• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_ARM
8 
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/isolate.h"
16 #include "src/jsregexp.h"
17 #include "src/regexp-macro-assembler.h"
18 #include "src/runtime.h"
19 
20 namespace v8 {
21 namespace internal {
22 
23 
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)24 static void InitializeArrayConstructorDescriptor(
25     Isolate* isolate, CodeStubDescriptor* descriptor,
26     int constant_stack_parameter_count) {
27   Address deopt_handler = Runtime::FunctionForId(
28       Runtime::kArrayConstructor)->entry;
29 
30   if (constant_stack_parameter_count == 0) {
31     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
32                            JS_FUNCTION_STUB_MODE);
33   } else {
34     descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
35                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
36   }
37 }
38 
39 
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)40 static void InitializeInternalArrayConstructorDescriptor(
41     Isolate* isolate, CodeStubDescriptor* descriptor,
42     int constant_stack_parameter_count) {
43   Address deopt_handler = Runtime::FunctionForId(
44       Runtime::kInternalArrayConstructor)->entry;
45 
46   if (constant_stack_parameter_count == 0) {
47     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
48                            JS_FUNCTION_STUB_MODE);
49   } else {
50     descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
51                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
52   }
53 }
54 
55 
InitializeDescriptor(CodeStubDescriptor * descriptor)56 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
57     CodeStubDescriptor* descriptor) {
58   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
59 }
60 
61 
InitializeDescriptor(CodeStubDescriptor * descriptor)62 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
63     CodeStubDescriptor* descriptor) {
64   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
65 }
66 
67 
InitializeDescriptor(CodeStubDescriptor * descriptor)68 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
69     CodeStubDescriptor* descriptor) {
70   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
71 }
72 
73 
InitializeDescriptor(CodeStubDescriptor * descriptor)74 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
75     CodeStubDescriptor* descriptor) {
76   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
77 }
78 
79 
InitializeDescriptor(CodeStubDescriptor * descriptor)80 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
81     CodeStubDescriptor* descriptor) {
82   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
83 }
84 
85 
InitializeDescriptor(CodeStubDescriptor * descriptor)86 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
87     CodeStubDescriptor* descriptor) {
88   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
89 }
90 
91 
92 #define __ ACCESS_MASM(masm)
93 
94 
95 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
96                                           Label* slow,
97                                           Condition cond);
98 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
99                                     Register lhs,
100                                     Register rhs,
101                                     Label* lhs_not_nan,
102                                     Label* slow,
103                                     bool strict);
104 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
105                                            Register lhs,
106                                            Register rhs);
107 
108 
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)109 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
110                                                ExternalReference miss) {
111   // Update the static counter each time a new code stub is generated.
112   isolate()->counters()->code_stubs()->Increment();
113 
114   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
115   int param_count = descriptor.GetEnvironmentParameterCount();
116   {
117     // Call the runtime system in a fresh internal frame.
118     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
119     DCHECK(param_count == 0 ||
120            r0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
121     // Push arguments
122     for (int i = 0; i < param_count; ++i) {
123       __ push(descriptor.GetEnvironmentParameterRegister(i));
124     }
125     __ CallExternalReference(miss, param_count);
126   }
127 
128   __ Ret();
129 }
130 
131 
Generate(MacroAssembler * masm)132 void DoubleToIStub::Generate(MacroAssembler* masm) {
133   Label out_of_range, only_low, negate, done;
134   Register input_reg = source();
135   Register result_reg = destination();
136   DCHECK(is_truncating());
137 
138   int double_offset = offset();
139   // Account for saved regs if input is sp.
140   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
141 
142   Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
143   Register scratch_low =
144       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
145   Register scratch_high =
146       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
147   LowDwVfpRegister double_scratch = kScratchDoubleReg;
148 
149   __ Push(scratch_high, scratch_low, scratch);
150 
151   if (!skip_fastpath()) {
152     // Load double input.
153     __ vldr(double_scratch, MemOperand(input_reg, double_offset));
154     __ vmov(scratch_low, scratch_high, double_scratch);
155 
156     // Do fast-path convert from double to int.
157     __ vcvt_s32_f64(double_scratch.low(), double_scratch);
158     __ vmov(result_reg, double_scratch.low());
159 
160     // If result is not saturated (0x7fffffff or 0x80000000), we are done.
161     __ sub(scratch, result_reg, Operand(1));
162     __ cmp(scratch, Operand(0x7ffffffe));
163     __ b(lt, &done);
164   } else {
165     // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
166     // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
167     if (double_offset == 0) {
168       __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
169     } else {
170       __ ldr(scratch_low, MemOperand(input_reg, double_offset));
171       __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
172     }
173   }
174 
175   __ Ubfx(scratch, scratch_high,
176          HeapNumber::kExponentShift, HeapNumber::kExponentBits);
177   // Load scratch with exponent - 1. This is faster than loading
178   // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
179   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
180   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
181   // If exponent is greater than or equal to 84, the 32 less significant
182   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
183   // the result is 0.
184   // Compare exponent with 84 (compare exponent - 1 with 83).
185   __ cmp(scratch, Operand(83));
186   __ b(ge, &out_of_range);
187 
188   // If we reach this code, 31 <= exponent <= 83.
189   // So, we don't have to handle cases where 0 <= exponent <= 20 for
190   // which we would need to shift right the high part of the mantissa.
191   // Scratch contains exponent - 1.
192   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
193   __ rsb(scratch, scratch, Operand(51), SetCC);
194   __ b(ls, &only_low);
195   // 21 <= exponent <= 51, shift scratch_low and scratch_high
196   // to generate the result.
197   __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
198   // Scratch contains: 52 - exponent.
199   // We needs: exponent - 20.
200   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
201   __ rsb(scratch, scratch, Operand(32));
202   __ Ubfx(result_reg, scratch_high,
203           0, HeapNumber::kMantissaBitsInTopWord);
204   // Set the implicit 1 before the mantissa part in scratch_high.
205   __ orr(result_reg, result_reg,
206          Operand(1 << HeapNumber::kMantissaBitsInTopWord));
207   __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
208   __ b(&negate);
209 
210   __ bind(&out_of_range);
211   __ mov(result_reg, Operand::Zero());
212   __ b(&done);
213 
214   __ bind(&only_low);
215   // 52 <= exponent <= 83, shift only scratch_low.
216   // On entry, scratch contains: 52 - exponent.
217   __ rsb(scratch, scratch, Operand::Zero());
218   __ mov(result_reg, Operand(scratch_low, LSL, scratch));
219 
220   __ bind(&negate);
221   // If input was positive, scratch_high ASR 31 equals 0 and
222   // scratch_high LSR 31 equals zero.
223   // New result = (result eor 0) + 0 = result.
224   // If the input was negative, we have to negate the result.
225   // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
226   // New result = (result eor 0xffffffff) + 1 = 0 - result.
227   __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
228   __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
229 
230   __ bind(&done);
231 
232   __ Pop(scratch_high, scratch_low, scratch);
233   __ Ret();
234 }
235 
236 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)237 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
238     Isolate* isolate) {
239   WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2);
240   WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3);
241   stub1.GetCode();
242   stub2.GetCode();
243 }
244 
245 
246 // See comment for class.
Generate(MacroAssembler * masm)247 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
248   Label max_negative_int;
249   // the_int_ has the answer which is a signed int32 but not a Smi.
250   // We test for the special value that has a different exponent.  This test
251   // has the neat side effect of setting the flags according to the sign.
252   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
253   __ cmp(the_int(), Operand(0x80000000u));
254   __ b(eq, &max_negative_int);
255   // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
256   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
257   uint32_t non_smi_exponent =
258       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
259   __ mov(scratch(), Operand(non_smi_exponent));
260   // Set the sign bit in scratch_ if the value was negative.
261   __ orr(scratch(), scratch(), Operand(HeapNumber::kSignMask), LeaveCC, cs);
262   // Subtract from 0 if the value was negative.
263   __ rsb(the_int(), the_int(), Operand::Zero(), LeaveCC, cs);
264   // We should be masking the implict first digit of the mantissa away here,
265   // but it just ends up combining harmlessly with the last digit of the
266   // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
267   // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
268   DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
269   const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
270   __ orr(scratch(), scratch(), Operand(the_int(), LSR, shift_distance));
271   __ str(scratch(),
272          FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
273   __ mov(scratch(), Operand(the_int(), LSL, 32 - shift_distance));
274   __ str(scratch(),
275          FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
276   __ Ret();
277 
278   __ bind(&max_negative_int);
279   // The max negative int32 is stored as a positive number in the mantissa of
280   // a double because it uses a sign bit instead of using two's complement.
281   // The actual mantissa bits stored are all 0 because the implicit most
282   // significant 1 bit is not stored.
283   non_smi_exponent += 1 << HeapNumber::kExponentShift;
284   __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
285   __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
286   __ mov(ip, Operand::Zero());
287   __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
288   __ Ret();
289 }
290 
291 
292 // Handle the case where the lhs and rhs are the same object.
293 // Equality is almost reflexive (everything but NaN), so this is a test
294 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cond)295 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
296                                           Label* slow,
297                                           Condition cond) {
298   Label not_identical;
299   Label heap_number, return_equal;
300   __ cmp(r0, r1);
301   __ b(ne, &not_identical);
302 
303   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
304   // so we do the second best thing - test it ourselves.
305   // They are both equal and they are not both Smis so both of them are not
306   // Smis.  If it's not a heap number, then return equal.
307   if (cond == lt || cond == gt) {
308     __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
309     __ b(ge, slow);
310   } else {
311     __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
312     __ b(eq, &heap_number);
313     // Comparing JS objects with <=, >= is complicated.
314     if (cond != eq) {
315       __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
316       __ b(ge, slow);
317       // Normally here we fall through to return_equal, but undefined is
318       // special: (undefined == undefined) == true, but
319       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
320       if (cond == le || cond == ge) {
321         __ cmp(r4, Operand(ODDBALL_TYPE));
322         __ b(ne, &return_equal);
323         __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
324         __ cmp(r0, r2);
325         __ b(ne, &return_equal);
326         if (cond == le) {
327           // undefined <= undefined should fail.
328           __ mov(r0, Operand(GREATER));
329         } else  {
330           // undefined >= undefined should fail.
331           __ mov(r0, Operand(LESS));
332         }
333         __ Ret();
334       }
335     }
336   }
337 
338   __ bind(&return_equal);
339   if (cond == lt) {
340     __ mov(r0, Operand(GREATER));  // Things aren't less than themselves.
341   } else if (cond == gt) {
342     __ mov(r0, Operand(LESS));     // Things aren't greater than themselves.
343   } else {
344     __ mov(r0, Operand(EQUAL));    // Things are <=, >=, ==, === themselves.
345   }
346   __ Ret();
347 
348   // For less and greater we don't have to check for NaN since the result of
349   // x < x is false regardless.  For the others here is some code to check
350   // for NaN.
351   if (cond != lt && cond != gt) {
352     __ bind(&heap_number);
353     // It is a heap number, so return non-equal if it's NaN and equal if it's
354     // not NaN.
355 
356     // The representation of NaN values has all exponent bits (52..62) set,
357     // and not all mantissa bits (0..51) clear.
358     // Read top bits of double representation (second word of value).
359     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
360     // Test that exponent bits are all set.
361     __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
362     // NaNs have all-one exponents so they sign extend to -1.
363     __ cmp(r3, Operand(-1));
364     __ b(ne, &return_equal);
365 
366     // Shift out flag and all exponent bits, retaining only mantissa.
367     __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
368     // Or with all low-bits of mantissa.
369     __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
370     __ orr(r0, r3, Operand(r2), SetCC);
371     // For equal we already have the right value in r0:  Return zero (equal)
372     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
373     // not (it's a NaN).  For <= and >= we need to load r0 with the failing
374     // value if it's a NaN.
375     if (cond != eq) {
376       // All-zero means Infinity means equal.
377       __ Ret(eq);
378       if (cond == le) {
379         __ mov(r0, Operand(GREATER));  // NaN <= NaN should fail.
380       } else {
381         __ mov(r0, Operand(LESS));     // NaN >= NaN should fail.
382       }
383     }
384     __ Ret();
385   }
386   // No fall through here.
387 
388   __ bind(&not_identical);
389 }
390 
391 
392 // See comment at call site.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * lhs_not_nan,Label * slow,bool strict)393 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
394                                     Register lhs,
395                                     Register rhs,
396                                     Label* lhs_not_nan,
397                                     Label* slow,
398                                     bool strict) {
399   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
400          (lhs.is(r1) && rhs.is(r0)));
401 
402   Label rhs_is_smi;
403   __ JumpIfSmi(rhs, &rhs_is_smi);
404 
405   // Lhs is a Smi.  Check whether the rhs is a heap number.
406   __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
407   if (strict) {
408     // If rhs is not a number and lhs is a Smi then strict equality cannot
409     // succeed.  Return non-equal
410     // If rhs is r0 then there is already a non zero value in it.
411     if (!rhs.is(r0)) {
412       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
413     }
414     __ Ret(ne);
415   } else {
416     // Smi compared non-strictly with a non-Smi non-heap-number.  Call
417     // the runtime.
418     __ b(ne, slow);
419   }
420 
421   // Lhs is a smi, rhs is a number.
422   // Convert lhs to a double in d7.
423   __ SmiToDouble(d7, lhs);
424   // Load the double from rhs, tagged HeapNumber r0, to d6.
425   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
426 
427   // We now have both loaded as doubles but we can skip the lhs nan check
428   // since it's a smi.
429   __ jmp(lhs_not_nan);
430 
431   __ bind(&rhs_is_smi);
432   // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
433   __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
434   if (strict) {
435     // If lhs is not a number and rhs is a smi then strict equality cannot
436     // succeed.  Return non-equal.
437     // If lhs is r0 then there is already a non zero value in it.
438     if (!lhs.is(r0)) {
439       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
440     }
441     __ Ret(ne);
442   } else {
443     // Smi compared non-strictly with a non-smi non-heap-number.  Call
444     // the runtime.
445     __ b(ne, slow);
446   }
447 
448   // Rhs is a smi, lhs is a heap number.
449   // Load the double from lhs, tagged HeapNumber r1, to d7.
450   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
451   // Convert rhs to a double in d6              .
452   __ SmiToDouble(d6, rhs);
453   // Fall through to both_loaded_as_doubles.
454 }
455 
456 
457 // See comment at call site.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)458 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
459                                            Register lhs,
460                                            Register rhs) {
461     DCHECK((lhs.is(r0) && rhs.is(r1)) ||
462            (lhs.is(r1) && rhs.is(r0)));
463 
464     // If either operand is a JS object or an oddball value, then they are
465     // not equal since their pointers are different.
466     // There is no test for undetectability in strict equality.
467     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
468     Label first_non_object;
469     // Get the type of the first operand into r2 and compare it with
470     // FIRST_SPEC_OBJECT_TYPE.
471     __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
472     __ b(lt, &first_non_object);
473 
474     // Return non-zero (r0 is not zero)
475     Label return_not_equal;
476     __ bind(&return_not_equal);
477     __ Ret();
478 
479     __ bind(&first_non_object);
480     // Check for oddballs: true, false, null, undefined.
481     __ cmp(r2, Operand(ODDBALL_TYPE));
482     __ b(eq, &return_not_equal);
483 
484     __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
485     __ b(ge, &return_not_equal);
486 
487     // Check for oddballs: true, false, null, undefined.
488     __ cmp(r3, Operand(ODDBALL_TYPE));
489     __ b(eq, &return_not_equal);
490 
491     // Now that we have the types we might as well check for
492     // internalized-internalized.
493     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
494     __ orr(r2, r2, Operand(r3));
495     __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
496     __ b(eq, &return_not_equal);
497 }
498 
499 
500 // See comment at call site.
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)501 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
502                                        Register lhs,
503                                        Register rhs,
504                                        Label* both_loaded_as_doubles,
505                                        Label* not_heap_numbers,
506                                        Label* slow) {
507   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
508          (lhs.is(r1) && rhs.is(r0)));
509 
510   __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
511   __ b(ne, not_heap_numbers);
512   __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
513   __ cmp(r2, r3);
514   __ b(ne, slow);  // First was a heap number, second wasn't.  Go slow case.
515 
516   // Both are heap numbers.  Load them up then jump to the code we have
517   // for that.
518   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
519   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
520   __ jmp(both_loaded_as_doubles);
521 }
522 
523 
524 // Fast negative check for internalized-to-internalized equality.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * not_both_strings)525 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
526                                                      Register lhs,
527                                                      Register rhs,
528                                                      Label* possible_strings,
529                                                      Label* not_both_strings) {
530   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
531          (lhs.is(r1) && rhs.is(r0)));
532 
533   // r2 is object type of rhs.
534   Label object_test;
535   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
536   __ tst(r2, Operand(kIsNotStringMask));
537   __ b(ne, &object_test);
538   __ tst(r2, Operand(kIsNotInternalizedMask));
539   __ b(ne, possible_strings);
540   __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
541   __ b(ge, not_both_strings);
542   __ tst(r3, Operand(kIsNotInternalizedMask));
543   __ b(ne, possible_strings);
544 
545   // Both are internalized.  We already checked they weren't the same pointer
546   // so they are not equal.
547   __ mov(r0, Operand(NOT_EQUAL));
548   __ Ret();
549 
550   __ bind(&object_test);
551   __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
552   __ b(lt, not_both_strings);
553   __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
554   __ b(lt, not_both_strings);
555   // If both objects are undetectable, they are equal. Otherwise, they
556   // are not equal, since they are different objects and an object is not
557   // equal to undefined.
