• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2012 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 // Scopers help you manage ownership of a pointer, helping you easily manage the
12 // a pointer within a scope, and automatically destroying the pointer at the
13 // end of a scope.  There are two main classes you will use, which correspond
14 // to the operators new/delete and new[]/delete[].
15 //
16 // Example usage (scoped_ptr<T>):
17 //   {
18 //     scoped_ptr<Foo> foo(new Foo("wee"));
19 //   }  // foo goes out of scope, releasing the pointer with it.
20 //
21 //   {
22 //     scoped_ptr<Foo> foo;          // No pointer managed.
23 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
24 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
25 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
26 //     foo->Method();                // Foo::Method() called.
27 //     foo.get()->Method();          // Foo::Method() called.
28 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
29 //                                   // manages a pointer.
30 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
31 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
32 //                                   // manages a pointer.
33 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
34 //
35 // Example usage (scoped_ptr<T[]>):
36 //   {
37 //     scoped_ptr<Foo[]> foo(new Foo[100]);
38 //     foo.get()->Method();  // Foo::Method on the 0th element.
39 //     foo[10].Method();     // Foo::Method on the 10th element.
40 //   }
41 //
42 // These scopers also implement part of the functionality of C++11 unique_ptr
43 // in that they are "movable but not copyable."  You can use the scopers in
44 // the parameter and return types of functions to signify ownership transfer
45 // in to and out of a function.  When calling a function that has a scoper
46 // as the argument type, it must be called with the result of an analogous
47 // scoper's Pass() function or another function that generates a temporary;
48 // passing by copy will NOT work.  Here is an example using scoped_ptr:
49 //
50 //   void TakesOwnership(scoped_ptr<Foo> arg) {
51 //     // Do something with arg
52 //   }
53 //   scoped_ptr<Foo> CreateFoo() {
54 //     // No need for calling Pass() because we are constructing a temporary
55 //     // for the return value.
56 //     return scoped_ptr<Foo>(new Foo("new"));
57 //   }
58 //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
59 //     return arg.Pass();
60 //   }
61 //
62 //   {
63 //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
64 //     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
65 //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
66 //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
67 //         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
68 //   }
69 //
70 // Notice that if you do not call Pass() when returning from PassThru(), or
71 // when invoking TakesOwnership(), the code will not compile because scopers
72 // are not copyable; they only implement move semantics which require calling
73 // the Pass() function to signify a destructive transfer of state. CreateFoo()
74 // is different though because we are constructing a temporary on the return
75 // line and thus can avoid needing to call Pass().
76 //
77 // Pass() properly handles upcast in initialization, i.e. you can use a
78 // scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
79 //
80 //   scoped_ptr<Foo> foo(new Foo());
81 //   scoped_ptr<FooParent> parent(foo.Pass());
82 //
83 // PassAs<>() should be used to upcast return value in return statement:
84 //
85 //   scoped_ptr<Foo> CreateFoo() {
86 //     scoped_ptr<FooChild> result(new FooChild());
87 //     return result.PassAs<Foo>();
88 //   }
89 //
90 // Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
91 // scoped_ptr<T[]>. This is because casting array pointers may not be safe.
92 
93 #ifndef WEBRTC_BASE_SCOPED_PTR_H__
94 #define WEBRTC_BASE_SCOPED_PTR_H__
95 
96 #include <stddef.h>  // for ptrdiff_t
97 #include <stdlib.h>  // for free() decl
98 
99 #include <algorithm>  // For std::swap().
100 
101 #include "webrtc/base/common.h"  // for ASSERT
102 #include "webrtc/base/compile_assert.h"  // for COMPILE_ASSERT
103 #include "webrtc/base/move.h"    // for TALK_MOVE_ONLY_TYPE_FOR_CPP_03
104 #include "webrtc/base/template_util.h"    // for is_convertible, is_array
105 
106 #ifdef WEBRTC_WIN
107 namespace std { using ::ptrdiff_t; };
108 #endif // WEBRTC_WIN
109 
110 namespace rtc {
111 
112 // Function object which deletes its parameter, which must be a pointer.
113 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
114 // invokes 'delete'. The default deleter for scoped_ptr<T>.
