1# 2005 November 30 2# 3# The author disclaims copyright to this source code. In place of 4# a legal notice, here is a blessing: 5# 6# May you do good and not evil. 7# May you find forgiveness for yourself and forgive others. 8# May you share freely, never taking more than you give. 9# 10#*********************************************************************** 11# 12# This file contains test cases focused on the two memory-management APIs, 13# sqlite3_soft_heap_limit() and sqlite3_release_memory(). 14# 15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding 16# the configured soft heap limit could cause sqlite to upgrade database 17# locks and flush dirty pages to the file system. As of 3.6.2, this is 18# no longer the case. In version 3.6.2, sqlite3_release_memory() only 19# reclaims clean pages. This test file has been updated accordingly. 20# 21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ 22 23set testdir [file dirname $argv0] 24source $testdir/tester.tcl 25source $testdir/malloc_common.tcl 26db close 27 28# Only run these tests if memory debugging is turned on. 29# 30if {!$MEMDEBUG} { 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." 32 finish_test 33 return 34} 35 36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. 37ifcapable !memorymanage { 38 finish_test 39 return 40} 41 42sqlite3_soft_heap_limit 0 43sqlite3 db test.db 44 45do_test malloc5-1.1 { 46 # Simplest possible test. Call sqlite3_release_memory when there is exactly 47 # one unused page in a single pager cache. The page cannot be freed, as 48 # it is dirty. So sqlite3_release_memory() returns 0. 49 # 50 execsql { 51 PRAGMA auto_vacuum=OFF; 52 BEGIN; 53 CREATE TABLE abc(a, b, c); 54 } 55 sqlite3_release_memory 56} {0} 57 58do_test malloc5-1.2 { 59 # Test that the transaction started in the above test is still active. 60 # The lock on the database file should not have been upgraded (this was 61 # not the case before version 3.6.2). 62 # 63 sqlite3 db2 test.db 64 execsql { SELECT * FROM sqlite_master } db2 65} {} 66do_test malloc5-1.3 { 67 # Call [sqlite3_release_memory] when there is exactly one unused page 68 # in the cache belonging to db2. 69 # 70 set ::pgalloc [sqlite3_release_memory] 71 expr $::pgalloc > 0 72} {1} 73 74do_test malloc5-1.4 { 75 # Commit the transaction and open a new one. Read 1 page into the cache. 76 # Because the page is not dirty, it is eligible for collection even 77 # before the transaction is concluded. 78 # 79 execsql { 80 COMMIT; 81 BEGIN; 82 SELECT * FROM abc; 83 } 84 sqlite3_release_memory 85} $::pgalloc 86 87do_test malloc5-1.5 { 88 # Conclude the transaction opened in the previous [do_test] block. This 89 # causes another page (page 1) to become eligible for recycling. 90 # 91 execsql { COMMIT } 92 sqlite3_release_memory 93} $::pgalloc 94 95do_test malloc5-1.6 { 96 # Manipulate the cache so that it contains two unused pages. One requires 97 # a journal-sync to free, the other does not. 98 db2 close 99 execsql { 100 BEGIN; 101 SELECT * FROM abc; 102 CREATE TABLE def(d, e, f); 103 } 104 sqlite3_release_memory 500 105} $::pgalloc 106 107do_test malloc5-1.7 { 108 # Database should not be locked this time. 109 sqlite3 db2 test.db 110 catchsql { SELECT * FROM abc } db2 111} {0 {}} 112do_test malloc5-1.8 { 113 # Try to release another block of memory. This will fail as the only 114 # pages currently in the cache are dirty (page 3) or pinned (page 1). 115 db2 close 116 sqlite3_release_memory 500 117} 0 118do_test malloc5-1.8 { 119 # Database is still not locked. 120 # 121 sqlite3 db2 test.db 122 catchsql { SELECT * FROM abc } db2 123} {0 {}} 124do_test malloc5-1.9 { 125 execsql { 126 COMMIT; 127 } 128} {} 129 130do_test malloc5-2.1 { 131 # Put some data in tables abc and def. Both tables are still wholly 132 # contained within their root pages. 133 execsql { 134 INSERT INTO abc VALUES(1, 2, 3); 135 INSERT INTO abc VALUES(4, 5, 6); 136 INSERT INTO def VALUES(7, 8, 9); 137 INSERT INTO def VALUES(10,11,12); 138 } 139} {} 140do_test malloc5-2.2 { 141 # Load the root-page for table def into the cache. Then query table abc. 142 # Halfway through the query call sqlite3_release_memory(). The goal of this 143 # test is to make sure we don't free pages that are in use (specifically, 144 # the root of table abc). 