558   __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
559   __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
560   __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
561   __ and_(r0, r2, Operand(r3));
562   __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
563   __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
564   __ Ret();
565 }
566 
567 
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)568 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
569                                          Register scratch,
570                                          CompareICState::State expected,
571                                          Label* fail) {
572   Label ok;
573   if (expected == CompareICState::SMI) {
574     __ JumpIfNotSmi(input, fail);
575   } else if (expected == CompareICState::NUMBER) {
576     __ JumpIfSmi(input, &ok);
577     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
578                 DONT_DO_SMI_CHECK);
579   }
580   // We could be strict about internalized/non-internalized here, but as long as
581   // hydrogen doesn't care, the stub doesn't have to care either.
582   __ bind(&ok);
583 }
584 
585 
586 // On entry r1 and r2 are the values to be compared.
587 // On exit r0 is 0, positive or negative to indicate the result of
588 // the comparison.
GenerateGeneric(MacroAssembler * masm)589 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
590   Register lhs = r1;
591   Register rhs = r0;
592   Condition cc = GetCondition();
593 
594   Label miss;
595   CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss);
596   CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss);
597 
598   Label slow;  // Call builtin.
599   Label not_smis, both_loaded_as_doubles, lhs_not_nan;
600 
601   Label not_two_smis, smi_done;
602   __ orr(r2, r1, r0);
603   __ JumpIfNotSmi(r2, &not_two_smis);
604   __ mov(r1, Operand(r1, ASR, 1));
605   __ sub(r0, r1, Operand(r0, ASR, 1));
606   __ Ret();
607   __ bind(&not_two_smis);
608 
609   // NOTICE! This code is only reached after a smi-fast-case check, so
610   // it is certain that at least one operand isn't a smi.
611 
612   // Handle the case where the objects are identical.  Either returns the answer
613   // or goes to slow.  Only falls through if the objects were not identical.
614   EmitIdenticalObjectComparison(masm, &slow, cc);
615 
616   // If either is a Smi (we know that not both are), then they can only
617   // be strictly equal if the other is a HeapNumber.
618   STATIC_ASSERT(kSmiTag == 0);
619   DCHECK_EQ(0, Smi::FromInt(0));
620   __ and_(r2, lhs, Operand(rhs));
621   __ JumpIfNotSmi(r2, &not_smis);
622   // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
623   // 1) Return the answer.
624   // 2) Go to slow.
625   // 3) Fall through to both_loaded_as_doubles.
626   // 4) Jump to lhs_not_nan.
627   // In cases 3 and 4 we have found out we were dealing with a number-number
628   // comparison.  If VFP3 is supported the double values of the numbers have
629   // been loaded into d7 and d6.  Otherwise, the double values have been loaded
630   // into r0, r1, r2, and r3.
631   EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
632 
633   __ bind(&both_loaded_as_doubles);
634   // The arguments have been converted to doubles and stored in d6 and d7, if
635   // VFP3 is supported, or in r0, r1, r2, and r3.
636   __ bind(&lhs_not_nan);
637   Label no_nan;
638   // ARMv7 VFP3 instructions to implement double precision comparison.
639   __ VFPCompareAndSetFlags(d7, d6);
640   Label nan;
641   __ b(vs, &nan);
642   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
643   __ mov(r0, Operand(LESS), LeaveCC, lt);
644   __ mov(r0, Operand(GREATER), LeaveCC, gt);
645   __ Ret();
646 
647   __ bind(&nan);
648   // If one of the sides was a NaN then the v flag is set.  Load r0 with
649   // whatever it takes to make the comparison fail, since comparisons with NaN
650   // always fail.
651   if (cc == lt || cc == le) {
652     __ mov(r0, Operand(GREATER));
653   } else {
654     __ mov(r0, Operand(LESS));
655   }
656   __ Ret();
657 
658   __ bind(&not_smis);
659   // At this point we know we are dealing with two different objects,
660   // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
661   if (strict()) {
662     // This returns non-equal for some object types, or falls through if it
663     // was not lucky.
664     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
665   }
666 
667   Label check_for_internalized_strings;
668   Label flat_string_check;
669   // Check for heap-number-heap-number comparison.  Can jump to slow case,
670   // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
671   // that case.  If the inputs are not doubles then jumps to
672   // check_for_internalized_strings.
673   // In this case r2 will contain the type of rhs_.  Never falls through.
674   EmitCheckForTwoHeapNumbers(masm,
675                              lhs,
676                              rhs,
677                              &both_loaded_as_doubles,
678                              &check_for_internalized_strings,
679                              &flat_string_check);
680 
681   __ bind(&check_for_internalized_strings);
682   // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
683   // internalized strings.
684   if (cc == eq && !strict()) {
685     // Returns an answer for two internalized strings or two detectable objects.
686     // Otherwise jumps to string case or not both strings case.
687     // Assumes that r2 is the type of rhs_ on entry.
688     EmitCheckForInternalizedStringsOrObjects(
689         masm, lhs, rhs, &flat_string_check, &slow);
690   }
691 
692   // Check for both being sequential one-byte strings,
693   // and inline if that is the case.
694   __ bind(&flat_string_check);
695 
696   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow);
697 
698   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
699                       r3);
700   if (cc == eq) {
701     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4);
702   } else {
703     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4,
704                                                     r5);
705   }
706   // Never falls through to here.
707 
708   __ bind(&slow);
709 
710   __ Push(lhs, rhs);
711   // Figure out which native to call and setup the arguments.
712   Builtins::JavaScript native;
713   if (cc == eq) {
714     native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
715   } else {
716     native = Builtins::COMPARE;
717     int ncr;  // NaN compare result
718     if (cc == lt || cc == le) {
719       ncr = GREATER;
720     } else {
721       DCHECK(cc == gt || cc == ge);  // remaining cases
722       ncr = LESS;
723     }
724     __ mov(r0, Operand(Smi::FromInt(ncr)));
725     __ push(r0);
726   }
727 
728   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
729   // tagged as a small integer.
730   __ InvokeBuiltin(native, JUMP_FUNCTION);
731 
732   __ bind(&miss);
733   GenerateMiss(masm);
734 }
735 
736 
Generate(MacroAssembler * masm)737 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
738   // We don't allow a GC during a store buffer overflow so there is no need to
739   // store the registers in any particular way, but we do have to store and
740   // restore them.
741   __ stm(db_w, sp, kCallerSaved | lr.bit());
742 
743   const Register scratch = r1;
744 
745   if (save_doubles()) {
746     __ SaveFPRegs(sp, scratch);
747   }
748   const int argument_count = 1;
749   const int fp_argument_count = 0;
750 
751   AllowExternalCallThatCantCauseGC scope(masm);
752   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
753   __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
754   __ CallCFunction(
755       ExternalReference::store_buffer_overflow_function(isolate()),
756       argument_count);
757   if (save_doubles()) {
758     __ RestoreFPRegs(sp, scratch);
759   }
760   __ ldm(ia_w, sp, kCallerSaved | pc.bit());  // Also pop pc to get Ret(0).
761 }
762 
763 
Generate(MacroAssembler * masm)764 void MathPowStub::Generate(MacroAssembler* masm) {
765   const Register base = r1;
766   const Register exponent = MathPowTaggedDescriptor::exponent();
767   DCHECK(exponent.is(r2));
768   const Register heapnumbermap = r5;
769   const Register heapnumber = r0;
770   const DwVfpRegister double_base = d0;
771   const DwVfpRegister double_exponent = d1;
772   const DwVfpRegister double_result = d2;
773   const DwVfpRegister double_scratch = d3;
774   const SwVfpRegister single_scratch = s6;
775   const Register scratch = r9;
776   const Register scratch2 = r4;
777 
778   Label call_runtime, done, int_exponent;
779   if (exponent_type() == ON_STACK) {
780     Label base_is_smi, unpack_exponent;
781     // The exponent and base are supplied as arguments on the stack.
782     // This can only happen if the stub is called from non-optimized code.
783     // Load input parameters from stack to double registers.
784     __ ldr(base, MemOperand(sp, 1 * kPointerSize));
785     __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
786 
787     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
788 
789     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
790     __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
791     __ cmp(scratch, heapnumbermap);
792     __ b(ne, &call_runtime);
793 
794     __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
795     __ jmp(&unpack_exponent);
796 
797     __ bind(&base_is_smi);
798     __ vmov(single_scratch, scratch);
799     __ vcvt_f64_s32(double_base, single_scratch);
800     __ bind(&unpack_exponent);
801 
802     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
803 
804     __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
805     __ cmp(scratch, heapnumbermap);
806     __ b(ne, &call_runtime);
807     __ vldr(double_exponent,
808             FieldMemOperand(exponent, HeapNumber::kValueOffset));
809   } else if (exponent_type() == TAGGED) {
810     // Base is already in double_base.
811     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
812 
813     __ vldr(double_exponent,
814             FieldMemOperand(exponent, HeapNumber::kValueOffset));
815   }
816 
817   if (exponent_type() != INTEGER) {
818     Label int_exponent_convert;
819     // Detect integer exponents stored as double.
820     __ vcvt_u32_f64(single_scratch, double_exponent);
821     // We do not check for NaN or Infinity here because comparing numbers on
822     // ARM correctly distinguishes NaNs.  We end up calling the built-in.
823     __ vcvt_f64_u32(double_scratch, single_scratch);
824     __ VFPCompareAndSetFlags(double_scratch, double_exponent);
825     __ b(eq, &int_exponent_convert);
826 
827     if (exponent_type() == ON_STACK) {
828       // Detect square root case.  Crankshaft detects constant +/-0.5 at
829       // compile time and uses DoMathPowHalf instead.  We then skip this check
830       // for non-constant cases of +/-0.5 as these hardly occur.
831       Label not_plus_half;
832 
833       // Test for 0.5.
834       __ vmov(double_scratch, 0.5, scratch);
835       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
836       __ b(ne, &not_plus_half);
837 
838       // Calculates square root of base.  Check for the special case of
839       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
840       __ vmov(double_scratch, -V8_INFINITY, scratch);
841       __ VFPCompareAndSetFlags(double_base, double_scratch);
842       __ vneg(double_result, double_scratch, eq);
843       __ b(eq, &done);
844 
845       // Add +0 to convert -0 to +0.
846       __ vadd(double_scratch, double_base, kDoubleRegZero);
847       __ vsqrt(double_result, double_scratch);
848       __ jmp(&done);
849 
850       __ bind(&not_plus_half);
851       __ vmov(double_scratch, -0.5, scratch);
852       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
853       __ b(ne, &call_runtime);
854 
855       // Calculates square root of base.  Check for the special case of
856       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
857       __ vmov(double_scratch, -V8_INFINITY, scratch);
858       __ VFPCompareAndSetFlags(double_base, double_scratch);
859       __ vmov(double_result, kDoubleRegZero, eq);
860       __ b(eq, &done);
861 
862       // Add +0 to convert -0 to +0.
863       __ vadd(double_scratch, double_base, kDoubleRegZero);
864       __ vmov(double_result, 1.0, scratch);
865       __ vsqrt(double_scratch, double_scratch);
866       __ vdiv(double_result, double_result, double_scratch);
867       __ jmp(&done);
868     }
869 
870     __ push(lr);
871     {
872       AllowExternalCallThatCantCauseGC scope(masm);
873       __ PrepareCallCFunction(0, 2, scratch);
874       __ MovToFloatParameters(double_base, double_exponent);
875       __ CallCFunction(
876           ExternalReference::power_double_double_function(isolate()),
877           0, 2);
878     }
879     __ pop(lr);
880     __ MovFromFloatResult(double_result);
881     __ jmp(&done);
882 
883     __ bind(&int_exponent_convert);
884     __ vcvt_u32_f64(single_scratch, double_exponent);
885     __ vmov(scratch, single_scratch);
886   }
887 
888   // Calculate power with integer exponent.
889   __ bind(&int_exponent);
890 
891   // Get two copies of exponent in the registers scratch and exponent.
892   if (exponent_type() == INTEGER) {
893     __ mov(scratch, exponent);
894   } else {
895     // Exponent has previously been stored into scratch as untagged integer.
896     __ mov(exponent, scratch);
897   }
898   __ vmov(double_scratch, double_base);  // Back up base.
899   __ vmov(double_result, 1.0, scratch2);
900 
901   // Get absolute value of exponent.
902   __ cmp(scratch, Operand::Zero());
903   __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
904   __ sub(scratch, scratch2, scratch, LeaveCC, mi);
905 
906   Label while_true;
907   __ bind(&while_true);
908   __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
909   __ vmul(double_result, double_result, double_scratch, cs);
910   __ vmul(double_scratch, double_scratch, double_scratch, ne);
911   __ b(ne, &while_true);
912 
913   __ cmp(exponent, Operand::Zero());
914   __ b(ge, &done);
915   __ vmov(double_scratch, 1.0, scratch);
916   __ vdiv(double_result, double_scratch, double_result);
917   // Test whether result is zero.  Bail out to check for subnormal result.
918   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
919   __ VFPCompareAndSetFlags(double_result, 0.0);
920   __ b(ne, &done);
921   // double_exponent may not containe the exponent value if the input was a
922   // smi.  We set it with exponent value before bailing out.
923   __ vmov(single_scratch, exponent);
924   __ vcvt_f64_s32(double_exponent, single_scratch);
925 
926   // Returning or bailing out.
927   Counters* counters = isolate()->counters();
928   if (exponent_type() == ON_STACK) {
929     // The arguments are still on the stack.
930     __ bind(&call_runtime);
931     __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
932 
933     // The stub is called from non-optimized code, which expects the result
934     // as heap number in exponent.
935     __ bind(&done);
936     __ AllocateHeapNumber(
937         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
938     __ vstr(double_result,
939             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
940     DCHECK(heapnumber.is(r0));
941     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
942     __ Ret(2);
943   } else {
944     __ push(lr);
945     {
946       AllowExternalCallThatCantCauseGC scope(masm);
947       __ PrepareCallCFunction(0, 2, scratch);
948       __ MovToFloatParameters(double_base, double_exponent);
949       __ CallCFunction(
950           ExternalReference::power_double_double_function(isolate()),
951           0, 2);
952     }
953     __ pop(lr);
954     __ MovFromFloatResult(double_result);
955 
956     __ bind(&done);
957     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
958     __ Ret();
959   }
960 }
961 
962 
NeedsImmovableCode()963 bool CEntryStub::NeedsImmovableCode() {
964   return true;
965 }
966 
967 
GenerateStubsAheadOfTime(Isolate * isolate)968 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
969   CEntryStub::GenerateAheadOfTime(isolate);
970   WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
971   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
972   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
973   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
974   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
975   BinaryOpICStub::GenerateAheadOfTime(isolate);
976   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
977 }
978 
979 
GenerateFPStubs(Isolate * isolate)980 void CodeStub::GenerateFPStubs(Isolate* isolate) {
981   // Generate if not already in cache.
982   SaveFPRegsMode mode = kSaveFPRegs;
983   CEntryStub(isolate, 1, mode).GetCode();
984   StoreBufferOverflowStub(isolate, mode).GetCode();
985   isolate->set_fp_stubs_generated(true);
986 }
987 
988 
GenerateAheadOfTime(Isolate * isolate)989 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
990   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
991   stub.GetCode();
992 }
993 
994 
Generate(MacroAssembler * masm)995 void CEntryStub::Generate(MacroAssembler* masm) {
996   // Called from JavaScript; parameters are on stack as if calling JS function.
997   // r0: number of arguments including receiver
998   // r1: pointer to builtin function
999   // fp: frame pointer  (restored after C call)
1000   // sp: stack pointer  (restored as callee's sp after C call)
1001   // cp: current context  (C callee-saved)
1002 
1003   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1004 
1005   __ mov(r5, Operand(r1));
1006 
1007   // Compute the argv pointer in a callee-saved register.
1008   __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
1009   __ sub(r1, r1, Operand(kPointerSize));
1010 
1011   // Enter the exit frame that transitions from JavaScript to C++.
1012   FrameScope scope(masm, StackFrame::MANUAL);
1013   __ EnterExitFrame(save_doubles());
1014 
1015   // Store a copy of argc in callee-saved registers for later.
1016   __ mov(r4, Operand(r0));
1017 
1018   // r0, r4: number of arguments including receiver  (C callee-saved)
1019   // r1: pointer to the first argument (C callee-saved)
1020   // r5: pointer to builtin function  (C callee-saved)
1021 
1022   // Result returned in r0 or r0+r1 by default.
1023 
1024 #if V8_HOST_ARCH_ARM
1025   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
1026   int frame_alignment_mask = frame_alignment - 1;
1027   if (FLAG_debug_code) {
1028     if (frame_alignment > kPointerSize) {
1029       Label alignment_as_expected;
1030       DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
1031       __ tst(sp, Operand(frame_alignment_mask));
1032       __ b(eq, &alignment_as_expected);
1033       // Don't use Check here, as it will call Runtime_Abort re-entering here.
1034       __ stop("Unexpected alignment");
1035       __ bind(&alignment_as_expected);
1036     }
1037   }
1038 #endif
1039 
1040   // Call C built-in.
1041   // r0 = argc, r1 = argv
1042   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
1043 
1044   // To let the GC traverse the return address of the exit frames, we need to
1045   // know where the return address is. The CEntryStub is unmovable, so
1046   // we can store the address on the stack to be able to find it again and
1047   // we never have to restore it, because it will not change.
1048   // Compute the return address in lr to return to after the jump below. Pc is
1049   // already at '+ 8' from the current instruction but return is after three
1050   // instructions so add another 4 to pc to get the return address.
1051   {
1052     // Prevent literal pool emission before return address.