115 template <class T>
116 struct DefaultDeleter {
DefaultDeleterDefaultDeleter117   DefaultDeleter() {}
DefaultDeleterDefaultDeleter118   template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
119     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
120     // if U* is implicitly convertible to T* and U is not an array type.
121     //
122     // Correct implementation should use SFINAE to disable this
123     // constructor. However, since there are no other 1-argument constructors,
124     // using a COMPILE_ASSERT() based on is_convertible<> and requiring
125     // complete types is simpler and will cause compile failures for equivalent
126     // misuses.
127     //
128     // Note, the is_convertible<U*, T*> check also ensures that U is not an
129     // array. T is guaranteed to be a non-array, so any U* where U is an array
130     // cannot convert to T*.
131     enum { T_must_be_complete = sizeof(T) };
132     enum { U_must_be_complete = sizeof(U) };
133     COMPILE_ASSERT((rtc::is_convertible<U*, T*>::value),
134                    U_ptr_must_implicitly_convert_to_T_ptr);
135   }
operatorDefaultDeleter136   inline void operator()(T* ptr) const {
137     enum { type_must_be_complete = sizeof(T) };
138     delete ptr;
139   }
140 };
141 
142 // Specialization of DefaultDeleter for array types.
143 template <class T>
144 struct DefaultDeleter<T[]> {
145   inline void operator()(T* ptr) const {
146     enum { type_must_be_complete = sizeof(T) };
147     delete[] ptr;
148   }
149 
150  private:
151   // Disable this operator for any U != T because it is undefined to execute
152   // an array delete when the static type of the array mismatches the dynamic
153   // type.
154   //
155   // References:
156   //   C++98 [expr.delete]p3
157   //   http://cplusplus.github.com/LWG/lwg-defects.html#938
158   template <typename U> void operator()(U* array) const;
159 };
160 
161 template <class T, int n>
162 struct DefaultDeleter<T[n]> {
163   // Never allow someone to declare something like scoped_ptr<int[10]>.
164   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
165 };
166 
167 // Function object which invokes 'free' on its parameter, which must be
168 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
169 //
170 // scoped_ptr<int, rtc::FreeDeleter> foo_ptr(
171 //     static_cast<int*>(malloc(sizeof(int))));
172 struct FreeDeleter {
173   inline void operator()(void* ptr) const {
174     free(ptr);
175   }
176 };
177 
178 namespace internal {
179 
180 // Minimal implementation of the core logic of scoped_ptr, suitable for
181 // reuse in both scoped_ptr and its specializations.
182 template <class T, class D>
183 class scoped_ptr_impl {
184  public:
185   explicit scoped_ptr_impl(T* p) : data_(p) { }
186 
187   // Initializer for deleters that have data parameters.
188   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
189 
190   // Templated constructor that destructively takes the value from another
191   // scoped_ptr_impl.
192   template <typename U, typename V>
193   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
194       : data_(other->release(), other->get_deleter()) {
195     // We do not support move-only deleters.  We could modify our move
196     // emulation to have rtc::subtle::move() and
197     // rtc::subtle::forward()
198     // functions that are imperfect emulations of their C++11 equivalents,
199     // but until there's a requirement, just assume deleters are copyable.
200   }
201 
202   template <typename U, typename V>
203   void TakeState(scoped_ptr_impl<U, V>* other) {
204     // See comment in templated constructor above regarding lack of support
205     // for move-only deleters.
206     reset(other->release());
207     get_deleter() = other->get_deleter();
208   }
209 
210   ~scoped_ptr_impl() {
211     if (data_.ptr != NULL) {
212       // Not using get_deleter() saves one function call in non-optimized
213       // builds.
214       static_cast<D&>(data_)(data_.ptr);
215     }
216   }
217 
218   void reset(T* p) {
219     // This is a self-reset, which is no longer allowed: http://crbug.com/162971
220     if (p != NULL && p == data_.ptr)
221       abort();
222 
223     // Note that running data_.ptr = p can lead to undefined behavior if
224     // get_deleter()(get()) deletes this. In order to pevent this, reset()
225     // should update the stored pointer before deleting its old value.
