: Has WHERE clause
110#
111#   0: No GROUP BY clause
112#   1: Has GROUP BY clause
113#   2: Has GROUP BY and HAVING clauses
114#
115do_select_tests e_select-0.2 {
116  0000.1  "SELECT 1, 2, 3 " {1 2 3}
117  1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
118  2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
119
120  0100.1  "SELECT a, b, a||b FROM t1 " {
121    a one aone b two btwo c three cthree
122  }
123  1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
124    a one aone b two btwo c three cthree
125  }
126  1200.1  "SELECT ALL a, b, a||b FROM t1 " {
127    a one aone b two btwo c three cthree
128  }
129
130  0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
131  0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
132  0010.3  "SELECT 1, 2, 3 WHERE NULL " {}
133
134  1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
135
136  2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
137
138  0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
139    a one aone b two btwo c three cthree
140  }
141  0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
142
143  1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
144    a one aone b two btwo c three cthree
145  }
146
147  2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
148
149  0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
150  0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
151  0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
152
153  1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
154  1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
155  1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
156
157  2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
158  2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
159  2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
160
161  0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
162  0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
163    1 a 1 c 1 b
164  }
165  0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { }
166
167  1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
168  1102.1  "SELECT DISTINCT count(*), max(a) FROM t1
169           GROUP BY b HAVING count(*)=1" {
170    1 a 1 c 1 b
171  }
172  1102.2  "SELECT DISTINCT count(*), max(a) FROM t1
173           GROUP BY b HAVING count(*)=2" {
174  }
175
176  2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
177  2102.1  "SELECT ALL count(*), max(a) FROM t1
178           GROUP BY b HAVING count(*)=1" {
179    1 a 1 c 1 b
180  }
181  2102.2  "SELECT ALL count(*), max(a) FROM t1
182           GROUP BY b HAVING count(*)=2" {
183  }
184
185  0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
186  0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
187  0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
188
189  1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
190  1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1"
191          {1 2 3}
192  1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
193
194  2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
195  2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
196  2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
197
198  0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
199  0112.1  "SELECT count(*), max(a) FROM t1
200           WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
201  0112.2  "SELECT count(*), max(a) FROM t1
202           WHERE 0 GROUP BY b HAVING count(*)=2" { }
203  1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b"
204          {1 a 1 b}
205  1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
206           GROUP BY b HAVING count(*)=1" {
207    1 c 1 b
208  }
209  1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
210           GROUP BY b HAVING count(*)=2" {
211  }
212
213  2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b"
214          {1 c 1 b}
215  2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
216           GROUP BY b HAVING count(*)=1" {
217    1 a 1 c
218  }
219  2112.2  "SELECT ALL count(*), max(a) FROM t1
220           WHERE 0 GROUP BY b HAVING count(*)=2" { }
221}
222
223
224# EVIDENCE-OF: R-23316-20169 -- syntax diagram result-column
225#
226do_select_tests e_select-0.3 {
227  1  "SELECT * FROM t1" {a one b two c three}
228  2  "SELECT t1.* FROM t1" {a one b two c three}
229  3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
230  4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
231  5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
232}
233
234# EVIDENCE-OF: R-41233-21397 -- syntax diagram join-source
235#
236# EVIDENCE-OF: R-45040-11121 -- syntax diagram join-op
237#
238do_select_tests e_select-0.4 {
239  1  "SELECT t1.rowid FROM t1" {1 2 3}
240  2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
241  3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
242
243  4  "SELECT t1.rowid FROM t1" {1 2 3}
244  5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
245  6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3"
246     {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
247
248  7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
249  8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
250  9  "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3}
251  10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
252  11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
253
254  12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
255  13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
256  14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
257  15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
258  16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
259}
260
261# EVIDENCE-OF: R-56911-63533 -- syntax diagram compound-operator
262#
263do_select_tests e_select-0.5 {
264  1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
265  2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
266  3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
267  4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
268}
269
270# EVIDENCE-OF: R-60388-27458 -- syntax diagram ordering-term
271#
272do_select_tests e_select-0.6 {
273  1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
274  2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
275  3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
276  4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
277}
278
279# EVIDENCE-OF: R-36494-33519 -- syntax diagram select-stmt
280#
281do_select_tests e_select-0.7 {
282  1  "SELECT * FROM t1" {a one b two c three}
283  2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
284  3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
285
286  4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
287  5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
288  6  "SELECT * FROM t1 LIMIT 10, 5" {}
289
290  7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
291  8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
292  9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
293
294  10  "SELECT * FROM t1 UNION SELECT b, a FROM t1"
295     {a one b two c three one a three c two b}
296  11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b"
297     {one a two b three c a one c three b two}
298  12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a"
299     {one a two b three c a one c three b two}
300  13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10"
301     {a one b two c three one a three c two b}
302  14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5"
303     {two b}
304  15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5"
305     {}
306  16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10"
307     {a one b two c three one a three c two b}
308  17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5"
309     {b two}
310  18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5"
311     {}
312}
313
314#-------------------------------------------------------------------------
315# The following tests focus on FROM clause (join) processing.
316#
317
318# EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
319# SELECT statement, then the input data is implicitly a single row zero
320# columns wide
321#
322do_select_tests e_select-1.1 {
323  1 "SELECT 'abc'"            {abc}
324  2 "SELECT 'abc' WHERE NULL" {}
325  3 "SELECT NULL"             {{}}
326  4 "SELECT count(*)"         {1}
327  5 "SELECT count(*) WHERE 0" {0}
328  6 "SELECT count(*) WHERE 1" {1}
329}
330
331# EVIDENCE-OF: R-48114-33255 If there is only a single table in the
332# join-source following the FROM clause, then the input data used by the
333# SELECT statement is the contents of the named table.
334#
335#   The results of the SELECT queries suggest that they are operating on the
336#   contents of the table 'xx'.
337#
338do_execsql_test e_select-1.2.0 {
339  CREATE TABLE xx(x, y);
340  INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
341  INSERT INTO xx VALUES(NULL, -16.87);
342  INSERT INTO xx VALUES(-17.89, 'linguistically');
343} {}
344do_select_tests e_select-1.2 {
345  1  "SELECT quote(x), quote(y) FROM xx" {
346     'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2'
347     NULL             -16.87
348     -17.89           'linguistically'
349  }
350
351  2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
352  3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
353}
354
355# EVIDENCE-OF: R-23593-12456 If there is more than one table specified
356# as part of the join-source following the FROM keyword, then the
357# contents of each named table are joined into a single dataset for the
358# simple SELECT statement to operate on.
359#
360#   There are more detailed tests for subsequent requirements that add
361#   more detail to this idea. We just add a single test that shows that
362#   data is coming from each of the three tables following the FROM clause
363#   here to show that the statement, vague as it is, is not incorrect.
364#
365do_select_tests e_select-1.3 {
366  1 "SELECT * FROM t1, t2, t3" {
367      a one a I a 1 a one a I b 2 a one b II a 1
368      a one b II b 2 a one c III a 1 a one c III b 2
369      b two a I a 1 b two a I b 2 b two b II a 1
370      b two b II b 2 b two c III a 1 b two c III b 2
371      c three a I a 1 c three a I b 2 c three b II a 1
372      c three b II b 2 c three c III a 1 c three c III b 2
373  }
374}
375
376#
377# The following block of tests - e_select-1.4.* - test that the description
378# of cartesian joins in the SELECT documentation is consistent with SQLite.
379# In doing so, we test the following three requirements as a side-effect:
380#
381# EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER
382# JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
383# then the result of the join is simply the cartesian product of the
384# left and right-hand datasets.
385#
386#    The tests are built on this assertion. Really, they test that the output
387#    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
388#    of calculating the cartesian product of the left and right-hand datasets.
389#
390# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
391# JOIN", "JOIN" and "," join operators.
392#
393# EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
394# same data as the "INNER JOIN", "JOIN" and "," operators
395#
396#    All tests are run 4 times, with the only difference in each run being
397#    which of the 4 equivalent cartesian product join operators are used.
398#    Since the output data is the same in all cases, we consider that this
399#    qualifies as testing the two statements above.