1053     Assembler::BlockConstPoolScope block_const_pool(masm);
1054     __ add(lr, pc, Operand(4));
1055     __ str(lr, MemOperand(sp, 0));
1056     __ Call(r5);
1057   }
1058 
1059   __ VFPEnsureFPSCRState(r2);
1060 
1061   // Runtime functions should not return 'the hole'.  Allowing it to escape may
1062   // lead to crashes in the IC code later.
1063   if (FLAG_debug_code) {
1064     Label okay;
1065     __ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
1066     __ b(ne, &okay);
1067     __ stop("The hole escaped");
1068     __ bind(&okay);
1069   }
1070 
1071   // Check result for exception sentinel.
1072   Label exception_returned;
1073   __ CompareRoot(r0, Heap::kExceptionRootIndex);
1074   __ b(eq, &exception_returned);
1075 
1076   ExternalReference pending_exception_address(
1077       Isolate::kPendingExceptionAddress, isolate());
1078 
1079   // Check that there is no pending exception, otherwise we
1080   // should have returned the exception sentinel.
1081   if (FLAG_debug_code) {
1082     Label okay;
1083     __ mov(r2, Operand(pending_exception_address));
1084     __ ldr(r2, MemOperand(r2));
1085     __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
1086     // Cannot use check here as it attempts to generate call into runtime.
1087     __ b(eq, &okay);
1088     __ stop("Unexpected pending exception");
1089     __ bind(&okay);
1090   }
1091 
1092   // Exit C frame and return.
1093   // r0:r1: result
1094   // sp: stack pointer
1095   // fp: frame pointer
1096   // Callee-saved register r4 still holds argc.
1097   __ LeaveExitFrame(save_doubles(), r4, true);
1098   __ mov(pc, lr);
1099 
1100   // Handling of exception.
1101   __ bind(&exception_returned);
1102 
1103   // Retrieve the pending exception.
1104   __ mov(r2, Operand(pending_exception_address));
1105   __ ldr(r0, MemOperand(r2));
1106 
1107   // Clear the pending exception.
1108   __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
1109   __ str(r3, MemOperand(r2));
1110 
1111   // Special handling of termination exceptions which are uncatchable
1112   // by javascript code.
1113   Label throw_termination_exception;
1114   __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
1115   __ b(eq, &throw_termination_exception);
1116 
1117   // Handle normal exception.
1118   __ Throw(r0);
1119 
1120   __ bind(&throw_termination_exception);
1121   __ ThrowUncatchable(r0);
1122 }
1123 
1124 
Generate(MacroAssembler * masm)1125 void JSEntryStub::Generate(MacroAssembler* masm) {
1126   // r0: code entry
1127   // r1: function
1128   // r2: receiver
1129   // r3: argc
1130   // [sp+0]: argv
1131 
1132   Label invoke, handler_entry, exit;
1133 
1134   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1135 
1136   // Called from C, so do not pop argc and args on exit (preserve sp)
1137   // No need to save register-passed args
1138   // Save callee-saved registers (incl. cp and fp), sp, and lr
1139   __ stm(db_w, sp, kCalleeSaved | lr.bit());
1140 
1141   // Save callee-saved vfp registers.
1142   __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1143   // Set up the reserved register for 0.0.
1144   __ vmov(kDoubleRegZero, 0.0);
1145   __ VFPEnsureFPSCRState(r4);
1146 
1147   // Get address of argv, see stm above.
1148   // r0: code entry
1149   // r1: function
1150   // r2: receiver
1151   // r3: argc
1152 
1153   // Set up argv in r4.
1154   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1155   offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
1156   __ ldr(r4, MemOperand(sp, offset_to_argv));
1157 
1158   // Push a frame with special values setup to mark it as an entry frame.
1159   // r0: code entry
1160   // r1: function
1161   // r2: receiver
1162   // r3: argc
1163   // r4: argv
1164   int marker = type();
1165   if (FLAG_enable_ool_constant_pool) {
1166     __ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array()));
1167   }
1168   __ mov(r7, Operand(Smi::FromInt(marker)));
1169   __ mov(r6, Operand(Smi::FromInt(marker)));
1170   __ mov(r5,
1171          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1172   __ ldr(r5, MemOperand(r5));
1173   __ mov(ip, Operand(-1));  // Push a bad frame pointer to fail if it is used.
1174   __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
1175                    (FLAG_enable_ool_constant_pool ? r8.bit() : 0) |
1176                    ip.bit());
1177 
1178   // Set up frame pointer for the frame to be pushed.
1179   __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1180 
1181   // If this is the outermost JS call, set js_entry_sp value.
1182   Label non_outermost_js;
1183   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1184   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1185   __ ldr(r6, MemOperand(r5));
1186   __ cmp(r6, Operand::Zero());
1187   __ b(ne, &non_outermost_js);
1188   __ str(fp, MemOperand(r5));
1189   __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1190   Label cont;
1191   __ b(&cont);
1192   __ bind(&non_outermost_js);
1193   __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1194   __ bind(&cont);
1195   __ push(ip);
1196 
1197   // Jump to a faked try block that does the invoke, with a faked catch
1198   // block that sets the pending exception.
1199   __ jmp(&invoke);
1200 
1201   // Block literal pool emission whilst taking the position of the handler
1202   // entry. This avoids making the assumption that literal pools are always
1203   // emitted after an instruction is emitted, rather than before.
1204   {
1205     Assembler::BlockConstPoolScope block_const_pool(masm);
1206     __ bind(&handler_entry);
1207     handler_offset_ = handler_entry.pos();
1208     // Caught exception: Store result (exception) in the pending exception
1209     // field in the JSEnv and return a failure sentinel.  Coming in here the
1210     // fp will be invalid because the PushTryHandler below sets it to 0 to
1211     // signal the existence of the JSEntry frame.
1212     __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1213                                          isolate())));
1214   }
1215   __ str(r0, MemOperand(ip));
1216   __ LoadRoot(r0, Heap::kExceptionRootIndex);
1217   __ b(&exit);
1218 
1219   // Invoke: Link this frame into the handler chain.  There's only one
1220   // handler block in this code object, so its index is 0.
1221   __ bind(&invoke);
1222   // Must preserve r0-r4, r5-r6 are available.
1223   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1224   // If an exception not caught by another handler occurs, this handler
1225   // returns control to the code after the bl(&invoke) above, which
1226   // restores all kCalleeSaved registers (including cp and fp) to their
1227   // saved values before returning a failure to C.
1228 
1229   // Clear any pending exceptions.
1230   __ mov(r5, Operand(isolate()->factory()->the_hole_value()));
1231   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1232                                        isolate())));
1233   __ str(r5, MemOperand(ip));
1234 
1235   // Invoke the function by calling through JS entry trampoline builtin.
1236   // Notice that we cannot store a reference to the trampoline code directly in
1237   // this stub, because runtime stubs are not traversed when doing GC.
1238 
1239   // Expected registers by Builtins::JSEntryTrampoline
1240   // r0: code entry
1241   // r1: function
1242   // r2: receiver
1243   // r3: argc
1244   // r4: argv
1245   if (type() == StackFrame::ENTRY_CONSTRUCT) {
1246     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1247                                       isolate());
1248     __ mov(ip, Operand(construct_entry));
1249   } else {
1250     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1251     __ mov(ip, Operand(entry));
1252   }
1253   __ ldr(ip, MemOperand(ip));  // deref address
1254   __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1255 
1256   // Branch and link to JSEntryTrampoline.
1257   __ Call(ip);
1258 
1259   // Unlink this frame from the handler chain.
1260   __ PopTryHandler();
1261 
1262   __ bind(&exit);  // r0 holds result
1263   // Check if the current stack frame is marked as the outermost JS frame.
1264   Label non_outermost_js_2;
1265   __ pop(r5);
1266   __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1267   __ b(ne, &non_outermost_js_2);
1268   __ mov(r6, Operand::Zero());
1269   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1270   __ str(r6, MemOperand(r5));
1271   __ bind(&non_outermost_js_2);
1272 
1273   // Restore the top frame descriptors from the stack.
1274   __ pop(r3);
1275   __ mov(ip,
1276          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1277   __ str(r3, MemOperand(ip));
1278 
1279   // Reset the stack to the callee saved registers.
1280   __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1281 
1282   // Restore callee-saved registers and return.
1283 #ifdef DEBUG
1284   if (FLAG_debug_code) {
1285     __ mov(lr, Operand(pc));
1286   }
1287 #endif
1288 
1289   // Restore callee-saved vfp registers.
1290   __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1291 
1292   __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
1293 }
1294 
1295 
1296 // Uses registers r0 to r4.
1297 // Expected input (depending on whether args are in registers or on the stack):
1298 // * object: r0 or at sp + 1 * kPointerSize.
1299 // * function: r1 or at sp.
1300 //
1301 // An inlined call site may have been generated before calling this stub.
1302 // In this case the offset to the inline sites to patch are passed in r5 and r6.
1303 // (See LCodeGen::DoInstanceOfKnownGlobal)
Generate(MacroAssembler * masm)1304 void InstanceofStub::Generate(MacroAssembler* masm) {
1305   // Call site inlining and patching implies arguments in registers.
1306   DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
1307 
1308   // Fixed register usage throughout the stub:
1309   const Register object = r0;  // Object (lhs).
1310   Register map = r3;  // Map of the object.
1311   const Register function = r1;  // Function (rhs).
1312   const Register prototype = r4;  // Prototype of the function.
1313   const Register scratch = r2;
1314 
1315   Label slow, loop, is_instance, is_not_instance, not_js_object;
1316 
1317   if (!HasArgsInRegisters()) {
1318     __ ldr(object, MemOperand(sp, 1 * kPointerSize));
1319     __ ldr(function, MemOperand(sp, 0));
1320   }
1321 
1322   // Check that the left hand is a JS object and load map.
1323   __ JumpIfSmi(object, &not_js_object);
1324   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
1325 
1326   // If there is a call site cache don't look in the global cache, but do the
1327   // real lookup and update the call site cache.
1328   if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
1329     Label miss;
1330     __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1331     __ b(ne, &miss);
1332     __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
1333     __ b(ne, &miss);
1334     __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
1335     __ Ret(HasArgsInRegisters() ? 0 : 2);
1336 
1337     __ bind(&miss);
1338   }
1339 
1340   // Get the prototype of the function.
1341   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
1342 
1343   // Check that the function prototype is a JS object.
1344   __ JumpIfSmi(prototype, &slow);
1345   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
1346 
1347   // Update the global instanceof or call site inlined cache with the current
1348   // map and function. The cached answer will be set when it is known below.
1349   if (!HasCallSiteInlineCheck()) {
1350     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1351     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1352   } else {
1353     DCHECK(HasArgsInRegisters());
1354     // Patch the (relocated) inlined map check.
1355 
1356     // The map_load_offset was stored in r5
1357     //   (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1358     const Register map_load_offset = r5;
1359     __ sub(r9, lr, map_load_offset);
1360     // Get the map location in r5 and patch it.
1361     __ GetRelocatedValueLocation(r9, map_load_offset, scratch);
1362     __ ldr(map_load_offset, MemOperand(map_load_offset));
1363     __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset));
1364   }
1365 
1366   // Register mapping: r3 is object map and r4 is function prototype.
1367   // Get prototype of object into r2.
1368   __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
1369 
1370   // We don't need map any more. Use it as a scratch register.
1371   Register scratch2 = map;
1372   map = no_reg;
1373 
1374   // Loop through the prototype chain looking for the function prototype.
1375   __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
1376   __ bind(&loop);
1377   __ cmp(scratch, Operand(prototype));
1378   __ b(eq, &is_instance);
1379   __ cmp(scratch, scratch2);
1380   __ b(eq, &is_not_instance);
1381   __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
1382   __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
1383   __ jmp(&loop);
1384   Factory* factory = isolate()->factory();
1385 
1386   __ bind(&is_instance);
1387   if (!HasCallSiteInlineCheck()) {
1388     __ mov(r0, Operand(Smi::FromInt(0)));
1389     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
1390     if (ReturnTrueFalseObject()) {
1391       __ Move(r0, factory->true_value());
1392     }
1393   } else {
1394     // Patch the call site to return true.
1395     __ LoadRoot(r0, Heap::kTrueValueRootIndex);
1396     // The bool_load_offset was stored in r6
1397     //   (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1398     const Register bool_load_offset = r6;
1399     __ sub(r9, lr, bool_load_offset);
1400     // Get the boolean result location in scratch and patch it.
1401     __ GetRelocatedValueLocation(r9, scratch, scratch2);
1402     __ str(r0, MemOperand(scratch));
1403 
1404     if (!ReturnTrueFalseObject()) {
1405       __ mov(r0, Operand(Smi::FromInt(0)));
1406     }
1407   }
1408   __ Ret(HasArgsInRegisters() ? 0 : 2);
1409 
1410   __ bind(&is_not_instance);
1411   if (!HasCallSiteInlineCheck()) {
1412     __ mov(r0, Operand(Smi::FromInt(1)));
1413     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
1414     if (ReturnTrueFalseObject()) {
1415       __ Move(r0, factory->false_value());
1416     }
1417   } else {
1418     // Patch the call site to return false.
1419     __ LoadRoot(r0, Heap::kFalseValueRootIndex);
1420     // The bool_load_offset was stored in r6
1421     //   (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1422     const Register bool_load_offset = r6;
1423     __ sub(r9, lr, bool_load_offset);
1424     ;
1425     // Get the boolean result location in scratch and patch it.
1426     __ GetRelocatedValueLocation(r9, scratch, scratch2);
1427     __ str(r0, MemOperand(scratch));
1428 
1429     if (!ReturnTrueFalseObject()) {
1430       __ mov(r0, Operand(Smi::FromInt(1)));
1431     }
1432   }
1433   __ Ret(HasArgsInRegisters() ? 0 : 2);
1434 
1435   Label object_not_null, object_not_null_or_smi;
1436   __ bind(&not_js_object);
1437   // Before null, smi and string value checks, check that the rhs is a function
1438   // as for a non-function rhs an exception needs to be thrown.
1439   __ JumpIfSmi(function, &slow);
1440   __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
1441   __ b(ne, &slow);
1442 
1443   // Null is not instance of anything.
1444   __ cmp(scratch, Operand(isolate()->factory()->null_value()));
1445   __ b(ne, &object_not_null);
1446   if (ReturnTrueFalseObject()) {
1447     __ Move(r0, factory->false_value());
1448   } else {
1449     __ mov(r0, Operand(Smi::FromInt(1)));
1450   }
1451   __ Ret(HasArgsInRegisters() ? 0 : 2);
1452 
1453   __ bind(&object_not_null);
1454   // Smi values are not instances of anything.
1455   __ JumpIfNotSmi(object, &object_not_null_or_smi);
1456   if (ReturnTrueFalseObject()) {
1457     __ Move(r0, factory->false_value());
1458   } else {
1459     __ mov(r0, Operand(Smi::FromInt(1)));
1460   }
1461   __ Ret(HasArgsInRegisters() ? 0 : 2);
1462 
1463   __ bind(&object_not_null_or_smi);
1464   // String values are not instances of anything.
1465   __ IsObjectJSStringType(object, scratch, &slow);
1466   if (ReturnTrueFalseObject()) {
1467     __ Move(r0, factory->false_value());
1468   } else {
1469     __ mov(r0, Operand(Smi::FromInt(1)));
1470   }
1471   __ Ret(HasArgsInRegisters() ? 0 : 2);
1472 
1473   // Slow-case.  Tail call builtin.
1474   __ bind(&slow);
1475   if (!ReturnTrueFalseObject()) {
1476     if (HasArgsInRegisters()) {
1477       __ Push(r0, r1);
1478     }
1479   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
1480   } else {
1481     {
1482       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1483       __ Push(r0, r1);
1484       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1485     }
1486     __ cmp(r0, Operand::Zero());
1487     __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
1488     __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
1489     __ Ret(HasArgsInRegisters() ? 0 : 2);
1490   }
1491 }
1492 
1493 
Generate(MacroAssembler * masm)1494 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1495   Label miss;
1496   Register receiver = LoadDescriptor::ReceiverRegister();
1497 
1498   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3,
1499                                                           r4, &miss);
1500   __ bind(&miss);
1501   PropertyAccessCompiler::TailCallBuiltin(
1502       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1503 }
1504 
1505 
GenerateReadElement(MacroAssembler * masm)1506 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1507   // The displacement is the offset of the last parameter (if any)
1508   // relative to the frame pointer.
1509   const int kDisplacement =
1510       StandardFrameConstants::kCallerSPOffset - kPointerSize;
1511   DCHECK(r1.is(ArgumentsAccessReadDescriptor::index()));
1512   DCHECK(r0.is(ArgumentsAccessReadDescriptor::parameter_count()));
1513 
1514   // Check that the key is a smi.
1515   Label slow;
1516   __ JumpIfNotSmi(r1, &slow);
1517 
1518   // Check if the calling frame is an arguments adaptor frame.
1519   Label adaptor;
1520   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1521   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
1522   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1523   __ b(eq, &adaptor);
1524 
1525   // Check index against formal parameters count limit passed in
1526   // through register r0. Use unsigned comparison to get negative
1527   // check for free.
1528   __ cmp(r1, r0);
1529   __ b(hs, &slow);
1530 
1531   // Read the argument from the stack and return it.
1532   __ sub(r3, r0, r1);
1533   __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3));
1534   __ ldr(r0, MemOperand(r3, kDisplacement));
1535   __ Jump(lr);
1536 
1537   // Arguments adaptor case: Check index against actual arguments
1538   // limit found in the arguments adaptor frame. Use unsigned
1539   // comparison to get negative check for free.