145 sqlite3_release_memory 146 set nRelease 0 147 execsql { 148 BEGIN; 149 SELECT * FROM def; 150 } 151 set data [list] 152 db eval {SELECT * FROM abc} { 153 incr nRelease [sqlite3_release_memory] 154 lappend data $a $b $c 155 } 156 execsql { 157 COMMIT; 158 } 159 list $nRelease $data 160} [list $pgalloc [list 1 2 3 4 5 6]] 161 162do_test malloc5-3.1 { 163 # Simple test to show that if two pagers are opened from within this 164 # thread, memory is freed from both when sqlite3_release_memory() is 165 # called. 166 execsql { 167 BEGIN; 168 SELECT * FROM abc; 169 } 170 execsql { 171 SELECT * FROM sqlite_master; 172 BEGIN; 173 SELECT * FROM def; 174 } db2 175 sqlite3_release_memory 176} [expr $::pgalloc * 2] 177do_test malloc5-3.2 { 178 concat \ 179 [execsql {SELECT * FROM abc; COMMIT}] \ 180 [execsql {SELECT * FROM def; COMMIT} db2] 181} {1 2 3 4 5 6 7 8 9 10 11 12} 182 183db2 close 184puts "Highwater mark: [sqlite3_memory_highwater]" 185 186# The following two test cases each execute a transaction in which 187# 10000 rows are inserted into table abc. The first test case is used 188# to ensure that more than 1MB of dynamic memory is used to perform 189# the transaction. 190# 191# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) 192# and tests to see that this limit is not exceeded at any point during 193# transaction execution. 194# 195# Before executing malloc5-4.* we save the value of the current soft heap 196# limit in variable ::soft_limit. The original value is restored after 197# running the tests. 198# 199set ::soft_limit [sqlite3_soft_heap_limit -1] 200execsql {PRAGMA cache_size=2000} 201do_test malloc5-4.1 { 202 execsql {BEGIN;} 203 execsql {DELETE FROM abc;} 204 for {set i 0} {$i < 10000} {incr i} { 205 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" 206 } 207 execsql {COMMIT;} 208 sqlite3_release_memory 209 sqlite3_memory_highwater 1 210 execsql {SELECT * FROM abc} 211 set nMaxBytes [sqlite3_memory_highwater 1] 212 puts -nonewline " (Highwater mark: $nMaxBytes) " 213 expr $nMaxBytes > 1000000 214} {1} 215do_test malloc5-4.2 { 216 sqlite3_release_memory 217 sqlite3_soft_heap_limit 100000 218 sqlite3_memory_highwater 1 219 execsql {SELECT * FROM abc} 220 set nMaxBytes [sqlite3_memory_highwater 1] 221 puts -nonewline " (Highwater mark: $nMaxBytes) " 222 expr $nMaxBytes <= 100000 223} {1} 224do_test malloc5-4.3 { 225 # Check that the content of table abc is at least roughly as expected. 226 execsql { 227 SELECT count(*), sum(a), sum(b) FROM abc; 228 } 229} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] 230 231# Restore the soft heap limit. 232sqlite3_soft_heap_limit $::soft_limit 233 234# Test that there are no problems calling sqlite3_release_memory when 235# there are open in-memory databases. 236# 237# At one point these tests would cause a seg-fault. 238# 239do_test malloc5-5.1 { 240 db close 241 sqlite3 db :memory: 242 execsql { 243 BEGIN; 244 CREATE TABLE abc(a, b, c); 245 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); 246 INSERT INTO abc SELECT * FROM abc; 247 INSERT INTO abc SELECT * FROM abc; 248 INSERT INTO abc SELECT * FROM abc; 249 INSERT INTO abc SELECT * FROM abc; 250 INSERT INTO abc SELECT * FROM abc; 251 INSERT INTO abc SELECT * FROM abc; 252 INSERT INTO abc SELECT * FROM abc; 253 } 254 sqlite3_release_memory 255} 0 256do_test malloc5-5.2 { 257 sqlite3_soft_heap_limit 5000 258 execsql { 259 COMMIT; 260 PRAGMA temp_store = memory; 261 SELECT * FROM abc ORDER BY a; 262 } 263 expr 1 264} {1} 265sqlite3_soft_heap_limit $::soft_limit 266 267#------------------------------------------------------------------------- 268# The following test cases (malloc5-6.*) test the new global LRU list 269# used to determine the pages to recycle when sqlite3_release_memory is 270# called and there is more than one pager open. 271# 272proc nPage {db} { 273 set bt [btree_from_db $db] 274 array set stats [btree_pager_stats $bt] 275 set stats(page) 276} 277db close 278file delete -force test.db test.db-journal test2.db test2.db-journal 279 280# This block of test-cases (malloc5-6.1.