400#
401do_execsql_test e_select-1.4.0 {
402  CREATE TABLE x1(a, b);
403  CREATE TABLE x2(c, d, e);
404  CREATE TABLE x3(f, g, h, i);
405
406  -- x1: 3 rows, 2 columns
407  INSERT INTO x1 VALUES(24, 'converging');
408  INSERT INTO x1 VALUES(NULL, X'CB71');
409  INSERT INTO x1 VALUES('blonds', 'proprietary');
410
411  -- x2: 2 rows, 3 columns
412  INSERT INTO x2 VALUES(-60.06, NULL, NULL);
413  INSERT INTO x2 VALUES(-58, NULL, 1.21);
414
415  -- x3: 5 rows, 4 columns
416  INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
417  INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
418  INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
419  INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
420  INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
421} {}
422
423# EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
424# dataset are, in order, all the columns of the left-hand dataset
425# followed by all the columns of the right-hand dataset.
426#
427do_join_test e_select-1.4.1.1 {
428  SELECT * FROM x1 %JOIN% x2 LIMIT 1
429} [concat {24 converging} {-60.06 {} {}}]
430
431do_join_test e_select-1.4.1.2 {
432  SELECT * FROM x2 %JOIN% x1 LIMIT 1
433} [concat {-60.06 {} {}} {24 converging}]
434
435do_join_test e_select-1.4.1.3 {
436  SELECT * FROM x3 %JOIN% x2 LIMIT 1
437} [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
438
439do_join_test e_select-1.4.1.4 {
440  SELECT * FROM x2 %JOIN% x3 LIMIT 1
441} [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
442
443# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
444# dataset formed by combining each unique combination of a row from the
445# left-hand and right-hand datasets.
446#
447do_join_test e_select-1.4.2.1 {
448  SELECT * FROM x2 %JOIN% x3
449} [list -60.06 {} {}      -39.24 {} encompass -1                 \
450        -60.06 {} {}      presenting 51 reformation dignified    \
451        -60.06 {} {}      conducting -87.24 37.56 {}             \
452        -60.06 {} {}      coldest -96 dramatists 82.3            \
453        -60.06 {} {}      alerting {} -93.79 {}                  \
454        -58 {} 1.21       -39.24 {} encompass -1                 \
455        -58 {} 1.21       presenting 51 reformation dignified    \
456        -58 {} 1.21       conducting -87.24 37.56 {}             \
457        -58 {} 1.21       coldest -96 dramatists 82.3            \
458        -58 {} 1.21       alerting {} -93.79 {}                  \
459]
460# TODO: Come back and add a few more like the above.
461
462# EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset
463# consists of Nlhs rows of Mlhs columns, and the right-hand dataset of
464# Nrhs rows of Mrhs columns, then the cartesian product is a dataset of
465# Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns.
466#
467# x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
468do_join_test e_select-1.4.3.1 {
469  SELECT count(*) FROM x1 %JOIN% x2
470} [expr 3*2]
471do_test e_select-1.4.3.2 {
472  expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
473} [expr 2+3]
474
475# x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
476do_join_test e_select-1.4.3.3 {
477  SELECT count(*) FROM x2 %JOIN% x3
478} [expr 2*5]
479do_test e_select-1.4.3.4 {
480  expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
481} [expr 3+4]
482
483# x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
484do_join_test e_select-1.4.3.5 {
485  SELECT count(*) FROM x3 %JOIN% x1
486} [expr 5*3]
487do_test e_select-1.4.3.6 {
488  expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
489} [expr 4+2]
490
491# x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
492do_join_test e_select-1.4.3.7 {
493  SELECT count(*) FROM x3 %JOIN% x3
494} [expr 5*5]
495do_test e_select-1.4.3.8 {
496  expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
497} [expr 4+4]
498
499# Some extra cartesian product tests using tables t1 and t2.
500#
501do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
502do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
503
504do_select_tests e_select-1.4.5 [list                                   \
505    1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
506    2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
507    3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
508    4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
509]
510
511
512# EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then
513# the ON expression is evaluated for each row of the cartesian product
514# as a boolean expression. All rows for which the expression evaluates
515# to false are excluded from the dataset.
516#
517foreach {tn select res} [list                                              \
518    1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
519    2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
520    3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
521    4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
522    5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
523    6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
524    7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
525    8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
526                                                                           \
527    9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
528      {one I two II three III}                                             \
529   10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
530      {one I one II one III}                                               \
531   11 { SELECT t1.b, t2.b
532        FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
533      {two I two II two III three I three II three III}                    \
534] {
535  do_join_test e_select-1.3.$tn $select $res
536}
537
538# EVIDENCE-OF: R-63358-54862 If there is a USING clause specified as
539# part of the join-constraint, then each of the column names specified
540# must exist in the datasets to both the left and right of the join-op.
541#
542do_select_tests e_select-1.4 -error {
543  cannot join using column %s - column not present in both tables
544} {
545  1 { SELECT * FROM t1, t3 USING (b) }   "b"
546  2 { SELECT * FROM t3, t1 USING (c) }   "c"
547  3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
548}
549
550# EVIDENCE-OF: R-55987-04584 For each pair of namesake columns, the
551# expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
552# product as a boolean expression. All rows for which one or more of the
553# expressions evaluates to false are excluded from the result set.
554#
555do_select_tests e_select-1.5 {
556  1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
557  2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
558}
559
560# EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
561# USING clause, the normal rules for handling affinities, collation
562# sequences and NULL values in comparisons apply.
563#
564# EVIDENCE-OF: R-35466-18578 The column from the dataset on the
565# left-hand side of the join operator is considered to be on the
566# left-hand side of the comparison operator (=) for the purposes of
567# collation sequence and affinity precedence.
568#
569do_execsql_test e_select-1.6.0 {
570  CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
571  INSERT INTO t5 VALUES('AA', 'cc');
572  INSERT INTO t5 VALUES('BB', 'dd');
573  INSERT INTO t5 VALUES(NULL, NULL);
574  CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
575  INSERT INTO t6 VALUES('aa', 'cc');
576  INSERT INTO t6 VALUES('bb', 'DD');
577  INSERT INTO t6 VALUES(NULL, NULL);
578} {}
579foreach {tn select res} {
580  1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
581  2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
582  3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) }
583    {aa cc cc bb DD dd}
584  4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
585  5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
586} {
587  do_join_test e_select-1.6.$tn $select $res
588}
589
590# EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
591# USING clause, the column from the right-hand dataset is omitted from
592# the joined dataset.
593#
594# EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
595# clause and its equivalent ON constraint.
596#
597foreach {tn select res} {
598  1a { SELECT * FROM t1 %JOIN% t2 USING (a)      }
599     {a one I b two II c three III}
600  1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
601     {a one a I b two b II c three c III}
602
603  2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }
604     {a 1 {} b 2 2}
605  2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) }
606     {a 1 a {} b 2 b 2}
607
608  3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
609  3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
610
611  4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
612       %JOIN% t5 USING (a) }
613     {aa cc cc bb DD dd}
614  4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
615       %JOIN% t5 ON (x.a=t5.a) }
616     {aa cc AA cc bb DD BB dd}
617} {
618  do_join_test e_select-1.7.$tn $select $res
619}
620
621# EVIDENCE-OF: R-41434-12448 If the join-op is a "LEFT JOIN" or "LEFT
622# OUTER JOIN", then after the ON or USING filtering clauses have been
623# applied, an extra row is added to the output for each row in the
624# original left-hand input dataset that corresponds to no rows at all in
625# the composite dataset (if any).
626#
627do_execsql_test e_select-1.8.0 {
628  CREATE TABLE t7(a, b, c);
629  CREATE TABLE t8(a, d, e);
630
631  INSERT INTO t7 VALUES('x', 'ex',  24);
632  INSERT INTO t7 VALUES('y', 'why', 25);
633
634  INSERT INTO t8 VALUES('x', 'abc', 24);
635  INSERT INTO t8 VALUES('z', 'ghi', 26);
636} {}
637
638do_select_tests e_select-1.8 {
639  1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
640  1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
641  2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
642  2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
643}
644
645
646# EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
647# columns that would normally contain values copied from the right-hand
648# input dataset.