226     //
227     // However, changing reset() to use that behavior may cause current code to
228     // break in unexpected ways. If the destruction of the owned object
229     // dereferences the scoped_ptr when it is destroyed by a call to reset(),
230     // then it will incorrectly dispatch calls to |p| rather than the original
231     // value of |data_.ptr|.
232     //
233     // During the transition period, set the stored pointer to NULL while
234     // deleting the object. Eventually, this safety check will be removed to
235     // prevent the scenario initially described from occuring and
236     // http://crbug.com/176091 can be closed.
237     T* old = data_.ptr;
238     data_.ptr = NULL;
239     if (old != NULL)
240       static_cast<D&>(data_)(old);
241     data_.ptr = p;
242   }
243 
244   T* get() const { return data_.ptr; }
245 
246   D& get_deleter() { return data_; }
247   const D& get_deleter() const { return data_; }
248 
249   void swap(scoped_ptr_impl& p2) {
250     // Standard swap idiom: 'using std::swap' ensures that std::swap is
251     // present in the overload set, but we call swap unqualified so that
252     // any more-specific overloads can be used, if available.
253     using std::swap;
254     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
255     swap(data_.ptr, p2.data_.ptr);
256   }
257 
258   T* release() {
259     T* old_ptr = data_.ptr;
260     data_.ptr = NULL;
261     return old_ptr;
262   }
263 
264   T** accept() {
265     reset(NULL);
266     return &(data_.ptr);
267   }
268 
269   T** use() {
270     return &(data_.ptr);
271   }
272 
273  private:
274   // Needed to allow type-converting constructor.
275   template <typename U, typename V> friend class scoped_ptr_impl;
276 
277   // Use the empty base class optimization to allow us to have a D
278   // member, while avoiding any space overhead for it when D is an
279   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
280   // discussion of this technique.
281   struct Data : public D {
282     explicit Data(T* ptr_in) : ptr(ptr_in) {}
283     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
284     T* ptr;
285   };
286 
287   Data data_;
288 
289   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
290 };
291 
292 }  // namespace internal
293 
294 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
295 // automatically deletes the pointer it holds (if any).
296 // That is, scoped_ptr<T> owns the T object that it points to.
297 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
298 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
299 // dereference it, you get the thread safety guarantees of T.
300 //
301 // The size of scoped_ptr is small. On most compilers, when using the
302 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
303 // increase the size proportional to whatever state they need to have. See
304 // comments inside scoped_ptr_impl<> for details.
305 //
306 // Current implementation targets having a strict subset of  C++11's
307 // unique_ptr<> features. Known deficiencies include not supporting move-only
308 // deleteres, function pointers as deleters, and deleters with reference
309 // types.
310 template <class T, class D = rtc::DefaultDeleter<T> >
311 class scoped_ptr {
312   TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
313 
314  public:
315   // The element and deleter types.
316   typedef T element_type;
317   typedef D deleter_type;
318 
319   // Constructor.  Defaults to initializing with NULL.
320   scoped_ptr() : impl_(NULL) { }
321 
322   // Constructor.  Takes ownership of p.
323   explicit scoped_ptr(element_type* p) : impl_(p) { }
324 
325   // Constructor.  Allows initialization of a stateful deleter.
326   scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
327 
328   // Constructor.  Allows construction from a scoped_ptr rvalue for a
329   // convertible type and deleter.
330   //
331   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
332   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
333   // has different post-conditions if D is a reference type. Since this
334   // implementation does not support deleters with reference type,
335   // we do not need a separate move constructor allowing us to avoid one
336   // use of SFINAE. You only need to care about this if you modify the
337   // implementation of scoped_ptr.
338   template <typename U, typename V>
339   scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
340     COMPILE_ASSERT(!rtc::is_array<U>::value, U_cannot_be_an_array);
341   }
342 
343   // Constructor.  Move constructor for C++03 move emulation of this type.
344   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
345 
346   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
347   // type and deleter.
348   //
349   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
350   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
351   // form has different requirements on for move-only Deleters. Since this
352   // implementation does not support move-only Deleters, we do not need a
353   // separate move assignment operator allowing us to avoid one use of SFINAE.
