1 /*
2 * Copyright 2011 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/base/messagedigest.h"
12
13 #include <string.h>
14
15 #include "webrtc/base/sslconfig.h"
16 #if SSL_USE_OPENSSL
17 #include "webrtc/base/openssldigest.h"
18 #else
19 #include "webrtc/base/md5digest.h"
20 #include "webrtc/base/sha1digest.h"
21 #endif
22 #include "webrtc/base/scoped_ptr.h"
23 #include "webrtc/base/stringencode.h"
24
25 namespace rtc {
26
27 // From RFC 4572.
28 const char DIGEST_MD5[] = "md5";
29 const char DIGEST_SHA_1[] = "sha-1";
30 const char DIGEST_SHA_224[] = "sha-224";
31 const char DIGEST_SHA_256[] = "sha-256";
32 const char DIGEST_SHA_384[] = "sha-384";
33 const char DIGEST_SHA_512[] = "sha-512";
34
35 static const size_t kBlockSize = 64; // valid for SHA-256 and down
36
Create(const std::string & alg)37 MessageDigest* MessageDigestFactory::Create(const std::string& alg) {
38 #if SSL_USE_OPENSSL
39 MessageDigest* digest = new OpenSSLDigest(alg);
40 if (digest->Size() == 0) { // invalid algorithm
41 delete digest;
42 digest = NULL;
43 }
44 return digest;
45 #else
46 MessageDigest* digest = NULL;
47 if (alg == DIGEST_MD5) {
48 digest = new Md5Digest();
49 } else if (alg == DIGEST_SHA_1) {
50 digest = new Sha1Digest();
51 }
52 return digest;
53 #endif
54 }
55
IsFips180DigestAlgorithm(const std::string & alg)56 bool IsFips180DigestAlgorithm(const std::string& alg) {
57 // These are the FIPS 180 algorithms. According to RFC 4572 Section 5,
58 // "Self-signed certificates (for which legacy certificates are not a
59 // consideration) MUST use one of the FIPS 180 algorithms (SHA-1,
60 // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm,
61 // and thus also MUST use it to calculate certificate fingerprints."
62 return alg == DIGEST_SHA_1 ||
63 alg == DIGEST_SHA_224 ||
64 alg == DIGEST_SHA_256 ||
65 alg == DIGEST_SHA_384 ||
66 alg == DIGEST_SHA_512;
67 }
68
ComputeDigest(MessageDigest * digest,const void * input,size_t in_len,void * output,size_t out_len)69 size_t ComputeDigest(MessageDigest* digest, const void* input, size_t in_len,
70 void* output, size_t out_len) {
71 digest->Update(input, in_len);
72 return digest->Finish(output, out_len);
73 }
74
ComputeDigest(const std::string & alg,const void * input,size_t in_len,void * output,size_t out_len)75 size_t ComputeDigest(const std::string& alg, const void* input, size_t in_len,
76 void* output, size_t out_len) {
77 scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
78 return (digest) ?
79 ComputeDigest(digest.get(), input, in_len, output, out_len) :
80 0;
81 }
82
ComputeDigest(MessageDigest * digest,const std::string & input)83 std::string ComputeDigest(MessageDigest* digest, const std::string& input) {
84 scoped_ptr<char[]> output(new char[digest->Size()]);
85 ComputeDigest(digest, input.data(), input.size(),
86 output.get(), digest->Size());
87 return hex_encode(output.get(), digest->Size());
88 }
89
ComputeDigest(const std::string & alg,const std::string & input,std::string * output)90 bool ComputeDigest(const std::string& alg, const std::string& input,
91 std::string* output) {
92 scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
93 if (!digest) {
94 return false;
95 }
96 *output = ComputeDigest(digest.get(), input);
97 return true;
98 }
99
ComputeDigest(const std::string & alg,const std::string & input)100 std::string ComputeDigest(const std::string& alg, const std::string& input) {
101 std::string output;
102 ComputeDigest(alg, input, &output);
103 return output;
104 }
105
106 // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text))
ComputeHmac(MessageDigest * digest,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)107 size_t ComputeHmac(MessageDigest* digest,
108 const void* key, size_t key_len,
109 const void* input, size_t in_len,
110 void* output, size_t out_len) {
111 // We only handle algorithms with a 64-byte blocksize.
112 // TODO: Add BlockSize() method to MessageDigest.
113 size_t block_len = kBlockSize;
114 if (digest->Size() > 32) {
115 return 0;
116 }
117 // Copy the key to a block-sized buffer to simplify padding.
118 // If the key is longer than a block, hash it and use the result instead.
119 scoped_ptr<uint8[]> new_key(new uint8[block_len]);
120 if (key_len > block_len) {
121 ComputeDigest(digest, key, key_len, new_key.get(), block_len);
122 memset(new_key.get() + digest->Size(), 0, block_len - digest->Size());
123 } else {
124 memcpy(new_key.get(), key, key_len);
125 memset(new_key.get() + key_len, 0, block_len - key_len);
126 }
127 // Set up the padding from the key, salting appropriately for each padding.
128 scoped_ptr<uint8[]> o_pad(new uint8[block_len]), i_pad(new uint8[block_len]);
129 for (size_t i = 0; i < block_len; ++i) {
130 o_pad[i] = 0x5c ^ new_key[i];
131 i_pad[i] = 0x36 ^ new_key[i];
132 }
133 // Inner hash; hash the inner padding, and then the input buffer.
134 scoped_ptr<uint8[]> inner(new uint8[digest->Size()]);
135 digest->Update(i_pad.get(), block_len);
136 digest->Update(input, in_len);
137 digest->Finish(inner.get(), digest->Size());
138 // Outer hash; hash the outer padding, and then the result of the inner hash.
139 digest->Update(o_pad.get(), block_len);
140 digest->Update(inner.get(), digest->Size());
141 return digest->Finish(output, out_len);
142 }
143
ComputeHmac(const std::string & alg,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)144 size_t ComputeHmac(const std::string& alg, const void* key, size_t key_len,
145 const void* input, size_t in_len,
146 void* output, size_t out_len) {
147 scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
148 if (!digest) {
149 return 0;
150 }
151 return ComputeHmac(digest.get(), key, key_len,
152 input, in_len, output, out_len);
153 }
154
ComputeHmac(MessageDigest * digest,const std::string & key,const std::string & input)155 std::string ComputeHmac(MessageDigest* digest, const std::string& key,
156 const std::string& input) {
157 scoped_ptr<char[]> output(new char[digest->Size()]);
158 ComputeHmac(digest, key.data(), key.size(),
159 input.data(), input.size(), output.get(), digest->Size());
160 return hex_encode(output.get(), digest->Size());
161 }
162
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input,std::string * output)163 bool ComputeHmac(const std::string& alg, const std::string& key,
164 const std::string& input, std::string* output) {
165 scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
166 if (!digest) {
167 return false;
168 }
169 *output = ComputeHmac(digest.get(), key, input);
170 return true;
171 }
172
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input)173 std::string ComputeHmac(const std::string& alg, const std::string& key,
174 const std::string& input) {
175 std::string output;
176 ComputeHmac(alg, key, input, &output);
177 return output;
178 }
179
180 } // namespace rtc
181