649#
650do_select_tests e_select-1.9 {
651  1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
652  1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)"
653     {x ex 24 x abc 24 y why 25 {} {} {}}
654  2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
655  2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
656}
657
658# EVIDENCE-OF: R-01809-52134 If the NATURAL keyword is added to any of
659# the join-ops, then an implicit USING clause is added to the
660# join-constraints. The implicit USING clause contains each of the
661# column names that appear in both the left and right-hand input
662# datasets.
663#
664do_select_tests e_select-1-10 {
665  1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
666  1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}
667
668  2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
669  2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}
670
671  3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
672  3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}
673
674  4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
675  4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}
676
677  5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
678  5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}
679
680  6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
681  6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
682}
683
684# EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
685# feature no common column names, then the NATURAL keyword has no effect
686# on the results of the join.
687#
688do_execsql_test e_select-1.11.0 {
689  CREATE TABLE t10(x, y);
690  INSERT INTO t10 VALUES(1, 'true');
691  INSERT INTO t10 VALUES(0, 'false');
692} {}
693do_select_tests e_select-1-11 {
694  1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
695  1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
696}
697
698# EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
699# join that specifies the NATURAL keyword.
700#
701foreach {tn sql} {
702  1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
703  2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
704  3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
705} {
706  do_catchsql_test e_select-1.12.$tn "
707    $sql
708  " {1 {a NATURAL join may not have an ON or USING clause}}
709}
710
711#-------------------------------------------------------------------------
712# The next block of tests - e_select-3.* - concentrate on verifying
713# statements made regarding WHERE clause processing.
714#
715drop_all_tables
716do_execsql_test e_select-3.0 {
717  CREATE TABLE x1(k, x, y, z);
718  INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
719  INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
720  INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
721  INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
722  INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
723  INSERT INTO x1 VALUES(6, 0,              1,         2);
724
725  CREATE TABLE x2(k, x, y2);
726  INSERT INTO x2 VALUES(1, 50, X'B82838');
727  INSERT INTO x2 VALUES(5, 84.79, 65.88);
728  INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
729  INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
730} {}
731
732# EVIDENCE-OF: R-06999-14330 If a WHERE clause is specified, the WHERE
733# expression is evaluated for each row in the input data as a boolean
734# expression. All rows for which the WHERE clause expression evaluates
735# to false are excluded from the dataset before continuing.
736#
737do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
738do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
739do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
740do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
741do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
742do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
743
744do_execsql_test e_select-3.2.1a {
745  SELECT k FROM x1 LEFT JOIN x2 USING(k)
746} {1 2 3 4 5 6}
747do_execsql_test e_select-3.2.1b {
748  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k
749} {1 3 5}
750do_execsql_test e_select-3.2.2 {
751  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
752} {2 4 6}
753
754do_execsql_test e_select-3.2.3 {
755  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
756} {3}
757do_execsql_test e_select-3.2.4 {
758  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
759} {}
760
761#-------------------------------------------------------------------------
762# Tests below this point are focused on verifying the testable statements
763# related to caculating the result rows of a simple SELECT statement.
764#
765
766drop_all_tables
767do_execsql_test e_select-4.0 {
768  CREATE TABLE z1(a, b, c);
769  CREATE TABLE z2(d, e);
770  CREATE TABLE z3(a, b);
771
772  INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
773  INSERT INTO z1 VALUES(-5, NULL, 75);
774  INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
775  INSERT INTO z1 VALUES(NULL, 67, 'quartets');
776  INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
777  INSERT INTO z1 VALUES(63, 'born', -26);
778
779  INSERT INTO z2 VALUES(NULL, 21);
780  INSERT INTO z2 VALUES(36, 6);
781
782  INSERT INTO z3 VALUES('subsistence', 'gauze');
783  INSERT INTO z3 VALUES(49.17, -67);
784} {}
785
786# EVIDENCE-OF: R-36327-17224 If a result expression is the special
787# expression "*" then all columns in the input data are substituted for
788# that one expression.
789#
790# EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
791# or subquery in the FROM clause followed by ".*" then all columns from
792# the named table or subquery are substituted for the single expression.
793#
794do_select_tests e_select-4.1 {
795  1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
796  2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
797  3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
798  4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
799  5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
800
801  6  "SELECT count(*), * FROM z1"           {6 63 born -26}
802  7  "SELECT max(a), * FROM z1"             {63 63 born -26}
803  8  "SELECT *, min(a) FROM z1"             {63 born -26 -5}
804
805  9  "SELECT *,* FROM z1,z2 LIMIT 1" {
806     51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
807  }
808  10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {
809     51.65 -59.58 belfries 51.65 -59.58 belfries
810  }
811}
812
813# EVIDENCE-OF: R-61869-22578 It is an error to use a "*" or "alias.*"
814# expression in any context other than than a result expression list.
815#
816# EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
817# "alias.*" expression in a simple SELECT query that does not have a
818# FROM clause.
819#
820foreach {tn select err} {
821  1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
822  1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
823  1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
824  1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}
825
826  2.1 "SELECT *" {no tables specified}
827  2.2 "SELECT * WHERE 1" {no tables specified}
828  2.3 "SELECT * WHERE 0" {no tables specified}
829  2.4 "SELECT count(*), *" {no tables specified}
830} {
831  do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
832}
833
834# EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
835# by a simple SELECT statement is equal to the number of expressions in
836# the result expression list after substitution of * and alias.*
837# expressions.
838#
839foreach {tn select nCol} {
840  1   "SELECT * FROM z1"   3
841  2   "SELECT * FROM z1 NATURAL JOIN z3"            3
842  3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
843  4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
844  5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
845  6   "SELECT 1, 2, z1.* FROM z1"                   5
846  7   "SELECT a, *, b, c FROM z1"                   6
847} {
848  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
849  do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
850  sqlite3_finalize $::stmt
851}
852
853
854
855# In lang_select.html, a non-aggregate query is defined as any simple SELECT
856# that has no GROUP BY clause and no aggregate expressions in the result
857# expression list. Other queries are aggregate queries. Test cases
858# e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
859# simple SELECT that is different for aggregate and non-aggregate queries
860# verify (in a way) that these definitions are consistent:
861#
862# EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
863# query if it contains either a GROUP BY clause or one or more aggregate
864# functions in the result-set.
865#
866# EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
867# aggregate functions or a GROUP BY clause, it is a non-aggregate query.
868#
869
870# EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
871# query, then each expression in the result expression list is evaluated
872# for each row in the dataset filtered by the WHERE clause.
873#
874do_select_tests e_select-4.4 {
875  1 "SELECT a, b FROM z1"
876    {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
877
878  2 "SELECT a IS NULL, b+1, * FROM z1" {
879        0 -58.58   51.65 -59.58 belfries
880        0 {}       -5 {} 75
881        0 -22.18   -2.2 -23.18 suiters
882        1 68       {} 67 quartets
883        0 -31.3    -1.04 -32.3 aspen
884        0 1        63 born -26
885  }
886
887  3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
888}
889
890
891# Test cases e_select-4.5.* and e_select-4.6.* together show that:
892#
893# EVIDENCE-OF: R-51988-01124 The single row of result-set data created
894# by evaluating the aggregate and non-aggregate expressions in the
895# result-set forms the result of an aggregate query without a GROUP BY
896# clause.
897#
898
899# EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
900# query without a GROUP BY clause, then each aggregate expression in the
901# result-set is evaluated once across the entire dataset.
902#
903do_select_tests e_select-4.5 {
904  1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
905  2 "SELECT count(*), max(1)"                                {1 1}
906
907  3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
908  4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
909  5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
910}
911
912# EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
913# result-set is evaluated once for an arbitrarily selected row of the
914# dataset.
915#
916# EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
917# for each non-aggregate expression.
918#
919#   Note: The results of many of the queries in this block of tests are
920#   technically undefined, as the documentation does not specify which row
921#   SQLite will arbitrarily select to use for the evaluation of the
922#   non-aggregate expressions.