354   // You only need to care about this if you modify the implementation of
355   // scoped_ptr.
356   template <typename U, typename V>
357   scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
358     COMPILE_ASSERT(!rtc::is_array<U>::value, U_cannot_be_an_array);
359     impl_.TakeState(&rhs.impl_);
360     return *this;
361   }
362 
363   // Reset.  Deletes the currently owned object, if any.
364   // Then takes ownership of a new object, if given.
365   void reset(element_type* p = NULL) { impl_.reset(p); }
366 
367   // Accessors to get the owned object.
368   // operator* and operator-> will assert() if there is no current object.
369   element_type& operator*() const {
370     ASSERT(impl_.get() != NULL);
371     return *impl_.get();
372   }
373   element_type* operator->() const  {
374     ASSERT(impl_.get() != NULL);
375     return impl_.get();
376   }
377   element_type* get() const { return impl_.get(); }
378 
379   // Access to the deleter.
380   deleter_type& get_deleter() { return impl_.get_deleter(); }
381   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
382 
383   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
384   // implicitly convertible to a real bool (which is dangerous).
385   //
386   // Note that this trick is only safe when the == and != operators
387   // are declared explicitly, as otherwise "scoped_ptr1 ==
388   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
389   // to Testable and then do the comparison).
390  private:
391   typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
392       scoped_ptr::*Testable;
393 
394  public:
395   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
396 
397   // Comparison operators.
398   // These return whether two scoped_ptr refer to the same object, not just to
399   // two different but equal objects.
400   bool operator==(const element_type* p) const { return impl_.get() == p; }
401   bool operator!=(const element_type* p) const { return impl_.get() != p; }
402 
403   // Swap two scoped pointers.
404   void swap(scoped_ptr& p2) {
405     impl_.swap(p2.impl_);
406   }
407 
408   // Release a pointer.
409   // The return value is the current pointer held by this object.
410   // If this object holds a NULL pointer, the return value is NULL.
411   // After this operation, this object will hold a NULL pointer,
412   // and will not own the object any more.
413   element_type* release() WARN_UNUSED_RESULT {
414     return impl_.release();
415   }
416 
417   // Delete the currently held pointer and return a pointer
418   // to allow overwriting of the current pointer address.
419   element_type** accept() WARN_UNUSED_RESULT {
420     return impl_.accept();
421   }
422 
423   // Return a pointer to the current pointer address.
424   element_type** use() WARN_UNUSED_RESULT {
425     return impl_.use();
426   }
427 
428   // C++98 doesn't support functions templates with default parameters which
429   // makes it hard to write a PassAs() that understands converting the deleter
430   // while preserving simple calling semantics.
431   //
432   // Until there is a use case for PassAs() with custom deleters, just ignore
433   // the custom deleter.
434   template <typename PassAsType>
435   scoped_ptr<PassAsType> PassAs() {
436     return scoped_ptr<PassAsType>(Pass());
437   }
438 
439  private:
440   // Needed to reach into |impl_| in the constructor.
441   template <typename U, typename V> friend class scoped_ptr;
442   rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
443 
444   // Forbidden for API compatibility with std::unique_ptr.
445   explicit scoped_ptr(int disallow_construction_from_null);
446 
447   // Forbid comparison of scoped_ptr types.  If U != T, it totally
448   // doesn't make sense, and if U == T, it still doesn't make sense
449   // because you should never have the same object owned by two different
450   // scoped_ptrs.
451   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
452   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
453 };
454 
455 template <class T, class D>
456 class scoped_ptr<T[], D> {
457   TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
458 
459  public:
460   // The element and deleter types.
461   typedef T element_type;
462   typedef D deleter_type;
463 
464   // Constructor.  Defaults to initializing with NULL.
465   scoped_ptr() : impl_(NULL) { }
466 
467   // Constructor. Stores the given array. Note that the argument's type
468   // must exactly match T*. In particular:
469   // - it cannot be a pointer to a type derived from T, because it is
470   //   inherently unsafe in the general case to access an array through a
471   //   pointer whose dynamic type does not match its static type (eg., if
472   //   T and the derived types had different sizes access would be
473   //   incorrectly calculated). Deletion is also always undefined
474   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
475   // - it cannot be NULL, because NULL is an integral expression, not a
476   //   pointer to T. Use the no-argument version instead of explicitly
477   //   passing NULL.