*) prepares two database files 281# for the subsequent tests. 282do_test malloc5-6.1.1 { 283 sqlite3 db test.db 284 execsql { 285 PRAGMA page_size=1024; 286 PRAGMA default_cache_size=10; 287 } 288 execsql { 289 PRAGMA temp_store = memory; 290 BEGIN; 291 CREATE TABLE abc(a PRIMARY KEY, b, c); 292 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); 293 INSERT INTO abc 294 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 295 INSERT INTO abc 296 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 297 INSERT INTO abc 298 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 299 INSERT INTO abc 300 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 301 INSERT INTO abc 302 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 303 INSERT INTO abc 304 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 305 COMMIT; 306 } 307 copy_file test.db test2.db 308 sqlite3 db2 test2.db 309 list \ 310 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] 311} {1 1} 312do_test malloc5-6.1.2 { 313 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] 314} {10 10} 315 316do_test malloc5-6.2.1 { 317 execsql {SELECT * FROM abc} db2 318 execsql {SELECT * FROM abc} db 319 expr [nPage db] + [nPage db2] 320} {20} 321 322do_test malloc5-6.2.2 { 323 # If we now try to reclaim some memory, it should come from the db2 cache. 324 sqlite3_release_memory 3000 325 expr [nPage db] + [nPage db2] 326} {17} 327do_test malloc5-6.2.3 { 328 # Access the db2 cache again, so that all the db2 pages have been used 329 # more recently than all the db pages. Then try to reclaim 3000 bytes. 330 # This time, 3 pages should be pulled from the db cache. 331 execsql { SELECT * FROM abc } db2 332 sqlite3_release_memory 3000 333 expr [nPage db] + [nPage db2] 334} {17} 335 336do_test malloc5-6.3.1 { 337 # Now open a transaction and update 2 pages in the db2 cache. Then 338 # do a SELECT on the db cache so that all the db pages are more recently 339 # used than the db2 pages. When we try to free memory, SQLite should 340 # free the non-dirty db2 pages, then the db pages, then finally use 341 # sync() to free up the dirty db2 pages. The only page that cannot be 342 # freed is page1 of db2. Because there is an open transaction, the 343 # btree layer holds a reference to page 1 in the db2 cache. 344 execsql { 345 BEGIN; 346 UPDATE abc SET c = randstr(100,100) 347 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); 348 } db2 349 execsql { SELECT * FROM abc } db 350 expr [nPage db] + [nPage db2] 351} {20} 352do_test malloc5-6.3.2 { 353 # Try to release 7700 bytes. This should release all the 354 # non-dirty pages held by db2. 355 sqlite3_release_memory [expr 7*1100] 356 list [nPage db] [nPage db2] 357} {10 3} 358do_test malloc5-6.3.3 { 359 # Try to release another 1000 bytes. This should come fromt the db 360 # cache, since all three pages held by db2 are either in-use or diry. 361 sqlite3_release_memory 1000 362 list [nPage db] [nPage db2] 363} {9 3} 364do_test malloc5-6.3.4 { 365 # Now release 9900 more (about 9 pages worth). This should expunge 366 # the rest of the db cache. But the db2 cache remains intact, because 367 # SQLite tries to avoid calling sync(). 368 if {$::tcl_platform(wordSize)==8} { 369 sqlite3_release_memory 10177 370 } else { 371 sqlite3_release_memory 9900 372 } 373 list [nPage db] [nPage db2] 374} {0 3} 375do_test malloc5-6.3.5 { 376 # But if we are really insistent, SQLite will consent to call sync() 377 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not 378 # call sync() in this scenario. So no further memory can be reclaimed. 379 sqlite3_release_memory 1000 380 list [nPage db] [nPage db2] 381} {0 3} 382do_test malloc5-6.3.6 { 383 # The referenced page (page 1 of the db2 cache) will not be freed no 384 # matter how much memory we ask for: 385 sqlite3_release_memory 31459 386 list [nPage db] [nPage db2] 387} {0 3} 388 389db2 close 390 391sqlite3_soft_heap_limit $::soft_limit 392finish_test 393catch {db close} 394