923#
924drop_all_tables
925do_execsql_test e_select-4.6.0 {
926  CREATE TABLE a1(one PRIMARY KEY, two);
927  INSERT INTO a1 VALUES(1, 1);
928  INSERT INTO a1 VALUES(2, 3);
929  INSERT INTO a1 VALUES(3, 6);
930  INSERT INTO a1 VALUES(4, 10);
931
932  CREATE TABLE a2(one PRIMARY KEY, three);
933  INSERT INTO a2 VALUES(1, 1);
934  INSERT INTO a2 VALUES(3, 2);
935  INSERT INTO a2 VALUES(6, 3);
936  INSERT INTO a2 VALUES(10, 4);
937} {}
938do_select_tests e_select-4.6 {
939  1 "SELECT one, two, count(*) FROM a1"                        {4 10 4}
940  2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {2 3 2}
941  3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1}
942  4 "SELECT *, count(*) FROM a1 JOIN a2"                       {4 10 10 4 16}
943  5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
944  6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
945  7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6}
946}
947
948# EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
949# each non-aggregate expression is evaluated against a row consisting
950# entirely of NULL values.
951#
952do_select_tests e_select-4.7 {
953  1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
954  2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
955  3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
956    1 1 1
957  }
958}
959
960# EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
961# clause always returns exactly one row of data, even if there are zero
962# rows of input data.
963#
964foreach {tn select} {
965  8.1  "SELECT count(*) FROM a1"
966  8.2  "SELECT count(*) FROM a1 WHERE 0"
967  8.3  "SELECT count(*) FROM a1 WHERE 1"
968  8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
969  8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
970} {
971  # Set $nRow to the number of rows returned by $select:
972  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
973  set nRow 0
974  while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
975  set rc [sqlite3_finalize $::stmt]
976
977  # Test that $nRow==1 and that statement execution was successful
978  # (rc==SQLITE_OK).
979  do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
980}
981
982drop_all_tables
983do_execsql_test e_select-4.9.0 {
984  CREATE TABLE b1(one PRIMARY KEY, two);
985  INSERT INTO b1 VALUES(1, 'o');
986  INSERT INTO b1 VALUES(4, 'f');
987  INSERT INTO b1 VALUES(3, 't');
988  INSERT INTO b1 VALUES(2, 't');
989  INSERT INTO b1 VALUES(5, 'f');
990  INSERT INTO b1 VALUES(7, 's');
991  INSERT INTO b1 VALUES(6, 's');
992
993  CREATE TABLE b2(x, y);
994  INSERT INTO b2 VALUES(NULL, 0);
995  INSERT INTO b2 VALUES(NULL, 1);
996  INSERT INTO b2 VALUES('xyz', 2);
997  INSERT INTO b2 VALUES('abc', 3);
998  INSERT INTO b2 VALUES('xyz', 4);
999
1000  CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
1001  INSERT INTO b3 VALUES('abc', 'abc');
1002  INSERT INTO b3 VALUES('aBC', 'aBC');
1003  INSERT INTO b3 VALUES('Def', 'Def');
1004  INSERT INTO b3 VALUES('dEF', 'dEF');
1005} {}
1006
1007# EVIDENCE-OF: R-57754-57109 If the SELECT statement is an aggregate
1008# query with a GROUP BY clause, then each of the expressions specified
1009# as part of the GROUP BY clause is evaluated for each row of the
1010# dataset. Each row is then assigned to a "group" based on the results;
1011# rows for which the results of evaluating the GROUP BY expressions are
1012# the same are assigned to the same group.
1013#
1014#   These tests also show that the following is not untrue:
1015#
1016# EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
1017# not have to be expressions that appear in the result.
1018#
1019do_select_tests e_select-4.9 {
1020  1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
1021    4,5 f   1 o   7,6   s 3,2 t
1022  }
1023  2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
1024    1,4,3,2 10    5,7,6 18
1025  }
1026  3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
1027    4  1,5    2,6   3,7
1028  }
1029  4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
1030    4,3,5,7,6    1,2
1031  }
1032}
1033
1034# EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
1035# values are considered equal.
1036#
1037do_select_tests e_select-4.10 {
1038  1  "SELECT group_concat(y) FROM b2 GROUP BY x" {0,1   3   2,4}
1039  2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
1040}
1041
1042# EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
1043# sequence with which to compare text values apply when evaluating
1044# expressions in a GROUP BY clause.
1045#
1046do_select_tests e_select-4.11 {
1047  1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
1048  2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
1049  3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
1050  4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
1051  5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
1052  6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
1053}
1054
1055# EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
1056# not be aggregate expressions.
1057#
1058foreach {tn select} {
1059  12.1  "SELECT * FROM b3 GROUP BY count(*)"
1060  12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
1061  12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
1062} {
1063  set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
1064  do_catchsql_test e_select-4.$tn $select $res
1065}
1066
1067# EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
1068# evaluated once for each group of rows as a boolean expression. If the
1069# result of evaluating the HAVING clause is false, the group is
1070# discarded.
1071#
1072#   This requirement is tested by all e_select-4.13.* tests.
1073#
1074# EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
1075# expression, it is evaluated across all rows in the group.
1076#
1077#   Tested by e_select-4.13.1.*
1078#
1079# EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
1080# expression, it is evaluated with respect to an arbitrarily selected
1081# row from the group.
1082#
1083#   Tested by e_select-4.13.2.*
1084#
1085#   Tests in this block also show that this is not untrue:
1086#
1087# EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
1088# even aggregate functions, that are not in the result.
1089#
1090do_execsql_test e_select-4.13.0 {
1091  CREATE TABLE c1(up, down);
1092  INSERT INTO c1 VALUES('x', 1);
1093  INSERT INTO c1 VALUES('x', 2);
1094  INSERT INTO c1 VALUES('x', 4);
1095  INSERT INTO c1 VALUES('x', 8);
1096  INSERT INTO c1 VALUES('y', 16);
1097  INSERT INTO c1 VALUES('y', 32);
1098
1099  CREATE TABLE c2(i, j);
1100  INSERT INTO c2 VALUES(1, 0);
1101  INSERT INTO c2 VALUES(2, 1);
1102  INSERT INTO c2 VALUES(3, 3);
1103  INSERT INTO c2 VALUES(4, 6);
1104  INSERT INTO c2 VALUES(5, 10);
1105  INSERT INTO c2 VALUES(6, 15);
1106  INSERT INTO c2 VALUES(7, 21);
1107  INSERT INTO c2 VALUES(8, 28);
1108  INSERT INTO c2 VALUES(9, 36);
1109
1110  CREATE TABLE c3(i PRIMARY KEY, k TEXT);
1111  INSERT INTO c3 VALUES(1,  'hydrogen');
1112  INSERT INTO c3 VALUES(2,  'helium');
1113  INSERT INTO c3 VALUES(3,  'lithium');
1114  INSERT INTO c3 VALUES(4,  'beryllium');
1115  INSERT INTO c3 VALUES(5,  'boron');
1116  INSERT INTO c3 VALUES(94, 'plutonium');
1117} {}
1118
1119do_select_tests e_select-4.13 {
1120  1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
1121  1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
1122  1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
1123  1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
1124
1125  2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
1126  2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}
1127
1128  2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6"  {9 36}
1129}
1130
1131# EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
1132# evaluated once for each group of rows.
1133#
1134# EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
1135# expression, it is evaluated across all rows in the group.
1136#
1137do_select_tests e_select-4.15 {
1138  1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
1139  2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
1140  3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
1141  4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
1142  5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
1143        {3 4.33 1 2.0}
1144}
1145
1146# EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
1147# arbitrarily chosen row from within the group.
1148#
1149# EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
1150# expression in the result-set, then all such expressions are evaluated
1151# for the same row.
1152#
1153do_select_tests e_select-4.15 {
1154  1  "SELECT i, j FROM c2 GROUP BY i%2"             {8 28   9 36}
1155  2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28}
1156  3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1157  4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1158  5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
1159        {2 5 boron   2 2 helium   1 3 lithium}
1160}
1161
1162# EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
1163# contributes a single row to the set of result rows.
1164#
1165# EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
1166# DISTINCT keyword, the number of rows returned by an aggregate query
1167# with a GROUP BY clause is the same as the number of groups of rows
1168# produced by applying the GROUP BY and HAVING clauses to the filtered
1169# input dataset.