1540   __ bind(&adaptor);
1541   __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1542   __ cmp(r1, r0);
1543   __ b(cs, &slow);
1544 
1545   // Read the argument from the adaptor frame and return it.
1546   __ sub(r3, r0, r1);
1547   __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3));
1548   __ ldr(r0, MemOperand(r3, kDisplacement));
1549   __ Jump(lr);
1550 
1551   // Slow-case: Handle non-smi or out-of-bounds access to arguments
1552   // by calling the runtime system.
1553   __ bind(&slow);
1554   __ push(r1);
1555   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1556 }
1557 
1558 
GenerateNewSloppySlow(MacroAssembler * masm)1559 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1560   // sp[0] : number of parameters
1561   // sp[4] : receiver displacement
1562   // sp[8] : function
1563 
1564   // Check if the calling frame is an arguments adaptor frame.
1565   Label runtime;
1566   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1567   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
1568   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1569   __ b(ne, &runtime);
1570 
1571   // Patch the arguments.length and the parameters pointer in the current frame.
1572   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1573   __ str(r2, MemOperand(sp, 0 * kPointerSize));
1574   __ add(r3, r3, Operand(r2, LSL, 1));
1575   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
1576   __ str(r3, MemOperand(sp, 1 * kPointerSize));
1577 
1578   __ bind(&runtime);
1579   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1580 }
1581 
1582 
GenerateNewSloppyFast(MacroAssembler * masm)1583 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1584   // Stack layout:
1585   //  sp[0] : number of parameters (tagged)
1586   //  sp[4] : address of receiver argument
1587   //  sp[8] : function
1588   // Registers used over whole function:
1589   //  r6 : allocated object (tagged)
1590   //  r9 : mapped parameter count (tagged)
1591 
1592   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
1593   // r1 = parameter count (tagged)
1594 
1595   // Check if the calling frame is an arguments adaptor frame.
1596   Label runtime;
1597   Label adaptor_frame, try_allocate;
1598   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1599   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
1600   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1601   __ b(eq, &adaptor_frame);
1602 
1603   // No adaptor, parameter count = argument count.
1604   __ mov(r2, r1);
1605   __ b(&try_allocate);
1606 
1607   // We have an adaptor frame. Patch the parameters pointer.
1608   __ bind(&adaptor_frame);
1609   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1610   __ add(r3, r3, Operand(r2, LSL, 1));
1611   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
1612   __ str(r3, MemOperand(sp, 1 * kPointerSize));
1613 
1614   // r1 = parameter count (tagged)
1615   // r2 = argument count (tagged)
1616   // Compute the mapped parameter count = min(r1, r2) in r1.
1617   __ cmp(r1, Operand(r2));
1618   __ mov(r1, Operand(r2), LeaveCC, gt);
1619 
1620   __ bind(&try_allocate);
1621 
1622   // Compute the sizes of backing store, parameter map, and arguments object.
1623   // 1. Parameter map, has 2 extra words containing context and backing store.
1624   const int kParameterMapHeaderSize =
1625       FixedArray::kHeaderSize + 2 * kPointerSize;
1626   // If there are no mapped parameters, we do not need the parameter_map.
1627   __ cmp(r1, Operand(Smi::FromInt(0)));
1628   __ mov(r9, Operand::Zero(), LeaveCC, eq);
1629   __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
1630   __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
1631 
1632   // 2. Backing store.
1633   __ add(r9, r9, Operand(r2, LSL, 1));
1634   __ add(r9, r9, Operand(FixedArray::kHeaderSize));
1635 
1636   // 3. Arguments object.
1637   __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize));
1638 
1639   // Do the allocation of all three objects in one go.
1640   __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT);
1641 
1642   // r0 = address of new object(s) (tagged)
1643   // r2 = argument count (smi-tagged)
1644   // Get the arguments boilerplate from the current native context into r4.
1645   const int kNormalOffset =
1646       Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1647   const int kAliasedOffset =
1648       Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
1649 
1650   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1651   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
1652   __ cmp(r1, Operand::Zero());
1653   __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
1654   __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
1655 
1656   // r0 = address of new object (tagged)
1657   // r1 = mapped parameter count (tagged)
1658   // r2 = argument count (smi-tagged)
1659   // r4 = address of arguments map (tagged)
1660   __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
1661   __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
1662   __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
1663   __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
1664 
1665   // Set up the callee in-object property.
1666   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1667   __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
1668   __ AssertNotSmi(r3);
1669   const int kCalleeOffset = JSObject::kHeaderSize +
1670       Heap::kArgumentsCalleeIndex * kPointerSize;
1671   __ str(r3, FieldMemOperand(r0, kCalleeOffset));
1672 
1673   // Use the length (smi tagged) and set that as an in-object property too.
1674   __ AssertSmi(r2);
1675   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1676   const int kLengthOffset = JSObject::kHeaderSize +
1677       Heap::kArgumentsLengthIndex * kPointerSize;
1678   __ str(r2, FieldMemOperand(r0, kLengthOffset));
1679 
1680   // Set up the elements pointer in the allocated arguments object.
1681   // If we allocated a parameter map, r4 will point there, otherwise
1682   // it will point to the backing store.
1683   __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize));
1684   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
1685 
1686   // r0 = address of new object (tagged)
1687   // r1 = mapped parameter count (tagged)
1688   // r2 = argument count (tagged)
1689   // r4 = address of parameter map or backing store (tagged)
1690   // Initialize parameter map. If there are no mapped arguments, we're done.
1691   Label skip_parameter_map;
1692   __ cmp(r1, Operand(Smi::FromInt(0)));
1693   // Move backing store address to r3, because it is
1694   // expected there when filling in the unmapped arguments.
1695   __ mov(r3, r4, LeaveCC, eq);
1696   __ b(eq, &skip_parameter_map);
1697 
1698   __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex);
1699   __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
1700   __ add(r6, r1, Operand(Smi::FromInt(2)));
1701   __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
1702   __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
1703   __ add(r6, r4, Operand(r1, LSL, 1));
1704   __ add(r6, r6, Operand(kParameterMapHeaderSize));
1705   __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
1706 
1707   // Copy the parameter slots and the holes in the arguments.
1708   // We need to fill in mapped_parameter_count slots. They index the context,
1709   // where parameters are stored in reverse order, at
1710   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1711   // The mapped parameter thus need to get indices
1712   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
1713   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1714   // We loop from right to left.
1715   Label parameters_loop, parameters_test;
1716   __ mov(r6, r1);
1717   __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
1718   __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
1719   __ sub(r9, r9, Operand(r1));
1720   __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
1721   __ add(r3, r4, Operand(r6, LSL, 1));
1722   __ add(r3, r3, Operand(kParameterMapHeaderSize));
1723 
1724   // r6 = loop variable (tagged)
1725   // r1 = mapping index (tagged)
1726   // r3 = address of backing store (tagged)
1727   // r4 = address of parameter map (tagged), which is also the address of new
1728   //      object + Heap::kSloppyArgumentsObjectSize (tagged)
1729   // r0 = temporary scratch (a.o., for address calculation)
1730   // r5 = the hole value
1731   __ jmp(&parameters_test);
1732 
1733   __ bind(&parameters_loop);
1734   __ sub(r6, r6, Operand(Smi::FromInt(1)));
1735   __ mov(r0, Operand(r6, LSL, 1));
1736   __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1737   __ str(r9, MemOperand(r4, r0));
1738   __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1739   __ str(r5, MemOperand(r3, r0));
1740   __ add(r9, r9, Operand(Smi::FromInt(1)));
1741   __ bind(&parameters_test);
1742   __ cmp(r6, Operand(Smi::FromInt(0)));
1743   __ b(ne, &parameters_loop);
1744 
1745   // Restore r0 = new object (tagged)
1746   __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize));
1747 
1748   __ bind(&skip_parameter_map);
1749   // r0 = address of new object (tagged)
1750   // r2 = argument count (tagged)
1751   // r3 = address of backing store (tagged)
1752   // r5 = scratch
1753   // Copy arguments header and remaining slots (if there are any).
1754   __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
1755   __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
1756   __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
1757 
1758   Label arguments_loop, arguments_test;
1759   __ mov(r9, r1);
1760   __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
1761   __ sub(r4, r4, Operand(r9, LSL, 1));
1762   __ jmp(&arguments_test);
1763 
1764   __ bind(&arguments_loop);
1765   __ sub(r4, r4, Operand(kPointerSize));
1766   __ ldr(r6, MemOperand(r4, 0));
1767   __ add(r5, r3, Operand(r9, LSL, 1));
1768   __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
1769   __ add(r9, r9, Operand(Smi::FromInt(1)));
1770 
1771   __ bind(&arguments_test);
1772   __ cmp(r9, Operand(r2));
1773   __ b(lt, &arguments_loop);
1774 
1775   // Return and remove the on-stack parameters.
1776   __ add(sp, sp, Operand(3 * kPointerSize));
1777   __ Ret();
1778 
1779   // Do the runtime call to allocate the arguments object.
1780   // r0 = address of new object (tagged)
1781   // r2 = argument count (tagged)
1782   __ bind(&runtime);
1783   __ str(r2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
1784   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1785 }
1786 
1787 
Generate(MacroAssembler * masm)1788 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1789   // Return address is in lr.
1790   Label slow;
1791 
1792   Register receiver = LoadDescriptor::ReceiverRegister();
1793   Register key = LoadDescriptor::NameRegister();
1794 
1795   // Check that the key is an array index, that is Uint32.
1796   __ NonNegativeSmiTst(key);
1797   __ b(ne, &slow);
1798 
1799   // Everything is fine, call runtime.
1800   __ Push(receiver, key);  // Receiver, key.
1801 
1802   // Perform tail call to the entry.
1803   __ TailCallExternalReference(
1804       ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1805                         masm->isolate()),
1806       2, 1);
1807 
1808   __ bind(&slow);
1809   PropertyAccessCompiler::TailCallBuiltin(
1810       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1811 }
1812 
1813 
GenerateNewStrict(MacroAssembler * masm)1814 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1815   // sp[0] : number of parameters
1816   // sp[4] : receiver displacement
1817   // sp[8] : function
1818   // Check if the calling frame is an arguments adaptor frame.
1819   Label adaptor_frame, try_allocate, runtime;
1820   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1821   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
1822   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1823   __ b(eq, &adaptor_frame);
1824 
1825   // Get the length from the frame.
1826   __ ldr(r1, MemOperand(sp, 0));
1827   __ b(&try_allocate);
1828 
1829   // Patch the arguments.length and the parameters pointer.
1830   __ bind(&adaptor_frame);
1831   __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1832   __ str(r1, MemOperand(sp, 0));
1833   __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
1834   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
1835   __ str(r3, MemOperand(sp, 1 * kPointerSize));
1836 
1837   // Try the new space allocation. Start out with computing the size
1838   // of the arguments object and the elements array in words.
1839   Label add_arguments_object;
1840   __ bind(&try_allocate);
1841   __ SmiUntag(r1, SetCC);
1842   __ b(eq, &add_arguments_object);
1843   __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
1844   __ bind(&add_arguments_object);
1845   __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1846 
1847   // Do the allocation of both objects in one go.
1848   __ Allocate(r1, r0, r2, r3, &runtime,
1849               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1850 
1851   // Get the arguments boilerplate from the current native context.
1852   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1853   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
1854   __ ldr(r4, MemOperand(
1855                  r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
1856 
1857   __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
1858   __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
1859   __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
1860   __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
1861 
1862   // Get the length (smi tagged) and set that as an in-object property too.
1863   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1864   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
1865   __ AssertSmi(r1);
1866   __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
1867       Heap::kArgumentsLengthIndex * kPointerSize));
1868 
1869   // If there are no actual arguments, we're done.
1870   Label done;
1871   __ cmp(r1, Operand::Zero());
1872   __ b(eq, &done);
1873 
1874   // Get the parameters pointer from the stack.
1875   __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
1876 
1877   // Set up the elements pointer in the allocated arguments object and
1878   // initialize the header in the elements fixed array.
1879   __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize));
1880   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
1881   __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
1882   __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
1883   __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
1884   __ SmiUntag(r1);
1885 
1886   // Copy the fixed array slots.
1887   Label loop;
1888   // Set up r4 to point to the first array slot.
1889   __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1890   __ bind(&loop);
1891   // Pre-decrement r2 with kPointerSize on each iteration.
1892   // Pre-decrement in order to skip receiver.
1893   __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
1894   // Post-increment r4 with kPointerSize on each iteration.
1895   __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
1896   __ sub(r1, r1, Operand(1));
1897   __ cmp(r1, Operand::Zero());
1898   __ b(ne, &loop);
1899 
1900   // Return and remove the on-stack parameters.
1901   __ bind(&done);
1902   __ add(sp, sp, Operand(3 * kPointerSize));
1903   __ Ret();
1904 
1905   // Do the runtime call to allocate the arguments object.
1906   __ bind(&runtime);
1907   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1908 }
1909 
1910 
Generate(MacroAssembler * masm)1911 void RegExpExecStub::Generate(MacroAssembler* masm) {
1912   // Just jump directly to runtime if native RegExp is not selected at compile
1913   // time or if regexp entry in generated code is turned off runtime switch or
1914   // at compilation.
1915 #ifdef V8_INTERPRETED_REGEXP
1916   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
1917 #else  // V8_INTERPRETED_REGEXP
1918 
1919   // Stack frame on entry.
1920   //  sp[0]: last_match_info (expected JSArray)
1921   //  sp[4]: previous index
1922   //  sp[8]: subject string
1923   //  sp[12]: JSRegExp object
1924 
1925   const int kLastMatchInfoOffset = 0 * kPointerSize;
1926   const int kPreviousIndexOffset = 1 * kPointerSize;
1927   const int kSubjectOffset = 2 * kPointerSize;
1928   const int kJSRegExpOffset = 3 * kPointerSize;
1929 
1930   Label runtime;
1931   // Allocation of registers for this function. These are in callee save
1932   // registers and will be preserved by the call to the native RegExp code, as
1933   // this code is called using the normal C calling convention. When calling
1934   // directly from generated code the native RegExp code will not do a GC and
1935   // therefore the content of these registers are safe to use after the call.
1936   Register subject = r4;
1937   Register regexp_data = r5;
1938   Register last_match_info_elements = no_reg;  // will be r6;
1939 
1940   // Ensure that a RegExp stack is allocated.
1941   ExternalReference address_of_regexp_stack_memory_address =
1942       ExternalReference::address_of_regexp_stack_memory_address(isolate());
1943   ExternalReference address_of_regexp_stack_memory_size =
1944       ExternalReference::address_of_regexp_stack_memory_size(isolate());
1945   __ mov(r0, Operand(address_of_regexp_stack_memory_size));
1946   __ ldr(r0, MemOperand(r0, 0));
1947   __ cmp(r0, Operand::Zero());
1948   __ b(eq, &runtime);
1949 
1950   // Check that the first argument is a JSRegExp object.
1951   __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
1952   __ JumpIfSmi(r0, &runtime);
1953   __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
1954   __ b(ne, &runtime);
1955 
1956   // Check that the RegExp has been compiled (data contains a fixed array).
1957   __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
1958   if (FLAG_debug_code) {
1959     __ SmiTst(regexp_data);
1960     __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1961     __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
1962     __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1963   }
1964 
1965   // regexp_data: RegExp data (FixedArray)
1966   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1967   __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1968   __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
1969   __ b(ne, &runtime);
1970 
1971   // regexp_data: RegExp data (FixedArray)
1972   // Check that the number of captures fit in the static offsets vector buffer.
1973   __ ldr(r2,
1974          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1975   // Check (number_of_captures + 1) * 2 <= offsets vector size
1976   // Or          number_of_captures * 2 <= offsets vector size - 2
1977   // Multiplying by 2 comes for free since r2 is smi-tagged.
1978   STATIC_ASSERT(kSmiTag == 0);
1979   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1980   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1981   __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1982   __ b(hi, &runtime);
1983 
1984   // Reset offset for possibly sliced string.
1985   __ mov(r9, Operand::Zero());
1986   __ ldr(subject, MemOperand(sp, kSubjectOffset));
1987   __ JumpIfSmi(subject, &runtime);
1988   __ mov(r3, subject);  // Make a copy of the original subject string.
1989   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
1990   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
1991   // subject: subject string
1992   // r3: subject string
1993   // r0: subject string instance type
1994   // regexp_data: RegExp data (FixedArray)
1995   // Handle subject string according to its encoding and representation:
1996   // (1) Sequential string?  If yes, go to (5).
1997   // (2) Anything but sequential or cons?  If yes, go to (6).
1998   // (3) Cons string.  If the string is flat, replace subject with first string.
1999   //     Otherwise bailout.
2000   // (4) Is subject external?  If yes, go to (7).
2001   // (5) Sequential string.  Load regexp code according to encoding.
2002   // (E) Carry on.
2003   /// [...]
2004 
2005   // Deferred code at the end of the stub:
2006   // (6) Not a long external string?  If yes, go to (8).
2007   // (7) External string.  Make it, offset-wise, look like a sequential string.
2008   //     Go to (5).
2009   // (8) Short external string or not a string?  If yes, bail out to runtime.
2010   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2011 
2012   Label seq_string /* 5 */, external_string /* 7 */,
2013         check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
2014         not_long_external /* 8 */;
2015 
2016   // (1) Sequential string?  If yes, go to (5).
2017   __ and_(r1,
2018           r0,
2019           Operand(kIsNotStringMask |
2020                   kStringRepresentationMask |
2021                   kShortExternalStringMask),
2022           SetCC);
2023   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2024   __ b(eq, &seq_string);  // Go to (5).