478   // - it cannot be const-qualified differently from T per unique_ptr spec
479   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
480   //   to work around this may use implicit_cast<const T*>().
481   //   However, because of the first bullet in this comment, users MUST
482   //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
483   explicit scoped_ptr(element_type* array) : impl_(array) { }
484 
485   // Constructor.  Move constructor for C++03 move emulation of this type.
486   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
487 
488   // operator=.  Move operator= for C++03 move emulation of this type.
489   scoped_ptr& operator=(RValue rhs) {
490     impl_.TakeState(&rhs.object->impl_);
491     return *this;
492   }
493 
494   // Reset.  Deletes the currently owned array, if any.
495   // Then takes ownership of a new object, if given.
496   void reset(element_type* array = NULL) { impl_.reset(array); }
497 
498   // Accessors to get the owned array.
499   element_type& operator[](size_t i) const {
500     ASSERT(impl_.get() != NULL);
501     return impl_.get()[i];
502   }
503   element_type* get() const { return impl_.get(); }
504 
505   // Access to the deleter.
506   deleter_type& get_deleter() { return impl_.get_deleter(); }
507   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
508 
509   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
510   // implicitly convertible to a real bool (which is dangerous).
511  private:
512   typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
513       scoped_ptr::*Testable;
514 
515  public:
516   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
517 
518   // Comparison operators.
519   // These return whether two scoped_ptr refer to the same object, not just to
520   // two different but equal objects.
521   bool operator==(element_type* array) const { return impl_.get() == array; }
522   bool operator!=(element_type* array) const { return impl_.get() != array; }
523 
524   // Swap two scoped pointers.
525   void swap(scoped_ptr& p2) {
526     impl_.swap(p2.impl_);
527   }
528 
529   // Release a pointer.
530   // The return value is the current pointer held by this object.
531   // If this object holds a NULL pointer, the return value is NULL.
532   // After this operation, this object will hold a NULL pointer,
533   // and will not own the object any more.
534   element_type* release() WARN_UNUSED_RESULT {
535     return impl_.release();
536   }
537 
538   // Delete the currently held pointer and return a pointer
539   // to allow overwriting of the current pointer address.
540   element_type** accept() WARN_UNUSED_RESULT {
541     return impl_.accept();
542   }
543 
544   // Return a pointer to the current pointer address.
545   element_type** use() WARN_UNUSED_RESULT {
546     return impl_.use();
547   }
548 
549  private:
550   // Force element_type to be a complete type.
551   enum { type_must_be_complete = sizeof(element_type) };
552 
553   // Actually hold the data.
554   rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
555 
556   // Disable initialization from any type other than element_type*, by
557   // providing a constructor that matches such an initialization, but is
558   // private and has no definition. This is disabled because it is not safe to
559   // call delete[] on an array whose static type does not match its dynamic
560   // type.
561   template <typename U> explicit scoped_ptr(U* array);
562   explicit scoped_ptr(int disallow_construction_from_null);
563 
564   // Disable reset() from any type other than element_type*, for the same
565   // reasons as the constructor above.
566   template <typename U> void reset(U* array);
567   void reset(int disallow_reset_from_null);
568 
569   // Forbid comparison of scoped_ptr types.  If U != T, it totally
570   // doesn't make sense, and if U == T, it still doesn't make sense
571   // because you should never have the same object owned by two different
572   // scoped_ptrs.
573   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
574   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
575 };
576 
577 }  // namespace rtc
578 
579 // Free functions
580 template <class T, class D>
581 void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) {
582   p1.swap(p2);
583 }
584 
585 template <class T, class D>
586 bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) {
587   return p1 == p2.get();
588 }
589 
590 template <class T, class D>
591 bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) {
592   return p1 != p2.get();
593 }
594 
595 #endif  // #ifndef WEBRTC_BASE_SCOPED_PTR_H__
596