1170#
1171do_select_tests e_select.4.16 -count {
1172  1  "SELECT i, j FROM c2 GROUP BY i%2"          2
1173  2  "SELECT i, j FROM c2 GROUP BY i"            9
1174  3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
1175}
1176
1177#-------------------------------------------------------------------------
1178# The following tests attempt to verify statements made regarding the ALL
1179# and DISTINCT keywords.
1180#
1181drop_all_tables
1182do_execsql_test e_select-5.1.0 {
1183  CREATE TABLE h1(a, b);
1184  INSERT INTO h1 VALUES(1, 'one');
1185  INSERT INTO h1 VALUES(1, 'I');
1186  INSERT INTO h1 VALUES(1, 'i');
1187  INSERT INTO h1 VALUES(4, 'four');
1188  INSERT INTO h1 VALUES(4, 'IV');
1189  INSERT INTO h1 VALUES(4, 'iv');
1190
1191  CREATE TABLE h2(x COLLATE nocase);
1192  INSERT INTO h2 VALUES('One');
1193  INSERT INTO h2 VALUES('Two');
1194  INSERT INTO h2 VALUES('Three');
1195  INSERT INTO h2 VALUES('Four');
1196  INSERT INTO h2 VALUES('one');
1197  INSERT INTO h2 VALUES('two');
1198  INSERT INTO h2 VALUES('three');
1199  INSERT INTO h2 VALUES('four');
1200
1201  CREATE TABLE h3(c, d);
1202  INSERT INTO h3 VALUES(1, NULL);
1203  INSERT INTO h3 VALUES(2, NULL);
1204  INSERT INTO h3 VALUES(3, NULL);
1205  INSERT INTO h3 VALUES(4, '2');
1206  INSERT INTO h3 VALUES(5, NULL);
1207  INSERT INTO h3 VALUES(6, '2,3');
1208  INSERT INTO h3 VALUES(7, NULL);
1209  INSERT INTO h3 VALUES(8, '2,4');
1210  INSERT INTO h3 VALUES(9, '3');
1211} {}
1212
1213# EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
1214# follow the SELECT keyword in a simple SELECT statement.
1215#
1216do_select_tests e_select-5.1 {
1217  1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
1218  2   "SELECT DISTINCT a FROM h1" {1 4}
1219}
1220
1221# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
1222# the entire set of result rows are returned by the SELECT.
1223#
1224# EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present,
1225# then the behaviour is as if ALL were specified.
1226#
1227# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
1228# then duplicate rows are removed from the set of result rows before it
1229# is returned.
1230#
1231#   The three testable statements above are tested by e_select-5.2.*,
1232#   5.3.* and 5.4.* respectively.
1233#
1234do_select_tests e_select-5 {
1235  3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
1236  3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
1237
1238  3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
1239  3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
1240
1241  4.1 "SELECT DISTINCT x FROM h2" {four one three two}
1242  4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {four one}
1243}
1244
1245# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
1246# rows, two NULL values are considered to be equal.
1247#
1248do_select_tests e_select-5.5 {
1249  1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
1250}
1251
1252# EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation
1253# sequence to compare text values with apply.
1254#
1255do_select_tests e_select-5.6 {
1256  1  "SELECT DISTINCT b FROM h1"                  {I IV four i iv one}
1257  2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {four i iv one}
1258  3  "SELECT DISTINCT x FROM h2"                  {four one three two}
1259  4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
1260    Four One Three Two four one three two
1261  }
1262}
1263
1264#-------------------------------------------------------------------------
1265# The following tests - e_select-7.* - test that statements made to do
1266# with compound SELECT statements are correct.
1267#
1268
1269# EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
1270# SELECTs must return the same number of result columns.
1271#
1272#   All the other tests in this section use compound SELECTs created
1273#   using component SELECTs that do return the same number of columns.
1274#   So the tests here just show that it is an error to attempt otherwise.
1275#
1276drop_all_tables
1277do_execsql_test e_select-7.1.0 {
1278  CREATE TABLE j1(a, b, c);
1279  CREATE TABLE j2(e, f);
1280  CREATE TABLE j3(g);
1281} {}
1282do_select_tests e_select-7.1 -error {
1283  SELECTs to the left and right of %s do not have the same number of result columns
1284} {
1285  1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1286  2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
1287  3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1288  4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
1289  5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
1290
1291  6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1292  7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
1293  8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1294  9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
1295  10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}
1296
1297  11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1298  12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
1299  13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1300  14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
1301  15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
1302
1303  16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1304  17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
1305  18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1306  19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
1307  20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
1308}
1309
1310# EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
1311# be simple SELECT statements, they may not contain ORDER BY or LIMIT
1312# clauses.
1313#
1314foreach {tn select op1 op2} {
1315  1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3"
1316      {ORDER BY} {UNION ALL}
1317  2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
1318      {ORDER BY} {UNION ALL}
1319  3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
1320      {ORDER BY} {UNION ALL}
1321  4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3"
1322      LIMIT {UNION ALL}
1323  5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3"
1324      LIMIT {UNION ALL}
1325  6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3"
1326      LIMIT {UNION ALL}
1327
1328  7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3"
1329      {ORDER BY} {UNION}
1330  8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
1331      {ORDER BY} {UNION}
1332  9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
1333      {ORDER BY} {UNION}
1334  10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3"
1335      LIMIT {UNION}
1336  11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3"
1337      LIMIT {UNION}
1338  12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3"
1339      LIMIT {UNION}
1340
1341  13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3"
1342      {ORDER BY} {EXCEPT}
1343  14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
1344      {ORDER BY} {EXCEPT}
1345  15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
1346      {ORDER BY} {EXCEPT}
1347  16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3"
1348      LIMIT {EXCEPT}
1349  17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3"
1350      LIMIT {EXCEPT}
1351  18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3"
1352      LIMIT {EXCEPT}
1353
1354  19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3"
1355      {ORDER BY} {INTERSECT}
1356  20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
1357      {ORDER BY} {INTERSECT}
1358  21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
1359      {ORDER BY} {INTERSECT}
1360  22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3"
1361      LIMIT {INTERSECT}
1362  23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3"
1363      LIMIT {INTERSECT}
1364  24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3"
1365      LIMIT {INTERSECT}
1366} {
1367  set err "$op1 clause should come after $op2 not before"
1368  do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
1369}
1370
1371# EVIDENCE-OF: R-22874-32655 ORDER BY and LIMIT clauses may only occur
1372# at the end of the entire compound SELECT.
1373#
1374foreach {tn select} {
1375  1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
1376  2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
1377  3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
1378  4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10"
1379  5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1380  6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1381
1382  7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
1383  8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
1384  9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
1385  10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10"
1386  11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1387  12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1388
1389  13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
1390  14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
1391  15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
1392  16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10"
1393  17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1394  18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1395
1396  19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
1397  20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
1398  21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
1399  22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10"
1400  23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1401  24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1402} {
1403  do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
1404}
1405
1406# EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
1407# operator returns all the rows from the SELECT to the left of the UNION
1408# ALL operator, and all the rows from the SELECT to the right of it.
1409#
1410drop_all_tables
1411do_execsql_test e_select-7.4.0 {
1412  CREATE TABLE q1(a TEXT, b INTEGER, c);
1413  CREATE TABLE q2(d NUMBER, e BLOB);
1414  CREATE TABLE q3(f REAL, g);
1415
1416  INSERT INTO q1 VALUES(16, -87.66, NULL);
1417  INSERT INTO q1 VALUES('legible', 94, -42.47);
1418  INSERT INTO q1 VALUES('beauty', 36, NULL);
1419
1420  INSERT INTO q2 VALUES('legible', 1);
1421  INSERT INTO q2 VALUES('beauty', 2);
1422  INSERT INTO q2 VALUES(-65.91, 4);
1423  INSERT INTO q2 VALUES('emanating', -16.56);
1424
1425  INSERT INTO q3 VALUES('beauty', 2);
1426  INSERT INTO q3 VALUES('beauty', 2);
1427} {}
1428do_select_tests e_select-7.4 {
1429  1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
1430      {16 legible beauty legible beauty -65.91 emanating}
1431
1432  2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
1433      {16 -87.66 {} x legible 1}
1434
1435  3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2}
1436      {3 -16.56}
1437
1438  4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3}
1439      {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
1440}
1441
1442# EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
1443# UNION ALL, except that duplicate rows are removed from the final
1444# result set.