2025 
2026   // (2) Anything but sequential or cons?  If yes, go to (6).
2027   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2028   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2029   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2030   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2031   __ cmp(r1, Operand(kExternalStringTag));
2032   __ b(ge, &not_seq_nor_cons);  // Go to (6).
2033 
2034   // (3) Cons string.  Check that it's flat.
2035   // Replace subject with first string and reload instance type.
2036   __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
2037   __ CompareRoot(r0, Heap::kempty_stringRootIndex);
2038   __ b(ne, &runtime);
2039   __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2040 
2041   // (4) Is subject external?  If yes, go to (7).
2042   __ bind(&check_underlying);
2043   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2044   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2045   STATIC_ASSERT(kSeqStringTag == 0);
2046   __ tst(r0, Operand(kStringRepresentationMask));
2047   // The underlying external string is never a short external string.
2048   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2049   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2050   __ b(ne, &external_string);  // Go to (7).
2051 
2052   // (5) Sequential string.  Load regexp code according to encoding.
2053   __ bind(&seq_string);
2054   // subject: sequential subject string (or look-alike, external string)
2055   // r3: original subject string
2056   // Load previous index and check range before r3 is overwritten.  We have to
2057   // use r3 instead of subject here because subject might have been only made
2058   // to look like a sequential string when it actually is an external string.
2059   __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
2060   __ JumpIfNotSmi(r1, &runtime);
2061   __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
2062   __ cmp(r3, Operand(r1));
2063   __ b(ls, &runtime);
2064   __ SmiUntag(r1);
2065 
2066   STATIC_ASSERT(4 == kOneByteStringTag);
2067   STATIC_ASSERT(kTwoByteStringTag == 0);
2068   __ and_(r0, r0, Operand(kStringEncodingMask));
2069   __ mov(r3, Operand(r0, ASR, 2), SetCC);
2070   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset),
2071          ne);
2072   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
2073 
2074   // (E) Carry on.  String handling is done.
2075   // r6: irregexp code
2076   // Check that the irregexp code has been generated for the actual string
2077   // encoding. If it has, the field contains a code object otherwise it contains
2078   // a smi (code flushing support).
2079   __ JumpIfSmi(r6, &runtime);
2080 
2081   // r1: previous index
2082   // r3: encoding of subject string (1 if one_byte, 0 if two_byte);
2083   // r6: code
2084   // subject: Subject string
2085   // regexp_data: RegExp data (FixedArray)
2086   // All checks done. Now push arguments for native regexp code.
2087   __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
2088 
2089   // Isolates: note we add an additional parameter here (isolate pointer).
2090   const int kRegExpExecuteArguments = 9;
2091   const int kParameterRegisters = 4;
2092   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2093 
2094   // Stack pointer now points to cell where return address is to be written.
2095   // Arguments are before that on the stack or in registers.
2096 
2097   // Argument 9 (sp[20]): Pass current isolate address.
2098   __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
2099   __ str(r0, MemOperand(sp, 5 * kPointerSize));
2100 
2101   // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
2102   __ mov(r0, Operand(1));
2103   __ str(r0, MemOperand(sp, 4 * kPointerSize));
2104 
2105   // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
2106   __ mov(r0, Operand(address_of_regexp_stack_memory_address));
2107   __ ldr(r0, MemOperand(r0, 0));
2108   __ mov(r2, Operand(address_of_regexp_stack_memory_size));
2109   __ ldr(r2, MemOperand(r2, 0));
2110   __ add(r0, r0, Operand(r2));
2111   __ str(r0, MemOperand(sp, 3 * kPointerSize));
2112 
2113   // Argument 6: Set the number of capture registers to zero to force global
2114   // regexps to behave as non-global.  This does not affect non-global regexps.
2115   __ mov(r0, Operand::Zero());
2116   __ str(r0, MemOperand(sp, 2 * kPointerSize));
2117 
2118   // Argument 5 (sp[4]): static offsets vector buffer.
2119   __ mov(r0,
2120          Operand(ExternalReference::address_of_static_offsets_vector(
2121              isolate())));
2122   __ str(r0, MemOperand(sp, 1 * kPointerSize));
2123 
2124   // For arguments 4 and 3 get string length, calculate start of string data and
2125   // calculate the shift of the index (0 for one-byte and 1 for two-byte).
2126   __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2127   __ eor(r3, r3, Operand(1));
2128   // Load the length from the original subject string from the previous stack
2129   // frame. Therefore we have to use fp, which points exactly to two pointer
2130   // sizes below the previous sp. (Because creating a new stack frame pushes
2131   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2132   __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2133   // If slice offset is not 0, load the length from the original sliced string.
2134   // Argument 4, r3: End of string data
2135   // Argument 3, r2: Start of string data
2136   // Prepare start and end index of the input.
2137   __ add(r9, r7, Operand(r9, LSL, r3));
2138   __ add(r2, r9, Operand(r1, LSL, r3));
2139 
2140   __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
2141   __ SmiUntag(r7);
2142   __ add(r3, r9, Operand(r7, LSL, r3));
2143 
2144   // Argument 2 (r1): Previous index.
2145   // Already there
2146 
2147   // Argument 1 (r0): Subject string.
2148   __ mov(r0, subject);
2149 
2150   // Locate the code entry and call it.
2151   __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
2152   DirectCEntryStub stub(isolate());
2153   stub.GenerateCall(masm, r6);
2154 
2155   __ LeaveExitFrame(false, no_reg, true);
2156 
2157   last_match_info_elements = r6;
2158 
2159   // r0: result
2160   // subject: subject string (callee saved)
2161   // regexp_data: RegExp data (callee saved)
2162   // last_match_info_elements: Last match info elements (callee saved)
2163   // Check the result.
2164   Label success;
2165   __ cmp(r0, Operand(1));
2166   // We expect exactly one result since we force the called regexp to behave
2167   // as non-global.
2168   __ b(eq, &success);
2169   Label failure;
2170   __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
2171   __ b(eq, &failure);
2172   __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2173   // If not exception it can only be retry. Handle that in the runtime system.
2174   __ b(ne, &runtime);
2175   // Result must now be exception. If there is no pending exception already a
2176   // stack overflow (on the backtrack stack) was detected in RegExp code but
2177   // haven't created the exception yet. Handle that in the runtime system.
2178   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2179   __ mov(r1, Operand(isolate()->factory()->the_hole_value()));
2180   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2181                                        isolate())));
2182   __ ldr(r0, MemOperand(r2, 0));
2183   __ cmp(r0, r1);
2184   __ b(eq, &runtime);
2185 
2186   __ str(r1, MemOperand(r2, 0));  // Clear pending exception.
2187 
2188   // Check if the exception is a termination. If so, throw as uncatchable.
2189   __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
2190 
2191   Label termination_exception;
2192   __ b(eq, &termination_exception);
2193 
2194   __ Throw(r0);
2195 
2196   __ bind(&termination_exception);
2197   __ ThrowUncatchable(r0);
2198 
2199   __ bind(&failure);
2200   // For failure and exception return null.
2201   __ mov(r0, Operand(isolate()->factory()->null_value()));
2202   __ add(sp, sp, Operand(4 * kPointerSize));
2203   __ Ret();
2204 
2205   // Process the result from the native regexp code.
2206   __ bind(&success);
2207   __ ldr(r1,
2208          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2209   // Calculate number of capture registers (number_of_captures + 1) * 2.
2210   // Multiplying by 2 comes for free since r1 is smi-tagged.
2211   STATIC_ASSERT(kSmiTag == 0);
2212   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2213   __ add(r1, r1, Operand(2));  // r1 was a smi.
2214 
2215   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
2216   __ JumpIfSmi(r0, &runtime);
2217   __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
2218   __ b(ne, &runtime);
2219   // Check that the JSArray is in fast case.
2220   __ ldr(last_match_info_elements,
2221          FieldMemOperand(r0, JSArray::kElementsOffset));
2222   __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2223   __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
2224   __ b(ne, &runtime);
2225   // Check that the last match info has space for the capture registers and the
2226   // additional information.
2227   __ ldr(r0,
2228          FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2229   __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
2230   __ cmp(r2, Operand::SmiUntag(r0));
2231   __ b(gt, &runtime);
2232 
2233   // r1: number of capture registers
2234   // r4: subject string
2235   // Store the capture count.
2236   __ SmiTag(r2, r1);
2237   __ str(r2, FieldMemOperand(last_match_info_elements,
2238                              RegExpImpl::kLastCaptureCountOffset));
2239   // Store last subject and last input.
2240   __ str(subject,
2241          FieldMemOperand(last_match_info_elements,
2242                          RegExpImpl::kLastSubjectOffset));
2243   __ mov(r2, subject);
2244   __ RecordWriteField(last_match_info_elements,
2245                       RegExpImpl::kLastSubjectOffset,
2246                       subject,
2247                       r3,
2248                       kLRHasNotBeenSaved,
2249                       kDontSaveFPRegs);
2250   __ mov(subject, r2);
2251   __ str(subject,
2252          FieldMemOperand(last_match_info_elements,
2253                          RegExpImpl::kLastInputOffset));
2254   __ RecordWriteField(last_match_info_elements,
2255                       RegExpImpl::kLastInputOffset,
2256                       subject,
2257                       r3,
2258                       kLRHasNotBeenSaved,
2259                       kDontSaveFPRegs);
2260 
2261   // Get the static offsets vector filled by the native regexp code.
2262   ExternalReference address_of_static_offsets_vector =
2263       ExternalReference::address_of_static_offsets_vector(isolate());
2264   __ mov(r2, Operand(address_of_static_offsets_vector));
2265 
2266   // r1: number of capture registers
2267   // r2: offsets vector
2268   Label next_capture, done;
2269   // Capture register counter starts from number of capture registers and
2270   // counts down until wraping after zero.
2271   __ add(r0,
2272          last_match_info_elements,
2273          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
2274   __ bind(&next_capture);
2275   __ sub(r1, r1, Operand(1), SetCC);
2276   __ b(mi, &done);
2277   // Read the value from the static offsets vector buffer.
2278   __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
2279   // Store the smi value in the last match info.
2280   __ SmiTag(r3);
2281   __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
2282   __ jmp(&next_capture);
2283   __ bind(&done);
2284 
2285   // Return last match info.
2286   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
2287   __ add(sp, sp, Operand(4 * kPointerSize));
2288   __ Ret();
2289 
2290   // Do the runtime call to execute the regexp.
2291   __ bind(&runtime);
2292   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2293 
2294   // Deferred code for string handling.
2295   // (6) Not a long external string?  If yes, go to (8).
2296   __ bind(&not_seq_nor_cons);
2297   // Compare flags are still set.
2298   __ b(gt, &not_long_external);  // Go to (8).
2299 
2300   // (7) External string.  Make it, offset-wise, look like a sequential string.
2301   __ bind(&external_string);
2302   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2303   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2304   if (FLAG_debug_code) {
2305     // Assert that we do not have a cons or slice (indirect strings) here.
2306     // Sequential strings have already been ruled out.
2307     __ tst(r0, Operand(kIsIndirectStringMask));
2308     __ Assert(eq, kExternalStringExpectedButNotFound);
2309   }
2310   __ ldr(subject,
2311          FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2312   // Move the pointer so that offset-wise, it looks like a sequential string.
2313   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2314   __ sub(subject,
2315          subject,
2316          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2317   __ jmp(&seq_string);    // Go to (5).
2318 
2319   // (8) Short external string or not a string?  If yes, bail out to runtime.
2320   __ bind(&not_long_external);
2321   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2322   __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
2323   __ b(ne, &runtime);
2324 
2325   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2326   // Load offset into r9 and replace subject string with parent.
2327   __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2328   __ SmiUntag(r9);
2329   __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2330   __ jmp(&check_underlying);  // Go to (4).
2331 #endif  // V8_INTERPRETED_REGEXP
2332 }
2333 
2334 
GenerateRecordCallTarget(MacroAssembler * masm)2335 static void GenerateRecordCallTarget(MacroAssembler* masm) {
2336   // Cache the called function in a feedback vector slot.  Cache states
2337   // are uninitialized, monomorphic (indicated by a JSFunction), and
2338   // megamorphic.
2339   // r0 : number of arguments to the construct function
2340   // r1 : the function to call
2341   // r2 : Feedback vector
2342   // r3 : slot in feedback vector (Smi)
2343   Label initialize, done, miss, megamorphic, not_array_function;
2344 
2345   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2346             masm->isolate()->heap()->megamorphic_symbol());
2347   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2348             masm->isolate()->heap()->uninitialized_symbol());
2349 
2350   // Load the cache state into r4.
2351   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2352   __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
2353 
2354   // A monomorphic cache hit or an already megamorphic state: invoke the
2355   // function without changing the state.
2356   __ cmp(r4, r1);
2357   __ b(eq, &done);
2358 
2359   if (!FLAG_pretenuring_call_new) {
2360     // If we came here, we need to see if we are the array function.
2361     // If we didn't have a matching function, and we didn't find the megamorph
2362     // sentinel, then we have in the slot either some other function or an
2363     // AllocationSite. Do a map check on the object in ecx.
2364     __ ldr(r5, FieldMemOperand(r4, 0));
2365     __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
2366     __ b(ne, &miss);
2367 
2368     // Make sure the function is the Array() function
2369     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
2370     __ cmp(r1, r4);
2371     __ b(ne, &megamorphic);
2372     __ jmp(&done);
2373   }
2374 
2375   __ bind(&miss);
2376 
2377   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2378   // megamorphic.
2379   __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
2380   __ b(eq, &initialize);
2381   // MegamorphicSentinel is an immortal immovable object (undefined) so no
2382   // write-barrier is needed.
2383   __ bind(&megamorphic);
2384   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2385   __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
2386   __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
2387   __ jmp(&done);
2388 
2389   // An uninitialized cache is patched with the function
2390   __ bind(&initialize);
2391 
2392   if (!FLAG_pretenuring_call_new) {
2393     // Make sure the function is the Array() function
2394     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
2395     __ cmp(r1, r4);
2396     __ b(ne, &not_array_function);
2397 
2398     // The target function is the Array constructor,
2399     // Create an AllocationSite if we don't already have it, store it in the
2400     // slot.
2401     {
2402       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2403 
2404       // Arguments register must be smi-tagged to call out.
2405       __ SmiTag(r0);
2406       __ Push(r3, r2, r1, r0);
2407 
2408       CreateAllocationSiteStub create_stub(masm->isolate());
2409       __ CallStub(&create_stub);
2410 
2411       __ Pop(r3, r2, r1, r0);
2412       __ SmiUntag(r0);
2413     }
2414     __ b(&done);
2415 
2416     __ bind(&not_array_function);
2417   }
2418 
2419   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2420   __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2421   __ str(r1, MemOperand(r4, 0));
2422 
2423   __ Push(r4, r2, r1);
2424   __ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs,
2425                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2426   __ Pop(r4, r2, r1);
2427 
2428   __ bind(&done);
2429 }
2430 
2431 
EmitContinueIfStrictOrNative(MacroAssembler * masm,Label * cont)2432 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2433   // Do not transform the receiver for strict mode functions.
2434   __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2435   __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset));
2436   __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
2437                            kSmiTagSize)));
2438   __ b(ne, cont);
2439 
2440   // Do not transform the receiver for native (Compilerhints already in r3).
2441   __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
2442   __ b(ne, cont);
2443 }
2444 
2445 
EmitSlowCase(MacroAssembler * masm,int argc,Label * non_function)2446 static void EmitSlowCase(MacroAssembler* masm,
2447                          int argc,
2448                          Label* non_function) {
2449   // Check for function proxy.
2450   __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
2451   __ b(ne, non_function);
2452   __ push(r1);  // put proxy as additional argument
2453   __ mov(r0, Operand(argc + 1, RelocInfo::NONE32));
2454   __ mov(r2, Operand::Zero());
2455   __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY);
2456   {
2457     Handle<Code> adaptor =
2458         masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2459     __ Jump(adaptor, RelocInfo::CODE_TARGET);
2460   }
2461 
2462   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2463   // of the original receiver from the call site).
2464   __ bind(non_function);
2465   __ str(r1, MemOperand(sp, argc * kPointerSize));
2466   __ mov(r0, Operand(argc));  // Set up the number of arguments.
2467   __ mov(r2, Operand::Zero());
2468   __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION);
2469   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2470           RelocInfo::CODE_TARGET);
2471 }
2472 
2473 
EmitWrapCase(MacroAssembler * masm,int argc,Label * cont)2474 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2475   // Wrap the receiver and patch it back onto the stack.
2476   { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
2477     __ Push(r1, r3);
2478     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2479     __ pop(r1);
2480   }
2481   __ str(r0, MemOperand(sp, argc * kPointerSize));
2482   __ jmp(cont);
2483 }
2484 
2485 
CallFunctionNoFeedback(MacroAssembler * masm,int argc,bool needs_checks,bool call_as_method)2486 static void CallFunctionNoFeedback(MacroAssembler* masm,
2487                                    int argc, bool needs_checks,
2488                                    bool call_as_method) {
2489   // r1 : the function to call
2490   Label slow, non_function, wrap, cont;
2491 
2492   if (needs_checks) {
2493     // Check that the function is really a JavaScript function.
2494     // r1: pushed function (to be verified)
2495     __ JumpIfSmi(r1, &non_function);
2496 
2497     // Goto slow case if we do not have a function.
2498     __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
2499     __ b(ne, &slow);
2500   }
2501 
2502   // Fast-case: Invoke the function now.
2503   // r1: pushed function
2504   ParameterCount actual(argc);
2505 
2506   if (call_as_method) {
2507     if (needs_checks) {
2508       EmitContinueIfStrictOrNative(masm, &cont);
2509     }
2510 
2511     // Compute the receiver in sloppy mode.