1445#
1446do_select_tests e_select-7.5 {
1447  1   {SELECT a FROM q1 UNION SELECT d FROM q2}
1448      {-65.91 16 beauty emanating legible}
1449
1450  2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
1451      {16 -87.66 {} x legible 1}
1452
1453  3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2}
1454      {-16.56 3}
1455
1456  4   {SELECT * FROM q2 UNION SELECT * FROM q3}
1457      {-65.91 4 beauty 2 emanating -16.56 legible 1}
1458}
1459
1460# EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
1461# intersection of the results of the left and right SELECTs.
1462#
1463do_select_tests e_select-7.6 {
1464  1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
1465  2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
1466}
1467
1468# EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
1469# rows returned by the left SELECT that are not also returned by the
1470# right-hand SELECT.
1471#
1472do_select_tests e_select-7.7 {
1473  1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
1474
1475  2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3}
1476      {-65.91 4 emanating -16.56 legible 1}
1477}
1478
1479# EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
1480# of INTERSECT and EXCEPT operators before the result set is returned.
1481#
1482do_select_tests e_select-7.8 {
1483  0   {SELECT * FROM q3} {beauty 2 beauty 2}
1484
1485  1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
1486  2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
1487}
1488
1489# EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
1490# rows for the results of compound SELECT operators, NULL values are
1491# considered equal to other NULL values and distinct from all non-NULL
1492# values.
1493#
1494db nullvalue null
1495do_select_tests e_select-7.9 {
1496  1   {SELECT NULL UNION ALL SELECT NULL} {null null}
1497  2   {SELECT NULL UNION     SELECT NULL} {null}
1498  3   {SELECT NULL INTERSECT SELECT NULL} {null}
1499  4   {SELECT NULL EXCEPT    SELECT NULL} {}
1500
1501  5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
1502  6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
1503  7   {SELECT NULL INTERSECT SELECT 'ab'} {}
1504  8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}
1505
1506  9   {SELECT NULL UNION ALL SELECT 0} {null 0}
1507  10  {SELECT NULL UNION     SELECT 0} {null 0}
1508  11  {SELECT NULL INTERSECT SELECT 0} {}
1509  12  {SELECT NULL EXCEPT    SELECT 0} {null}
1510
1511  13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
1512  14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
1513  15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
1514  16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
1515}
1516db nullvalue {}
1517
1518# EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
1519# text values is determined as if the columns of the left and right-hand
1520# SELECT statements were the left and right-hand operands of the equals
1521# (=) operator, except that greater precedence is not assigned to a
1522# collation sequence specified with the postfix COLLATE operator.
1523#
1524drop_all_tables
1525do_execsql_test e_select-7.10.0 {
1526  CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
1527  INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
1528} {}
1529do_select_tests e_select-7.10 {
1530  1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
1531  2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
1532  3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
1533  4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
1534  5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
1535
1536  6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
1537  7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
1538  8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}
1539
1540  9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
1541}
1542
1543# EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
1544# any values when comparing rows as part of a compound SELECT.
1545#
1546drop_all_tables
1547do_execsql_test e_select-7.10.0 {
1548  CREATE TABLE w1(a TEXT, b NUMBER);
1549  CREATE TABLE w2(a, b TEXT);
1550
1551  INSERT INTO w1 VALUES('1', 4.1);
1552  INSERT INTO w2 VALUES(1, 4.1);
1553} {}
1554
1555do_select_tests e_select-7.11 {
1556  1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
1557  2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
1558  3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
1559  4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
1560
1561  5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
1562  6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
1563  7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
1564  8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
1565
1566  9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
1567  10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
1568  11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
1569  12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
1570}
1571
1572
1573# EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
1574# connected into a compound SELECT, they group from left to right. In
1575# other words, if "A", "B" and "C" are all simple SELECT statements, (A
1576# op B op C) is processed as ((A op B) op C).
1577#
1578#   e_select-7.12.1: Precedence of UNION vs. INTERSECT
1579#   e_select-7.12.2: Precedence of UNION vs. UNION ALL
1580#   e_select-7.12.3: Precedence of UNION vs. EXCEPT
1581#   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL
1582#   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
1583#   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
1584#   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as
1585#                   "(a EXCEPT b) EXCEPT c".
1586#
1587# The INTERSECT and EXCEPT operations are mutually commutative. So
1588# the e_select-7.12.5 test cases do not prove very much.
1589#
1590drop_all_tables
1591do_execsql_test e_select-7.12.0 {
1592  CREATE TABLE t1(x);
1593  INSERT INTO t1 VALUES(1);
1594  INSERT INTO t1 VALUES(2);
1595  INSERT INTO t1 VALUES(3);
1596} {}
1597foreach {tn select res} {
1598  1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
1599  1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1600
1601  2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
1602  2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}
1603
1604  3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
1605  3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}
1606
1607  4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
1608  4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1609
1610  5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
1611  5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}
1612
1613  6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
1614  6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}
1615
1616  7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
1617} {
1618  set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
1619  do_execsql_test e_select-7.12.$tn $select [list {*}$res]
1620}
1621
1622
1623#-------------------------------------------------------------------------
1624# ORDER BY clauses
1625#
1626
1627drop_all_tables
1628do_execsql_test e_select-8.1.0 {
1629  CREATE TABLE d1(x, y, z);
1630
1631  INSERT INTO d1 VALUES(1, 2, 3);
1632  INSERT INTO d1 VALUES(2, 5, -1);
1633  INSERT INTO d1 VALUES(1, 2, 8);
1634  INSERT INTO d1 VALUES(1, 2, 7);
1635  INSERT INTO d1 VALUES(2, 4, 93);
1636  INSERT INTO d1 VALUES(1, 2, -20);
1637  INSERT INTO d1 VALUES(1, 4, 93);
1638  INSERT INTO d1 VALUES(1, 5, -1);
1639
1640  CREATE TABLE d2(a, b);
1641  INSERT INTO d2 VALUES('gently', 'failings');
1642  INSERT INTO d2 VALUES('commercials', 'bathrobe');
1643  INSERT INTO d2 VALUES('iterate', 'sexton');
1644  INSERT INTO d2 VALUES('babied', 'charitableness');
1645  INSERT INTO d2 VALUES('solemnness', 'annexed');
1646  INSERT INTO d2 VALUES('rejoicing', 'liabilities');
1647  INSERT INTO d2 VALUES('pragmatist', 'guarded');
1648  INSERT INTO d2 VALUES('barked', 'interrupted');
1649  INSERT INTO d2 VALUES('reemphasizes', 'reply');
1650  INSERT INTO d2 VALUES('lad', 'relenting');
1651} {}
1652
1653# EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
1654# of evaluating the left-most expression in the ORDER BY list, then ties
1655# are broken by evaluating the second left-most expression and so on.
1656#
1657do_select_tests e_select-8.1 {
1658  1  "SELECT * FROM d1 ORDER BY x, y, z" {
1659     1 2 -20    1 2 3    1 2 7    1 2 8
1660     1 4  93    1 5 -1   2 4 93   2 5 -1
1661  }
1662}
1663
1664# EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
1665# followed by one of the keywords ASC (smaller values are returned
1666# first) or DESC (larger values are returned first).
1667#
1668#   Test cases e_select-8.2.* test the above.
1669#
1670# EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
1671# are sorted in ascending (smaller values first) order by default.
1672#
1673#   Test cases e_select-8.3.* test the above. All 8.3 test cases are
1674#   copies of 8.2 test cases with the explicit "ASC" removed.
1675#
1676do_select_tests e_select-8 {
1677  2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
1678     1 2 -20    1 2 3    1 2 7    1 2 8
1679     1 4  93    1 5 -1   2 4 93   2 5 -1
1680  }
1681  2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
1682     2 5 -1     2 4 93   1 5 -1   1 4  93
1683     1 2 8      1 2 7    1 2 3    1 2 -20
1684  }
1685  2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
1686     2 4 93   2 5 -1     1 2 8      1 2 7
1687     1 2 3    1 2 -20    1 4  93    1 5 -1
1688  }
1689  2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
1690     2 4 93   2 5 -1     1 2 -20    1 2 3
1691     1 2 7    1 2 8      1 4  93    1 5 -1
1692  }
1693
1694  3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
1695     1 2 -20    1 2 3    1 2 7    1 2 8
1696     1 4  93    1 5 -1   2 4 93   2 5 -1
1697  }
1698  3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
1699     2 4 93   2 5 -1     1 2 8      1 2 7
1700     1 2 3    1 2 -20    1 4  93    1 5 -1
1701  }
1702  3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
1703     2 4 93   2 5 -1     1 2 -20    1 2 3
1704     1 2 7    1 2 8      1 4  93    1 5 -1
1705  }
1706}
1707
1708# EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
1709# integer K then the expression is considered an alias for the K-th
1710# column of the result set (columns are numbered from left to right
1711# starting with 1).
1712#
1713do_select_tests e_select-8.4 {
1714  1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
1715     1 2 -20    1 2 3    1 2 7    1 2 8
1716     1 4  93    1 5 -1   2 4 93   2 5 -1
1717  }
1718  2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
1719     2 5 -1     2 4 93   1 5 -1   1 4  93
1720     1 2 8      1 2 7    1 2 3    1 2 -20
1721  }
1722  3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
1723     2 4 93   2 5 -1     1 2 8      1 2 7
1724     1 2 3    1 2 -20    1 4  93    1 5 -1
1725  }
1726  4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
1727     2 4 93   2 5 -1     1 2 -20    1 2 3
1728     1 2 7    1 2 8      1 4  93    1 5 -1
1729  }
1730  5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
1731     1 2 -20    1 2 3    1 2 7    1 2 8
1732     1 4  93    1 5 -1   2 4 93   2 5 -1
1733  }
1734  6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
1735     2 4 93   2 5 -1     1 2 8      1 2 7
1736     1 2 3    1 2 -20    1 4  93    1 5 -1
1737  }
1738  7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
1739     2 4 93   2 5 -1     1 2 -20    1 2 3
1740     1 2 7    1 2 8      1 4  93    1 5 -1
1741  }
1742  8  "SELECT z, x FROM d1 ORDER BY 2" {
1743     3 1     8 1    7 1   -20 1
1744     93 1   -1 1   -1 2   93 2
1745  }
1746  9  "SELECT z, x FROM d1 ORDER BY 1" {
1747     -20 1  -1 2   -1 1   3 1
1748     7 1     8 1   93 2   93 1
1749  }
1750}
1751
1752# EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
1753# that corresponds to the alias of one of the output columns, then the
1754# expression is considered an alias for that column.
1755#
1756do_select_tests e_select-8.5 {
1757  1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
1758    -19 0 0 4 8 9 94 94
1759  }
1760  2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
1761    94 94 9 8 4 0 0 -19
1762  }
1763  3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
1764    3 1    8 1    7 1    -20 1    93 1    -1 1    -1 2    93 2
1765  }
1766  4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
1767    -20 1    -1 2    -1 1    3 1    7 1    8 1    93 2    93 1
1768  }
1769}
1770
1771# EVIDENCE-OF: R-27923-38747 Otherwise, if the ORDER BY expression is
1772# any other expression, it is evaluated and the the returned value used
1773# to order the output rows.
1774#
1775# EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
1776# then an ORDER BY may contain any arbitrary expressions.
1777#
1778do_select_tests e_select-8.6 {
1779  1   "SELECT * FROM d1 ORDER BY x+y+z" {
1780    1 2 -20    1 5 -1    1 2 3    2 5 -1
1781    1 2 7      1 2 8     1 4 93   2 4 93
1782  }
1783  2   "SELECT * FROM d1 ORDER BY x*z" {
1784    1 2 -20    2 5 -1    1 5 -1    1 2 3
1785    1 2 7      1 2 8     1 4 93    2 4 93
1786  }
1787  3   "SELECT * FROM d1 ORDER BY y*z" {
1788    1 2 -20    2 5 -1    1 5 -1    1 2 3
1789    1 2 7      1 2 8     2 4 93    1 4 93
1790  }
1791}
1792
1793# EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
1794# SELECT, then ORDER BY expressions that are not aliases to output
1795# columns must be exactly the same as an expression used as an output
1796# column.
1797#
1798do_select_tests e_select-8.7.1 -error {
1799  %s ORDER BY term does not match any column in the result set
1800} {
1801  1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
1802  2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
1803}
1804
1805do_select_tests e_select-8.7.2 {
1806  1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
1807    -20 -2 -1 3 7 8 93 186 babied barked commercials gently
1808    iterate lad pragmatist reemphasizes rejoicing solemnness
1809  }
1810  2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
1811    1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0
1812    babied charitableness barked interrupted commercials bathrobe gently
1813    failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
1814    rejoicing liabilities solemnness annexed
1815  }
1816}
1817
1818do_execsql_test e_select-8.8.0 {
1819  CREATE TABLE d3(a);
1820  INSERT INTO d3 VALUES('text');
1821  INSERT INTO d3 VALUES(14.1);
1822  INSERT INTO d3 VALUES(13);
1823  INSERT INTO d3 VALUES(X'78787878');
1824  INSERT INTO d3 VALUES(15);
1825  INSERT INTO d3 VALUES(12.9);
1826  INSERT INTO d3 VALUES(null);
1827
1828  CREATE TABLE d4(x COLLATE nocase);
1829  INSERT INTO d4 VALUES('abc');
1830  INSERT INTO d4 VALUES('ghi');
1831  INSERT INTO d4 VALUES('DEF');
1832  INSERT INTO d4 VALUES('JKL');
1833} {}
1834
1835# EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
1836# are compared in the same way as for comparison expressions.
1837#
1838#   The following tests verify that values of different types are sorted
1839#   correctly, and that mixed real and integer values are compared properly.
1840#
1841do_execsql_test e_select-8.8.1 {
1842  SELECT a FROM d3 ORDER BY a
1843} {{} 12.9 13 14.1 15 text xxxx}
1844do_execsql_test e_select-8.8.2 {
1845  SELECT a FROM d3 ORDER BY a DESC
1846} {xxxx text 15 14.1 13 12.9 {}}
1847
1848
1849# EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
1850# collation sequence using the postfix COLLATE operator, then the
1851# specified collation sequence is used.
1852#
1853do_execsql_test e_select-8.9.1 {
1854  SELECT x FROM d4 ORDER BY 1 COLLATE binary
1855} {DEF JKL abc ghi}
1856do_execsql_test e_select-8.9.2 {
1857  SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
1858} {abc DEF ghi JKL}
1859
1860# EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is
1861# an alias to an expression that has been assigned a collation sequence
1862# using the postfix COLLATE operator, then the collation sequence
1863# assigned to the aliased expression is used.
1864#
1865#   In the test 8.10.2, the only result-column expression has no alias. So the
1866#   ORDER BY expression is not a reference to it and therefore does not inherit
1867#   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
1868#   column name), so the ORDER BY expression is interpreted as an alias and the
1869#   collation sequence attached to the result column is used for sorting.
1870#
1871do_execsql_test e_select-8.10.1 {
1872  SELECT x COLLATE binary FROM d4 ORDER BY 1
1873} {DEF JKL abc ghi}
1874do_execsql_test e_select-8.10.2 {
1875  SELECT x COLLATE binary FROM d4 ORDER BY x
1876} {abc DEF ghi JKL}
1877do_execsql_test e_select-8.10.3 {
1878  SELECT x COLLATE binary AS x FROM d4 ORDER BY x
1879} {DEF JKL abc ghi}
1880
1881# EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
1882# column or an alias of an expression that is a column, then the default
1883# collation sequence for the column is used.
1884#
1885do_execsql_test e_select-8.11.1 {
1886  SELECT x AS y FROM d4 ORDER BY y
1887} {abc DEF ghi JKL}
1888do_execsql_test e_select-8.11.2 {
1889  SELECT x||'' FROM d4 ORDER BY x
1890} {abc DEF ghi JKL}
1891
1892# EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
1893# used.