2512     __ ldr(r3, MemOperand(sp, argc * kPointerSize));
2513 
2514     if (needs_checks) {
2515       __ JumpIfSmi(r3, &wrap);
2516       __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
2517       __ b(lt, &wrap);
2518     } else {
2519       __ jmp(&wrap);
2520     }
2521 
2522     __ bind(&cont);
2523   }
2524 
2525   __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
2526 
2527   if (needs_checks) {
2528     // Slow-case: Non-function called.
2529     __ bind(&slow);
2530     EmitSlowCase(masm, argc, &non_function);
2531   }
2532 
2533   if (call_as_method) {
2534     __ bind(&wrap);
2535     EmitWrapCase(masm, argc, &cont);
2536   }
2537 }
2538 
2539 
Generate(MacroAssembler * masm)2540 void CallFunctionStub::Generate(MacroAssembler* masm) {
2541   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2542 }
2543 
2544 
Generate(MacroAssembler * masm)2545 void CallConstructStub::Generate(MacroAssembler* masm) {
2546   // r0 : number of arguments
2547   // r1 : the function to call
2548   // r2 : feedback vector
2549   // r3 : (only if r2 is not the megamorphic symbol) slot in feedback
2550   //      vector (Smi)
2551   Label slow, non_function_call;
2552 
2553   // Check that the function is not a smi.
2554   __ JumpIfSmi(r1, &non_function_call);
2555   // Check that the function is a JSFunction.
2556   __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
2557   __ b(ne, &slow);
2558 
2559   if (RecordCallTarget()) {
2560     GenerateRecordCallTarget(masm);
2561 
2562     __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
2563     if (FLAG_pretenuring_call_new) {
2564       // Put the AllocationSite from the feedback vector into r2.
2565       // By adding kPointerSize we encode that we know the AllocationSite
2566       // entry is at the feedback vector slot given by r3 + 1.
2567       __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize));
2568     } else {
2569       Label feedback_register_initialized;
2570       // Put the AllocationSite from the feedback vector into r2, or undefined.
2571       __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
2572       __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
2573       __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
2574       __ b(eq, &feedback_register_initialized);
2575       __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2576       __ bind(&feedback_register_initialized);
2577     }
2578 
2579     __ AssertUndefinedOrAllocationSite(r2, r5);
2580   }
2581 
2582   // Jump to the function-specific construct stub.
2583   Register jmp_reg = r4;
2584   __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2585   __ ldr(jmp_reg, FieldMemOperand(jmp_reg,
2586                                   SharedFunctionInfo::kConstructStubOffset));
2587   __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
2588 
2589   // r0: number of arguments
2590   // r1: called object
2591   // r4: object type
2592   Label do_call;
2593   __ bind(&slow);
2594   __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
2595   __ b(ne, &non_function_call);
2596   __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2597   __ jmp(&do_call);
2598 
2599   __ bind(&non_function_call);
2600   __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2601   __ bind(&do_call);
2602   // Set expected number of arguments to zero (not changing r0).
2603   __ mov(r2, Operand::Zero());
2604   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2605           RelocInfo::CODE_TARGET);
2606 }
2607 
2608 
EmitLoadTypeFeedbackVector(MacroAssembler * masm,Register vector)2609 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2610   __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2611   __ ldr(vector, FieldMemOperand(vector,
2612                                  JSFunction::kSharedFunctionInfoOffset));
2613   __ ldr(vector, FieldMemOperand(vector,
2614                                  SharedFunctionInfo::kFeedbackVectorOffset));
2615 }
2616 
2617 
Generate(MacroAssembler * masm)2618 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2619   // r1 - function
2620   // r3 - slot id
2621   Label miss;
2622   int argc = arg_count();
2623   ParameterCount actual(argc);
2624 
2625   EmitLoadTypeFeedbackVector(masm, r2);
2626 
2627   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
2628   __ cmp(r1, r4);
2629   __ b(ne, &miss);
2630 
2631   __ mov(r0, Operand(arg_count()));
2632   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2633   __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
2634 
2635   // Verify that r4 contains an AllocationSite
2636   __ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset));
2637   __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
2638   __ b(ne, &miss);
2639 
2640   __ mov(r2, r4);
2641   ArrayConstructorStub stub(masm->isolate(), arg_count());
2642   __ TailCallStub(&stub);
2643 
2644   __ bind(&miss);
2645   GenerateMiss(masm);
2646 
2647   // The slow case, we need this no matter what to complete a call after a miss.
2648   CallFunctionNoFeedback(masm,
2649                          arg_count(),
2650                          true,
2651                          CallAsMethod());
2652 
2653   // Unreachable.
2654   __ stop("Unexpected code address");
2655 }
2656 
2657 
Generate(MacroAssembler * masm)2658 void CallICStub::Generate(MacroAssembler* masm) {
2659   // r1 - function
2660   // r3 - slot id (Smi)
2661   Label extra_checks_or_miss, slow_start;
2662   Label slow, non_function, wrap, cont;
2663   Label have_js_function;
2664   int argc = arg_count();
2665   ParameterCount actual(argc);
2666 
2667   EmitLoadTypeFeedbackVector(masm, r2);
2668 
2669   // The checks. First, does r1 match the recorded monomorphic target?
2670   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2671   __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
2672   __ cmp(r1, r4);
2673   __ b(ne, &extra_checks_or_miss);
2674 
2675   __ bind(&have_js_function);
2676   if (CallAsMethod()) {
2677     EmitContinueIfStrictOrNative(masm, &cont);
2678     // Compute the receiver in sloppy mode.
2679     __ ldr(r3, MemOperand(sp, argc * kPointerSize));
2680 
2681     __ JumpIfSmi(r3, &wrap);
2682     __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
2683     __ b(lt, &wrap);
2684 
2685     __ bind(&cont);
2686   }
2687 
2688   __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
2689 
2690   __ bind(&slow);
2691   EmitSlowCase(masm, argc, &non_function);
2692 
2693   if (CallAsMethod()) {
2694     __ bind(&wrap);
2695     EmitWrapCase(masm, argc, &cont);
2696   }
2697 
2698   __ bind(&extra_checks_or_miss);
2699   Label miss;
2700 
2701   __ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex);
2702   __ b(eq, &slow_start);
2703   __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
2704   __ b(eq, &miss);
2705 
2706   if (!FLAG_trace_ic) {
2707     // We are going megamorphic. If the feedback is a JSFunction, it is fine
2708     // to handle it here. More complex cases are dealt with in the runtime.
2709     __ AssertNotSmi(r4);
2710     __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE);
2711     __ b(ne, &miss);
2712     __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2713     __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
2714     __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
2715     __ jmp(&slow_start);
2716   }
2717 
2718   // We are here because tracing is on or we are going monomorphic.
2719   __ bind(&miss);
2720   GenerateMiss(masm);
2721 
2722   // the slow case
2723   __ bind(&slow_start);
2724   // Check that the function is really a JavaScript function.
2725   // r1: pushed function (to be verified)
2726   __ JumpIfSmi(r1, &non_function);
2727 
2728   // Goto slow case if we do not have a function.
2729   __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
2730   __ b(ne, &slow);
2731   __ jmp(&have_js_function);
2732 }
2733 
2734 
GenerateMiss(MacroAssembler * masm)2735 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2736   // Get the receiver of the function from the stack; 1 ~ return address.
2737   __ ldr(r4, MemOperand(sp, (arg_count() + 1) * kPointerSize));
2738 
2739   {
2740     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2741 
2742     // Push the receiver and the function and feedback info.
2743     __ Push(r4, r1, r2, r3);
2744 
2745     // Call the entry.
2746     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2747                                                : IC::kCallIC_Customization_Miss;
2748 
2749     ExternalReference miss = ExternalReference(IC_Utility(id),
2750                                                masm->isolate());
2751     __ CallExternalReference(miss, 4);
2752 
2753     // Move result to edi and exit the internal frame.
2754     __ mov(r1, r0);
2755   }
2756 }
2757 
2758 
2759 // StringCharCodeAtGenerator
GenerateFast(MacroAssembler * masm)2760 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2761   // If the receiver is a smi trigger the non-string case.
2762   __ JumpIfSmi(object_, receiver_not_string_);
2763 
2764   // Fetch the instance type of the receiver into result register.
2765   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2766   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2767   // If the receiver is not a string trigger the non-string case.
2768   __ tst(result_, Operand(kIsNotStringMask));
2769   __ b(ne, receiver_not_string_);
2770 
2771   // If the index is non-smi trigger the non-smi case.
2772   __ JumpIfNotSmi(index_, &index_not_smi_);
2773   __ bind(&got_smi_index_);
2774 
2775   // Check for index out of range.
2776   __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
2777   __ cmp(ip, Operand(index_));
2778   __ b(ls, index_out_of_range_);
2779 
2780   __ SmiUntag(index_);
2781 
2782   StringCharLoadGenerator::Generate(masm,
2783                                     object_,
2784                                     index_,
2785                                     result_,
2786                                     &call_runtime_);
2787 
2788   __ SmiTag(result_);
2789   __ bind(&exit_);
2790 }
2791 
2792 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2793 void StringCharCodeAtGenerator::GenerateSlow(
2794     MacroAssembler* masm,
2795     const RuntimeCallHelper& call_helper) {
2796   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2797 
2798   // Index is not a smi.
2799   __ bind(&index_not_smi_);
2800   // If index is a heap number, try converting it to an integer.
2801   __ CheckMap(index_,
2802               result_,
2803               Heap::kHeapNumberMapRootIndex,
2804               index_not_number_,
2805               DONT_DO_SMI_CHECK);
2806   call_helper.BeforeCall(masm);
2807   __ push(object_);
2808   __ push(index_);  // Consumed by runtime conversion function.
2809   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2810     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2811   } else {
2812     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2813     // NumberToSmi discards numbers that are not exact integers.
2814     __ CallRuntime(Runtime::kNumberToSmi, 1);
2815   }
2816   // Save the conversion result before the pop instructions below
2817   // have a chance to overwrite it.
2818   __ Move(index_, r0);
2819   __ pop(object_);
2820   // Reload the instance type.
2821   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2822   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2823   call_helper.AfterCall(masm);
2824   // If index is still not a smi, it must be out of range.
2825   __ JumpIfNotSmi(index_, index_out_of_range_);
2826   // Otherwise, return to the fast path.
2827   __ jmp(&got_smi_index_);
2828 
2829   // Call runtime. We get here when the receiver is a string and the
2830   // index is a number, but the code of getting the actual character
2831   // is too complex (e.g., when the string needs to be flattened).
2832   __ bind(&call_runtime_);
2833   call_helper.BeforeCall(masm);
2834   __ SmiTag(index_);
2835   __ Push(object_, index_);
2836   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2837   __ Move(result_, r0);
2838   call_helper.AfterCall(masm);
2839   __ jmp(&exit_);
2840 
2841   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2842 }
2843 
2844 
2845 // -------------------------------------------------------------------------
2846 // StringCharFromCodeGenerator
2847 
GenerateFast(MacroAssembler * masm)2848 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2849   // Fast case of Heap::LookupSingleCharacterStringFromCode.
2850   STATIC_ASSERT(kSmiTag == 0);
2851   STATIC_ASSERT(kSmiShiftSize == 0);
2852   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
2853   __ tst(code_,
2854          Operand(kSmiTagMask |
2855                  ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
2856   __ b(ne, &slow_case_);
2857 
2858   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2859   // At this point code register contains smi tagged one-byte char code.
2860   __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_));
2861   __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2862   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2863   __ b(eq, &slow_case_);
2864   __ bind(&exit_);
2865 }
2866 
2867 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2868 void StringCharFromCodeGenerator::GenerateSlow(
2869     MacroAssembler* masm,
2870     const RuntimeCallHelper& call_helper) {
2871   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2872 
2873   __ bind(&slow_case_);
2874   call_helper.BeforeCall(masm);
2875   __ push(code_);
2876   __ CallRuntime(Runtime::kCharFromCode, 1);
2877   __ Move(result_, r0);
2878   call_helper.AfterCall(masm);
2879   __ jmp(&exit_);
2880 
2881   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2882 }
2883 
2884 
2885 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2886 
2887 
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,String::Encoding encoding)2888 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2889                                           Register dest,
2890                                           Register src,
2891                                           Register count,
2892                                           Register scratch,
2893                                           String::Encoding encoding) {
2894   if (FLAG_debug_code) {
2895     // Check that destination is word aligned.
2896     __ tst(dest, Operand(kPointerAlignmentMask));
2897     __ Check(eq, kDestinationOfCopyNotAligned);
2898   }
2899 
2900   // Assumes word reads and writes are little endian.
2901   // Nothing to do for zero characters.
2902   Label done;
2903   if (encoding == String::TWO_BYTE_ENCODING) {
2904     __ add(count, count, Operand(count), SetCC);
2905   }
2906 
2907   Register limit = count;  // Read until dest equals this.
2908   __ add(limit, dest, Operand(count));
2909 
2910   Label loop_entry, loop;
2911   // Copy bytes from src to dest until dest hits limit.
2912   __ b(&loop_entry);
2913   __ bind(&loop);
2914   __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt);
2915   __ strb(scratch, MemOperand(dest, 1, PostIndex));
2916   __ bind(&loop_entry);
2917   __ cmp(dest, Operand(limit));
2918   __ b(lt, &loop);
2919 
2920   __ bind(&done);
2921 }
2922 
2923 
Generate(MacroAssembler * masm)2924 void SubStringStub::Generate(MacroAssembler* masm) {
2925   Label runtime;
2926 
2927   // Stack frame on entry.
2928   //  lr: return address
2929   //  sp[0]: to
2930   //  sp[4]: from
2931   //  sp[8]: string
2932 
2933   // This stub is called from the native-call %_SubString(...), so
2934   // nothing can be assumed about the arguments. It is tested that:
2935   //  "string" is a sequential string,
2936   //  both "from" and "to" are smis, and
2937   //  0 <= from <= to <= string.length.
2938   // If any of these assumptions fail, we call the runtime system.
2939 
2940   const int kToOffset = 0 * kPointerSize;
2941   const int kFromOffset = 1 * kPointerSize;
2942   const int kStringOffset = 2 * kPointerSize;
2943 
2944   __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
2945   STATIC_ASSERT(kFromOffset == kToOffset + 4);
2946   STATIC_ASSERT(kSmiTag == 0);
2947   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2948 
2949   // Arithmetic shift right by one un-smi-tags. In this case we rotate right
2950   // instead because we bail out on non-smi values: ROR and ASR are equivalent
2951   // for smis but they set the flags in a way that's easier to optimize.
2952   __ mov(r2, Operand(r2, ROR, 1), SetCC);
2953   __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
2954   // If either to or from had the smi tag bit set, then C is set now, and N
2955   // has the same value: we rotated by 1, so the bottom bit is now the top bit.
2956   // We want to bailout to runtime here if From is negative.  In that case, the
2957   // next instruction is not executed and we fall through to bailing out to
2958   // runtime.
2959   // Executed if both r2 and r3 are untagged integers.
2960   __ sub(r2, r2, Operand(r3), SetCC, cc);
2961   // One of the above un-smis or the above SUB could have set N==1.
2962   __ b(mi, &runtime);  // Either "from" or "to" is not an smi, or from > to.
2963 
2964   // Make sure first argument is a string.
2965   __ ldr(r0, MemOperand(sp, kStringOffset));
2966   __ JumpIfSmi(r0, &runtime);
2967   Condition is_string = masm->IsObjectStringType(r0, r1);
2968   __ b(NegateCondition(is_string), &runtime);
2969 
2970   Label single_char;
2971   __ cmp(r2, Operand(1));
2972   __ b(eq, &single_char);
2973 
2974   // Short-cut for the case of trivial substring.
2975   Label return_r0;
2976   // r0: original string
2977   // r2: result string length
2978   __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
2979   __ cmp(r2, Operand(r4, ASR, 1));
2980   // Return original string.
2981   __ b(eq, &return_r0);
2982   // Longer than original string's length or negative: unsafe arguments.
2983   __ b(hi, &runtime);
2984   // Shorter than original string's length: an actual substring.
2985 
2986   // Deal with different string types: update the index if necessary
2987   // and put the underlying string into r5.
2988   // r0: original string
2989   // r1: instance type
2990   // r2: length
2991   // r3: from index (untagged)
2992   Label underlying_unpacked, sliced_string, seq_or_external_string;
2993   // If the string is not indirect, it can only be sequential or external.
2994   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2995   STATIC_ASSERT(kIsIndirectStringMask != 0);
2996   __ tst(r1, Operand(kIsIndirectStringMask));
2997   __ b(eq, &seq_or_external_string);
2998 
2999   __ tst(r1, Operand(kSlicedNotConsMask));
3000   __ b(ne, &sliced_string);
3001   // Cons string.  Check whether it is flat, then fetch first part.
3002   __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
3003   __ CompareRoot(r5, Heap::kempty_stringRootIndex);
3004   __ b(ne, &runtime);
3005   __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
3006   // Update instance type.
3007   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
3008   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
3009   __ jmp(&underlying_unpacked);
3010 
3011   __ bind(&sliced_string);
3012   // Sliced string.  Fetch parent and correct start index by offset.
3013   __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
3014   __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
3015   __ add(r3, r3, Operand(r4, ASR, 1));  // Add offset to index.
3016   // Update instance type.
3017   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
3018   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
3019   __ jmp(&underlying_unpacked);
3020 
3021   __ bind(&seq_or_external_string);
3022   // Sequential or external string.  Just move string to the expected register.