1894#
1895do_execsql_test e_select-8.12.1 {
1896  SELECT x FROM d4 ORDER BY x||''
1897} {DEF JKL abc ghi}
1898
1899# EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
1900# alias, then SQLite searches the left-most SELECT in the compound for a
1901# result column that matches either the second or third rules above. If
1902# a match is found, the search stops and the expression is handled as an
1903# alias for the result column that it has been matched against.
1904# Otherwise, the next SELECT to the right is tried, and so on.
1905#
1906do_execsql_test e_select-8.13.0 {
1907  CREATE TABLE d5(a, b);
1908  CREATE TABLE d6(c, d);
1909  CREATE TABLE d7(e, f);
1910
1911  INSERT INTO d5 VALUES(1, 'f');
1912  INSERT INTO d6 VALUES(2, 'e');
1913  INSERT INTO d7 VALUES(3, 'd');
1914  INSERT INTO d5 VALUES(4, 'c');
1915  INSERT INTO d6 VALUES(5, 'b');
1916  INSERT INTO d7 VALUES(6, 'a');
1917
1918  CREATE TABLE d8(x COLLATE nocase);
1919  CREATE TABLE d9(y COLLATE nocase);
1920
1921  INSERT INTO d8 VALUES('a');
1922  INSERT INTO d9 VALUES('B');
1923  INSERT INTO d8 VALUES('c');
1924  INSERT INTO d9 VALUES('D');
1925} {}
1926do_select_tests e_select-8.13 {
1927  1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1928         ORDER BY a
1929      } {1 2 3 4 5 6}
1930  2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1931         ORDER BY c
1932      } {1 2 3 4 5 6}
1933  3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1934         ORDER BY e
1935      } {1 2 3 4 5 6}
1936  4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1937         ORDER BY 1
1938      } {1 2 3 4 5 6}
1939
1940  5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b }
1941      {f 1   c 4   4 c   1 f}
1942  6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 }
1943      {f 1   c 4   4 c   1 f}
1944
1945  7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a }
1946      {1 f   4 c   c 4   f 1}
1947  8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 }
1948      {1 f   4 c   c 4   f 1}
1949
1950  9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1951      {f 2   c 5   4 c   1 f}
1952  10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 }
1953      {f 2   c 5   4 c   1 f}
1954
1955  11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1956      {2 f   5 c   c 5   f 2}
1957  12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 }
1958      {2 f   5 c   c 5   f 2}
1959}
1960
1961# EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
1962# the result columns of any constituent SELECT, it is an error.
1963#
1964do_select_tests e_select-8.14 -error {
1965  %s ORDER BY term does not match any column in the result set
1966} {
1967  1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
1968  2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
1969  3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
1970  4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
1971  5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
1972  6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
1973}
1974
1975# EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
1976# processed separately and may be matched against result columns from
1977# different SELECT statements in the compound.
1978#
1979do_select_tests e_select-8.15 {
1980  1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
1981     {1 e   1 f   4 b   4 c}
1982  2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
1983     {1 e   1 f   4 b   4 c}
1984  3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
1985     {1 e   1 f   4 b   4 c}
1986}
1987
1988
1989#-------------------------------------------------------------------------
1990# Tests related to statements made about the LIMIT/OFFSET clause.
1991#
1992do_execsql_test e_select-9.0 {
1993  CREATE TABLE f1(a, b);
1994  INSERT INTO f1 VALUES(26, 'z');
1995  INSERT INTO f1 VALUES(25, 'y');
1996  INSERT INTO f1 VALUES(24, 'x');
1997  INSERT INTO f1 VALUES(23, 'w');
1998  INSERT INTO f1 VALUES(22, 'v');
1999  INSERT INTO f1 VALUES(21, 'u');
2000  INSERT INTO f1 VALUES(20, 't');
2001  INSERT INTO f1 VALUES(19, 's');
2002  INSERT INTO f1 VALUES(18, 'r');
2003  INSERT INTO f1 VALUES(17, 'q');
2004  INSERT INTO f1 VALUES(16, 'p');
2005  INSERT INTO f1 VALUES(15, 'o');
2006  INSERT INTO f1 VALUES(14, 'n');
2007  INSERT INTO f1 VALUES(13, 'm');
2008  INSERT INTO f1 VALUES(12, 'l');
2009  INSERT INTO f1 VALUES(11, 'k');
2010  INSERT INTO f1 VALUES(10, 'j');
2011  INSERT INTO f1 VALUES(9, 'i');
2012  INSERT INTO f1 VALUES(8, 'h');
2013  INSERT INTO f1 VALUES(7, 'g');
2014  INSERT INTO f1 VALUES(6, 'f');
2015  INSERT INTO f1 VALUES(5, 'e');
2016  INSERT INTO f1 VALUES(4, 'd');
2017  INSERT INTO f1 VALUES(3, 'c');
2018  INSERT INTO f1 VALUES(2, 'b');
2019  INSERT INTO f1 VALUES(1, 'a');
2020} {}
2021
2022# EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
2023# LIMIT clause, so long as it evaluates to an integer or a value that
2024# can be losslessly converted to an integer.
2025#
2026do_select_tests e_select-9.1 {
2027  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
2028  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
2029  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') }
2030     {a b c d e}
2031  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
2032  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
2033}
2034
2035# EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
2036# or any other value that cannot be losslessly converted to an integer,
2037# an error is returned.
2038#
2039
2040do_select_tests e_select-9.2 -error "datatype mismatch" {
2041  1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
2042  2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
2043  3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
2044  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
2045  5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
2046}
2047
2048# EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
2049# negative value, then there is no upper bound on the number of rows
2050# returned.
2051#
2052do_select_tests e_select-9.4 {
2053  1  { SELECT b FROM f1 ORDER BY a LIMIT -1 }
2054     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2055  2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 }
2056     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2057  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
2058     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2059}
2060
2061# EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
2062# rows of its result set only, where N is the value that the LIMIT
2063# expression evaluates to.
2064#
2065do_select_tests e_select-9.5 {
2066  1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
2067  2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
2068  3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
2069  4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
2070}
2071
2072# EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
2073# less than N rows without a LIMIT clause, then the entire result set is
2074# returned.
2075#
2076do_select_tests e_select-9.6 {
2077  1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
2078  2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
2079}
2080
2081
2082# EVIDENCE-OF: R-24188-24349 The expression attached to the optional
2083# OFFSET clause that may follow a LIMIT clause must also evaluate to an
2084# integer, or a value that can be losslessly converted to an integer.
2085#
2086foreach {tn select} {
2087  1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' }
2088  2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL }
2089  3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' }
2090  4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 }
2091  5  { SELECT b FROM f1 ORDER BY a
2092       LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1)
2093  }
2094} {
2095  do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
2096}
2097
2098# EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
2099# the first M rows are omitted from the result set returned by the
2100# SELECT statement and the next N rows are returned, where M and N are
2101# the values that the OFFSET and LIMIT clauses evaluate to,
2102# respectively.
2103#
2104do_select_tests e_select-9.8 {
2105  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
2106  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
2107  3  { SELECT b FROM f1 ORDER BY a
2108       LIMIT  (SELECT a FROM f1 WHERE b='j')
2109       OFFSET (SELECT a FROM f1 WHERE b='b')
2110     } {c d e f g h i j k l}
2111  4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
2112  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
2113  6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
2114  7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
2115}
2116
2117# EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
2118# M+N rows if it did not have a LIMIT clause, then the first M rows are
2119# skipped and the remaining rows (if any) are returned.
2120#
2121do_select_tests e_select-9.9 {
2122  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
2123  2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
2124}
2125
2126
2127# EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
2128# negative value, the results are the same as if it had evaluated to
2129# zero.
2130#
2131do_select_tests e_select-9.10 {
2132  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
2133  2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
2134  3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
2135}
2136
2137# EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
2138# LIMIT clause may specify two scalar expressions separated by a comma.
2139#
2140# EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
2141# as the OFFSET expression and the second as the LIMIT expression.
2142#
2143do_select_tests e_select-9.11 {
2144  1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
2145  2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
2146  3  { SELECT b FROM f1 ORDER BY a
2147       LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j')
2148     } {c d e f g h i j k l}
2149  4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
2150  5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
2151  6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
2152  7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
2153
2154  8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
2155  9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
2156
2157  10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
2158  11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
2159  12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
2160}
2161
2162finish_test
2163