3023   __ mov(r5, r0);
3024 
3025   __ bind(&underlying_unpacked);
3026 
3027   if (FLAG_string_slices) {
3028     Label copy_routine;
3029     // r5: underlying subject string
3030     // r1: instance type of underlying subject string
3031     // r2: length
3032     // r3: adjusted start index (untagged)
3033     __ cmp(r2, Operand(SlicedString::kMinLength));
3034     // Short slice.  Copy instead of slicing.
3035     __ b(lt, &copy_routine);
3036     // Allocate new sliced string.  At this point we do not reload the instance
3037     // type including the string encoding because we simply rely on the info
3038     // provided by the original string.  It does not matter if the original
3039     // string's encoding is wrong because we always have to recheck encoding of
3040     // the newly created string's parent anyways due to externalized strings.
3041     Label two_byte_slice, set_slice_header;
3042     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3043     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3044     __ tst(r1, Operand(kStringEncodingMask));
3045     __ b(eq, &two_byte_slice);
3046     __ AllocateOneByteSlicedString(r0, r2, r6, r4, &runtime);
3047     __ jmp(&set_slice_header);
3048     __ bind(&two_byte_slice);
3049     __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
3050     __ bind(&set_slice_header);
3051     __ mov(r3, Operand(r3, LSL, 1));
3052     __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
3053     __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
3054     __ jmp(&return_r0);
3055 
3056     __ bind(&copy_routine);
3057   }
3058 
3059   // r5: underlying subject string
3060   // r1: instance type of underlying subject string
3061   // r2: length
3062   // r3: adjusted start index (untagged)
3063   Label two_byte_sequential, sequential_string, allocate_result;
3064   STATIC_ASSERT(kExternalStringTag != 0);
3065   STATIC_ASSERT(kSeqStringTag == 0);
3066   __ tst(r1, Operand(kExternalStringTag));
3067   __ b(eq, &sequential_string);
3068 
3069   // Handle external string.
3070   // Rule out short external strings.
3071   STATIC_ASSERT(kShortExternalStringTag != 0);
3072   __ tst(r1, Operand(kShortExternalStringTag));
3073   __ b(ne, &runtime);
3074   __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
3075   // r5 already points to the first character of underlying string.
3076   __ jmp(&allocate_result);
3077 
3078   __ bind(&sequential_string);
3079   // Locate first character of underlying subject string.
3080   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3081   __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3082 
3083   __ bind(&allocate_result);
3084   // Sequential acii string.  Allocate the result.
3085   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3086   __ tst(r1, Operand(kStringEncodingMask));
3087   __ b(eq, &two_byte_sequential);
3088 
3089   // Allocate and copy the resulting one-byte string.
3090   __ AllocateOneByteString(r0, r2, r4, r6, r1, &runtime);
3091 
3092   // Locate first character of substring to copy.
3093   __ add(r5, r5, r3);
3094   // Locate first character of result.
3095   __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3096 
3097   // r0: result string
3098   // r1: first character of result string
3099   // r2: result string length
3100   // r5: first character of substring to copy
3101   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3102   StringHelper::GenerateCopyCharacters(
3103       masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING);
3104   __ jmp(&return_r0);
3105 
3106   // Allocate and copy the resulting two-byte string.
3107   __ bind(&two_byte_sequential);
3108   __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
3109 
3110   // Locate first character of substring to copy.
3111   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3112   __ add(r5, r5, Operand(r3, LSL, 1));
3113   // Locate first character of result.
3114   __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3115 
3116   // r0: result string.
3117   // r1: first character of result.
3118   // r2: result length.
3119   // r5: first character of substring to copy.
3120   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3121   StringHelper::GenerateCopyCharacters(
3122       masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING);
3123 
3124   __ bind(&return_r0);
3125   Counters* counters = isolate()->counters();
3126   __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
3127   __ Drop(3);
3128   __ Ret();
3129 
3130   // Just jump to runtime to create the sub string.
3131   __ bind(&runtime);
3132   __ TailCallRuntime(Runtime::kSubString, 3, 1);
3133 
3134   __ bind(&single_char);
3135   // r0: original string
3136   // r1: instance type
3137   // r2: length
3138   // r3: from index (untagged)
3139   __ SmiTag(r3, r3);
3140   StringCharAtGenerator generator(
3141       r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3142   generator.GenerateFast(masm);
3143   __ Drop(3);
3144   __ Ret();
3145   generator.SkipSlow(masm, &runtime);
3146 }
3147 
3148 
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)3149 void StringHelper::GenerateFlatOneByteStringEquals(
3150     MacroAssembler* masm, Register left, Register right, Register scratch1,
3151     Register scratch2, Register scratch3) {
3152   Register length = scratch1;
3153 
3154   // Compare lengths.
3155   Label strings_not_equal, check_zero_length;
3156   __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
3157   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3158   __ cmp(length, scratch2);
3159   __ b(eq, &check_zero_length);
3160   __ bind(&strings_not_equal);
3161   __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
3162   __ Ret();
3163 
3164   // Check if the length is zero.
3165   Label compare_chars;
3166   __ bind(&check_zero_length);
3167   STATIC_ASSERT(kSmiTag == 0);
3168   __ cmp(length, Operand::Zero());
3169   __ b(ne, &compare_chars);
3170   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
3171   __ Ret();
3172 
3173   // Compare characters.
3174   __ bind(&compare_chars);
3175   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
3176                                   &strings_not_equal);
3177 
3178   // Characters are equal.
3179   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
3180   __ Ret();
3181 }
3182 
3183 
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)3184 void StringHelper::GenerateCompareFlatOneByteStrings(
3185     MacroAssembler* masm, Register left, Register right, Register scratch1,
3186     Register scratch2, Register scratch3, Register scratch4) {
3187   Label result_not_equal, compare_lengths;
3188   // Find minimum length and length difference.
3189   __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
3190   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3191   __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
3192   Register length_delta = scratch3;
3193   __ mov(scratch1, scratch2, LeaveCC, gt);
3194   Register min_length = scratch1;
3195   STATIC_ASSERT(kSmiTag == 0);
3196   __ cmp(min_length, Operand::Zero());
3197   __ b(eq, &compare_lengths);
3198 
3199   // Compare loop.
3200   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3201                                   scratch4, &result_not_equal);
3202 
3203   // Compare lengths - strings up to min-length are equal.
3204   __ bind(&compare_lengths);
3205   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3206   // Use length_delta as result if it's zero.
3207   __ mov(r0, Operand(length_delta), SetCC);
3208   __ bind(&result_not_equal);
3209   // Conditionally update the result based either on length_delta or
3210   // the last comparion performed in the loop above.
3211   __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
3212   __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
3213   __ Ret();
3214 }
3215 
3216 
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Label * chars_not_equal)3217 void StringHelper::GenerateOneByteCharsCompareLoop(
3218     MacroAssembler* masm, Register left, Register right, Register length,
3219     Register scratch1, Register scratch2, Label* chars_not_equal) {
3220   // Change index to run from -length to -1 by adding length to string
3221   // start. This means that loop ends when index reaches zero, which
3222   // doesn't need an additional compare.
3223   __ SmiUntag(length);
3224   __ add(scratch1, length,
3225          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3226   __ add(left, left, Operand(scratch1));
3227   __ add(right, right, Operand(scratch1));
3228   __ rsb(length, length, Operand::Zero());
3229   Register index = length;  // index = -length;
3230 
3231   // Compare loop.
3232   Label loop;
3233   __ bind(&loop);
3234   __ ldrb(scratch1, MemOperand(left, index));
3235   __ ldrb(scratch2, MemOperand(right, index));
3236   __ cmp(scratch1, scratch2);
3237   __ b(ne, chars_not_equal);
3238   __ add(index, index, Operand(1), SetCC);
3239   __ b(ne, &loop);
3240 }
3241 
3242 
Generate(MacroAssembler * masm)3243 void StringCompareStub::Generate(MacroAssembler* masm) {
3244   Label runtime;
3245 
3246   Counters* counters = isolate()->counters();
3247 
3248   // Stack frame on entry.
3249   //  sp[0]: right string
3250   //  sp[4]: left string
3251   __ Ldrd(r0 , r1, MemOperand(sp));  // Load right in r0, left in r1.
3252 
3253   Label not_same;
3254   __ cmp(r0, r1);
3255   __ b(ne, &not_same);
3256   STATIC_ASSERT(EQUAL == 0);
3257   STATIC_ASSERT(kSmiTag == 0);
3258   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
3259   __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
3260   __ add(sp, sp, Operand(2 * kPointerSize));
3261   __ Ret();
3262 
3263   __ bind(&not_same);
3264 
3265   // Check that both objects are sequential one-byte strings.
3266   __ JumpIfNotBothSequentialOneByteStrings(r1, r0, r2, r3, &runtime);
3267 
3268   // Compare flat one-byte strings natively. Remove arguments from stack first.
3269   __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
3270   __ add(sp, sp, Operand(2 * kPointerSize));
3271   StringHelper::GenerateCompareFlatOneByteStrings(masm, r1, r0, r2, r3, r4, r5);
3272 
3273   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3274   // tagged as a small integer.
3275   __ bind(&runtime);
3276   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3277 }
3278 
3279 
Generate(MacroAssembler * masm)3280 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3281   // ----------- S t a t e -------------
3282   //  -- r1    : left
3283   //  -- r0    : right
3284   //  -- lr    : return address
3285   // -----------------------------------
3286 
3287   // Load r2 with the allocation site.  We stick an undefined dummy value here
3288   // and replace it with the real allocation site later when we instantiate this
3289   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3290   __ Move(r2, handle(isolate()->heap()->undefined_value()));
3291 
3292   // Make sure that we actually patched the allocation site.
3293   if (FLAG_debug_code) {
3294     __ tst(r2, Operand(kSmiTagMask));
3295     __ Assert(ne, kExpectedAllocationSite);
3296     __ push(r2);
3297     __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3298     __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
3299     __ cmp(r2, ip);
3300     __ pop(r2);
3301     __ Assert(eq, kExpectedAllocationSite);
3302   }
3303 
3304   // Tail call into the stub that handles binary operations with allocation
3305   // sites.
3306   BinaryOpWithAllocationSiteStub stub(isolate(), state());
3307   __ TailCallStub(&stub);
3308 }
3309 
3310 
GenerateSmis(MacroAssembler * masm)3311 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3312   DCHECK(state() == CompareICState::SMI);
3313   Label miss;
3314   __ orr(r2, r1, r0);
3315   __ JumpIfNotSmi(r2, &miss);
3316 
3317   if (GetCondition() == eq) {
3318     // For equality we do not care about the sign of the result.
3319     __ sub(r0, r0, r1, SetCC);
3320   } else {
3321     // Untag before subtracting to avoid handling overflow.
3322     __ SmiUntag(r1);
3323     __ sub(r0, r1, Operand::SmiUntag(r0));
3324   }
3325   __ Ret();
3326 
3327   __ bind(&miss);
3328   GenerateMiss(masm);
3329 }
3330 
3331 
GenerateNumbers(MacroAssembler * masm)3332 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3333   DCHECK(state() == CompareICState::NUMBER);
3334 
3335   Label generic_stub;
3336   Label unordered, maybe_undefined1, maybe_undefined2;
3337   Label miss;
3338 
3339   if (left() == CompareICState::SMI) {
3340     __ JumpIfNotSmi(r1, &miss);
3341   }
3342   if (right() == CompareICState::SMI) {
3343     __ JumpIfNotSmi(r0, &miss);
3344   }
3345 
3346   // Inlining the double comparison and falling back to the general compare
3347   // stub if NaN is involved.
3348   // Load left and right operand.
3349   Label done, left, left_smi, right_smi;
3350   __ JumpIfSmi(r0, &right_smi);
3351   __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3352               DONT_DO_SMI_CHECK);
3353   __ sub(r2, r0, Operand(kHeapObjectTag));
3354   __ vldr(d1, r2, HeapNumber::kValueOffset);
3355   __ b(&left);
3356   __ bind(&right_smi);
3357   __ SmiToDouble(d1, r0);
3358 
3359   __ bind(&left);
3360   __ JumpIfSmi(r1, &left_smi);
3361   __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3362               DONT_DO_SMI_CHECK);
3363   __ sub(r2, r1, Operand(kHeapObjectTag));
3364   __ vldr(d0, r2, HeapNumber::kValueOffset);
3365   __ b(&done);
3366   __ bind(&left_smi);
3367   __ SmiToDouble(d0, r1);
3368 
3369   __ bind(&done);
3370   // Compare operands.
3371   __ VFPCompareAndSetFlags(d0, d1);
3372 
3373   // Don't base result on status bits when a NaN is involved.
3374   __ b(vs, &unordered);
3375 
3376   // Return a result of -1, 0, or 1, based on status bits.
3377   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
3378   __ mov(r0, Operand(LESS), LeaveCC, lt);
3379   __ mov(r0, Operand(GREATER), LeaveCC, gt);
3380   __ Ret();
3381 
3382   __ bind(&unordered);
3383   __ bind(&generic_stub);
3384   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3385                      CompareICState::GENERIC, CompareICState::GENERIC);
3386   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3387 
3388   __ bind(&maybe_undefined1);
3389   if (Token::IsOrderedRelationalCompareOp(op())) {
3390     __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
3391     __ b(ne, &miss);
3392     __ JumpIfSmi(r1, &unordered);
3393     __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
3394     __ b(ne, &maybe_undefined2);
3395     __ jmp(&unordered);
3396   }
3397 
3398   __ bind(&maybe_undefined2);
3399   if (Token::IsOrderedRelationalCompareOp(op())) {
3400     __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
3401     __ b(eq, &unordered);
3402   }
3403 
3404   __ bind(&miss);
3405   GenerateMiss(masm);
3406 }
3407 
3408 
GenerateInternalizedStrings(MacroAssembler * masm)3409 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3410   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3411   Label miss;
3412 
3413   // Registers containing left and right operands respectively.
3414   Register left = r1;
3415   Register right = r0;
3416   Register tmp1 = r2;
3417   Register tmp2 = r3;
3418 
3419   // Check that both operands are heap objects.
3420   __ JumpIfEitherSmi(left, right, &miss);
3421 
3422   // Check that both operands are internalized strings.
3423   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3424   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3425   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3426   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3427   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3428   __ orr(tmp1, tmp1, Operand(tmp2));
3429   __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3430   __ b(ne, &miss);
3431 
3432   // Internalized strings are compared by identity.
3433   __ cmp(left, right);
3434   // Make sure r0 is non-zero. At this point input operands are
3435   // guaranteed to be non-zero.
3436   DCHECK(right.is(r0));
3437   STATIC_ASSERT(EQUAL == 0);
3438   STATIC_ASSERT(kSmiTag == 0);
3439   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
3440   __ Ret();
3441 
3442   __ bind(&miss);
3443   GenerateMiss(masm);
3444 }
3445 
3446 
GenerateUniqueNames(MacroAssembler * masm)3447 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3448   DCHECK(state() == CompareICState::UNIQUE_NAME);
3449   DCHECK(GetCondition() == eq);
3450   Label miss;
3451 
3452   // Registers containing left and right operands respectively.
3453   Register left = r1;
3454   Register right = r0;
3455   Register tmp1 = r2;
3456   Register tmp2 = r3;
3457 
3458   // Check that both operands are heap objects.
3459   __ JumpIfEitherSmi(left, right, &miss);
3460 
3461   // Check that both operands are unique names. This leaves the instance
3462   // types loaded in tmp1 and tmp2.
3463   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3464   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3465   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3466   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3467 
3468   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3469   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3470 
3471   // Unique names are compared by identity.
3472   __ cmp(left, right);
3473   // Make sure r0 is non-zero. At this point input operands are
3474   // guaranteed to be non-zero.
3475   DCHECK(right.is(r0));
3476   STATIC_ASSERT(EQUAL == 0);
3477   STATIC_ASSERT(kSmiTag == 0);
3478   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
3479   __ Ret();
3480 
3481   __ bind(&miss);
3482   GenerateMiss(masm);
3483 }
3484 
3485 
GenerateStrings(MacroAssembler * masm)3486 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3487   DCHECK(state() == CompareICState::STRING);
3488   Label miss;
3489 
3490   bool equality = Token::IsEqualityOp(op());
3491 
3492   // Registers containing left and right operands respectively.
3493   Register left = r1;
3494   Register right = r0;
3495   Register tmp1 = r2;
3496   Register tmp2 = r3;
3497   Register tmp3 = r4;
3498   Register tmp4 = r5;
3499 
3500   // Check that both operands are heap objects.
3501   __ JumpIfEitherSmi(left, right, &miss);
3502 
3503   // Check that both operands are strings. This leaves the instance
3504   // types loaded in tmp1 and tmp2.
3505   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3506   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3507   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3508   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3509   STATIC_ASSERT(kNotStringTag != 0);
3510   __ orr(tmp3, tmp1, tmp2);
3511   __ tst(tmp3, Operand(kIsNotStringMask));
3512   __ b(ne, &miss);
3513 
3514   // Fast check for identical strings.
3515   __ cmp(left, right);
3516   STATIC_ASSERT(EQUAL == 0);
3517   STATIC_ASSERT(kSmiTag == 0);
3518   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
3519   __ Ret(eq);
3520 
3521   // Handle not identical strings.
3522 
3523   // Check that both strings are internalized strings. If they are, we're done
3524   // because we already know they are not identical. We know they are both
3525   // strings.
3526   if (equality) {
3527     DCHECK(GetCondition() == eq);
3528     STATIC_ASSERT(kInternalizedTag == 0);
3529     __ orr(tmp3, tmp1, Operand(tmp2));
3530     __ tst(tmp3, Operand(kIsNotInternalizedMask));
3531     // Make sure r0 is non-zero. At this point input operands are
3532     // guaranteed to be non-zero.
3533     DCHECK(right.is(r0));
3534     __ Ret(eq);
3535   }
3536 
3537   // Check that both strings are sequential one-byte.
3538   Label runtime;
3539   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3540                                                     &runtime);
3541 
3542   // Compare flat one-byte strings. Returns when done.
3543   if (equality) {
3544     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3545                                                   tmp3);
3546   } else {
3547     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3548                                                     tmp2, tmp3, tmp4);
3549   }
3550 
3551   // Handle more complex cases in runtime.
3552   __ bind(&runtime);
3553   __ Push(left, right);
3554   if (equality) {
3555     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3556   } else {
3557     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3558   }
3559 
3560   __ bind(&miss);
3561   GenerateMiss(masm);
3562 }
3563 
3564 
GenerateObjects(MacroAssembler * masm)3565 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3566   DCHECK(state() == CompareICState::OBJECT);
3567   Label miss;
3568   __ and_(r2, r1, Operand(r0));
3569   __ JumpIfSmi(r2, &miss);
3570 
3571   __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
3572   __ b(ne, &miss);
3573   __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
3574   __ b(ne, &miss);
3575 
3576   DCHECK(GetCondition() == eq);
3577   __ sub(r0, r0, Operand(r1));
3578   __ Ret();
3579 
3580   __ bind(&miss);
3581   GenerateMiss(masm);
3582 }
3583 
3584 
GenerateKnownObjects(MacroAssembler * masm)3585 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3586   Label miss;
3587   __ and_(r2, r1, Operand(r0));
3588   __ JumpIfSmi(r2, &miss);
3589   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
3590   __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
3591   __ cmp(r2, Operand(known_map_));
3592   __ b(ne, &miss);
3593   __ cmp(r3, Operand(known_map_));
3594   __ b(ne, &miss);
3595 
3596   __ sub(r0, r0, Operand(r1));
3597   __ Ret();
3598 
3599   __ bind(&miss);
3600   GenerateMiss(masm);
3601 }
3602 
3603 
GenerateMiss(MacroAssembler * masm)3604 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3605   {
3606     // Call the runtime system in a fresh internal frame.
3607     ExternalReference miss =
3608         ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3609 
3610     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3611     __ Push(r1, r0);
3612     __ Push(lr, r1, r0);
3613     __ mov(ip, Operand(Smi::FromInt(op())));
3614     __ push(ip);
3615     __ CallExternalReference(miss, 3);
3616     // Compute the entry point of the rewritten stub.
3617     __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
3618     // Restore registers.
3619     __ pop(lr);
3620     __ Pop(r1, r0);
3621   }
3622 
3623   __ Jump(r2);
3624 }
3625 
3626 
Generate(MacroAssembler * masm)3627 void DirectCEntryStub::Generate(MacroAssembler* masm) {
3628   // Place the return address on the stack, making the call
3629   // GC safe. The RegExp backend also relies on this.
3630   __ str(lr, MemOperand(sp, 0));
3631   __ blx(ip);  // Call the C++ function.
3632   __ VFPEnsureFPSCRState(r2);
3633   __ ldr(pc, MemOperand(sp, 0));
3634 }
3635 
3636 
GenerateCall(MacroAssembler * masm,Register target)3637 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3638                                     Register target) {
3639   intptr_t code =
3640       reinterpret_cast<intptr_t>(GetCode().location());
3641   __ Move(ip, target);
3642   __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
3643   __ blx(lr);  // Call the stub.
3644 }
3645 
3646 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)3647 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3648                                                       Label* miss,
3649                                                       Label* done,
3650                                                       Register receiver,
3651                                                       Register properties,
3652                                                       Handle<Name> name,
3653                                                       Register scratch0) {
3654   DCHECK(name->IsUniqueName());
3655   // If names of slots in range from 1 to kProbes - 1 for the hash value are
3656   // not equal to the name and kProbes-th slot is not used (its name is the
3657   // undefined value), it guarantees the hash table doesn't contain the
3658   // property. It's true even if some slots represent deleted properties
3659   // (their names are the hole value).
3660   for (int i = 0; i < kInlinedProbes; i++) {
3661     // scratch0 points to properties hash.
3662     // Compute the masked index: (hash + i + i * i) & mask.
3663     Register index = scratch0;
3664     // Capacity is smi 2^n.
3665     __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
3666     __ sub(index, index, Operand(1));
3667     __ and_(index, index, Operand(
3668         Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
3669 
3670     // Scale the index by multiplying by the entry size.
3671     DCHECK(NameDictionary::kEntrySize == 3);
3672     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
3673 
3674     Register entity_name = scratch0;
3675     // Having undefined at this place means the name is not contained.
3676     DCHECK_EQ(kSmiTagSize, 1);
3677     Register tmp = properties;
3678     __ add(tmp, properties, Operand(index, LSL, 1));
3679     __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3680 
3681     DCHECK(!tmp.is(entity_name));
3682     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3683     __ cmp(entity_name, tmp);
3684     __ b(eq, done);
3685 
3686     // Load the hole ready for use below:
3687     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3688 
3689     // Stop if found the property.
3690     __ cmp(entity_name, Operand(Handle<Name>(name)));
3691     __ b(eq, miss);
3692 
3693     Label good;
3694     __ cmp(entity_name, tmp);
3695     __ b(eq, &good);
3696 
3697     // Check if the entry name is not a unique name.
3698     __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3699     __ ldrb(entity_name,
3700             FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3701     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3702     __ bind(&good);
3703 
3704     // Restore the properties.
3705     __ ldr(properties,
3706            FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3707   }
3708 
3709   const int spill_mask =
3710       (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
3711        r2.bit() | r1.bit() | r0.bit());
3712 
3713   __ stm(db_w, sp, spill_mask);
3714   __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3715   __ mov(r1, Operand(Handle<Name>(name)));
3716   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3717   __ CallStub(&stub);
3718   __ cmp(r0, Operand::Zero());
3719   __ ldm(ia_w, sp, spill_mask);
3720 
3721   __ b(eq, done);
3722   __ b(ne, miss);
3723 }
3724 
3725 
3726 // Probe the name dictionary in the |elements| register. Jump to the
3727 // |done| label if a property with the given name is found. Jump to
3728 // the |miss| label otherwise.
3729 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)3730 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3731                                                       Label* miss,
3732                                                       Label* done,
3733                                                       Register elements,
3734                                                       Register name,
3735                                                       Register scratch1,
3736                                                       Register scratch2) {
3737   DCHECK(!elements.is(scratch1));
3738   DCHECK(!elements.is(scratch2));
3739   DCHECK(!name.is(scratch1));
3740   DCHECK(!name.is(scratch2));
3741 
3742   __ AssertName(name);
3743 
3744   // Compute the capacity mask.
3745   __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
3746   __ SmiUntag(scratch1);
3747   __ sub(scratch1, scratch1, Operand(1));
3748 
3749   // Generate an unrolled loop that performs a few probes before
3750   // giving up. Measurements done on Gmail indicate that 2 probes
3751   // cover ~93% of loads from dictionaries.
3752   for (int i = 0; i < kInlinedProbes; i++) {
3753     // Compute the masked index: (hash + i + i * i) & mask.
3754     __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3755     if (i > 0) {
3756       // Add the probe offset (i + i * i) left shifted to avoid right shifting
3757       // the hash in a separate instruction. The value hash + i + i * i is right
3758       // shifted in the following and instruction.
3759       DCHECK(NameDictionary::GetProbeOffset(i) <
3760              1 << (32 - Name::kHashFieldOffset));
3761       __ add(scratch2, scratch2, Operand(
3762           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3763     }
3764     __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
3765 
3766     // Scale the index by multiplying by the element size.
3767     DCHECK(NameDictionary::kEntrySize == 3);
3768     // scratch2 = scratch2 * 3.
3769     __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
3770 
3771     // Check if the key is identical to the name.
3772     __ add(scratch2, elements, Operand(scratch2, LSL, 2));
3773     __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
3774     __ cmp(name, Operand(ip));
3775     __ b(eq, done);
3776   }
3777 
3778   const int spill_mask =
3779       (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
3780        r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
3781       ~(scratch1.bit() | scratch2.bit());
3782 
3783   __ stm(db_w, sp, spill_mask);
3784   if (name.is(r0)) {
3785     DCHECK(!elements.is(r1));
3786     __ Move(r1, name);
3787     __ Move(r0, elements);
3788   } else {
3789     __ Move(r0, elements);
3790     __ Move(r1, name);
3791   }
3792   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3793   __ CallStub(&stub);
3794   __ cmp(r0, Operand::Zero());
3795   __ mov(scratch2, Operand(r2));
3796   __ ldm(ia_w, sp, spill_mask);
3797 
3798   __ b(ne, done);
3799   __ b(eq, miss);
3800 }
3801 
3802 
Generate(MacroAssembler * masm)3803 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3804   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
3805   // we cannot call anything that could cause a GC from this stub.
3806   // Registers:
3807   //  result: NameDictionary to probe
3808   //  r1: key
3809   //  dictionary: NameDictionary to probe.
3810   //  index: will hold an index of entry if lookup is successful.
3811   //         might alias with result_.
3812   // Returns:
3813   //  result_ is zero if lookup failed, non zero otherwise.
3814 
3815   Register result = r0;
3816   Register dictionary = r0;
3817   Register key = r1;
3818   Register index = r2;
3819   Register mask = r3;
3820   Register hash = r4;
3821   Register undefined = r5;
3822   Register entry_key = r6;
3823 
3824   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3825 
3826   __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
3827   __ SmiUntag(mask);
3828   __ sub(mask, mask, Operand(1));
3829 
3830   __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
3831 
3832   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3833 
3834   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3835     // Compute the masked index: (hash + i + i * i) & mask.
3836     // Capacity is smi 2^n.
3837     if (i > 0) {
3838       // Add the probe offset (i + i * i) left shifted to avoid right shifting
3839       // the hash in a separate instruction. The value hash + i + i * i is right
3840       // shifted in the following and instruction.
3841       DCHECK(NameDictionary::GetProbeOffset(i) <
3842              1 << (32 - Name::kHashFieldOffset));
3843       __ add(index, hash, Operand(
3844           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3845     } else {
3846       __ mov(index, Operand(hash));
3847     }
3848     __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
3849 
3850     // Scale the index by multiplying by the entry size.
3851     DCHECK(NameDictionary::kEntrySize == 3);
3852     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
3853 
3854     DCHECK_EQ(kSmiTagSize, 1);
3855     __ add(index, dictionary, Operand(index, LSL, 2));
3856     __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
3857 
3858     // Having undefined at this place means the name is not contained.
3859     __ cmp(entry_key, Operand(undefined));
3860     __ b(eq, &not_in_dictionary);
3861 
3862     // Stop if found the property.
3863     __ cmp(entry_key, Operand(key));
3864     __ b(eq, &in_dictionary);
3865 
3866     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3867       // Check if the entry name is not a unique name.
3868       __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
3869       __ ldrb(entry_key,
3870               FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3871       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
3872     }
3873   }
3874 
3875   __ bind(&maybe_in_dictionary);
3876   // If we are doing negative lookup then probing failure should be
3877   // treated as a lookup success. For positive lookup probing failure
3878   // should be treated as lookup failure.
3879   if (mode() == POSITIVE_LOOKUP) {
3880     __ mov(result, Operand::Zero());
3881     __ Ret();
3882   }
3883 
3884   __ bind(&in_dictionary);
3885   __ mov(result, Operand(1));
3886   __ Ret();
3887 
3888   __ bind(&not_in_dictionary);
3889   __ mov(result, Operand::Zero());
3890   __ Ret();
3891 }
3892 
3893 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)3894 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3895     Isolate* isolate) {
3896   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3897   stub1.GetCode();
3898   // Hydrogen code stubs need stub2 at snapshot time.
3899   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3900   stub2.GetCode();
3901 }
3902 
3903 
3904 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
3905 // the value has just been written into the object, now this stub makes sure
3906 // we keep the GC informed.  The word in the object where the value has been
3907 // written is in the address register.
Generate(MacroAssembler * masm)3908 void RecordWriteStub::Generate(MacroAssembler* masm) {
3909   Label skip_to_incremental_noncompacting;
3910   Label skip_to_incremental_compacting;
3911 
3912   // The first two instructions are generated with labels so as to get the
3913   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
3914   // forth between a compare instructions (a nop in this position) and the
3915   // real branch when we start and stop incremental heap marking.
3916   // See RecordWriteStub::Patch for details.
3917   {
3918     // Block literal pool emission, as the position of these two instructions
3919     // is assumed by the patching code.
3920     Assembler::BlockConstPoolScope block_const_pool(masm);
3921     __ b(&skip_to_incremental_noncompacting);
3922     __ b(&skip_to_incremental_compacting);
3923   }
3924 
3925   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3926     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3927                            MacroAssembler::kReturnAtEnd);
3928   }
3929   __ Ret();
3930 
3931   __ bind(&skip_to_incremental_noncompacting);
3932   GenerateIncremental(masm, INCREMENTAL);
3933 
3934   __ bind(&skip_to_incremental_compacting);
3935   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3936 
3937   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3938   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3939   DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
3940   DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
3941   PatchBranchIntoNop(masm, 0);
3942   PatchBranchIntoNop(masm, Assembler::kInstrSize);
3943 }
3944 
3945 
GenerateIncremental(MacroAssembler * masm,Mode mode)3946 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3947   regs_.Save(masm);
3948 
3949   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3950     Label dont_need_remembered_set;
3951 
3952     __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
3953     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
3954                            regs_.scratch0(),
3955                            &dont_need_remembered_set);
3956 
3957     __ CheckPageFlag(regs_.object(),
3958                      regs_.scratch0(),
3959                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
3960                      ne,
3961                      &dont_need_remembered_set);
3962 
3963     // First notify the incremental marker if necessary, then update the
3964     // remembered set.
3965     CheckNeedsToInformIncrementalMarker(
3966         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3967     InformIncrementalMarker(masm);
3968     regs_.Restore(masm);
3969     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3970                            MacroAssembler::kReturnAtEnd);
3971 
3972     __ bind(&dont_need_remembered_set);
3973   }
3974 
3975   CheckNeedsToInformIncrementalMarker(
3976       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3977   InformIncrementalMarker(masm);
3978   regs_.Restore(masm);
3979   __ Ret();
3980 }
3981 
3982 
InformIncrementalMarker(MacroAssembler * masm)3983 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3984   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3985   int argument_count = 3;
3986   __ PrepareCallCFunction(argument_count, regs_.scratch0());
3987   Register address =
3988       r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3989   DCHECK(!address.is(regs_.object()));
3990   DCHECK(!address.is(r0));
3991   __ Move(address, regs_.address());
3992   __ Move(r0, regs_.object());
3993   __ Move(r1, address);
3994   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
3995 
3996   AllowExternalCallThatCantCauseGC scope(masm);
3997   __ CallCFunction(
3998       ExternalReference::incremental_marking_record_write_function(isolate()),
3999       argument_count);
4000   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4001 }
4002 
4003 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)4004 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4005     MacroAssembler* masm,
4006     OnNoNeedToInformIncrementalMarker on_no_need,
4007     Mode mode) {
4008   Label on_black;
4009   Label need_incremental;
4010   Label need_incremental_pop_scratch;
4011 
4012   __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
4013   __ ldr(regs_.scratch1(),
4014          MemOperand(regs_.scratch0(),
4015                     MemoryChunk::kWriteBarrierCounterOffset));
4016   __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
4017   __ str(regs_.scratch1(),
4018          MemOperand(regs_.scratch0(),
4019                     MemoryChunk::kWriteBarrierCounterOffset));
4020   __ b(mi, &need_incremental);
4021 
4022   // Let's look at the color of the object:  If it is not black we don't have
4023   // to inform the incremental marker.
4024   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4025 
4026   regs_.Restore(masm);
4027   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4028     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4029                            MacroAssembler::kReturnAtEnd);
4030   } else {
4031     __ Ret();
4032   }
4033 
4034   __ bind(&on_black);
4035 
4036   // Get the value from the slot.
4037   __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
4038 
4039   if (mode == INCREMENTAL_COMPACTION) {
4040     Label ensure_not_white;
4041 
4042     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
4043                      regs_.scratch1(),  // Scratch.
4044                      MemoryChunk::kEvacuationCandidateMask,
4045                      eq,
4046                      &ensure_not_white);
4047 
4048     __ CheckPageFlag(regs_.object(),
4049                      regs_.scratch1(),  // Scratch.
4050                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4051                      eq,
4052                      &need_incremental);
4053 
4054     __ bind(&ensure_not_white);
4055   }
4056 
4057   // We need extra registers for this, so we push the object and the address
4058   // register temporarily.
4059   __ Push(regs_.object(), regs_.address());
4060   __ EnsureNotWhite(regs_.scratch0(),  // The value.
4061                     regs_.scratch1(),  // Scratch.
4062                     regs_.object(),  // Scratch.
4063                     regs_.address(),  // Scratch.
4064                     &need_incremental_pop_scratch);
4065   __ Pop(regs_.object(), regs_.address());
4066 
4067   regs_.Restore(masm);
4068   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4069     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4070                            MacroAssembler::kReturnAtEnd);
4071   } else {
4072     __ Ret();
4073   }
4074 
4075   __ bind(&need_incremental_pop_scratch);
4076   __ Pop(regs_.object(), regs_.address());
4077 
4078   __ bind(&need_incremental);
4079 
4080   // Fall through when we need to inform the incremental marker.
4081 }
4082 
4083 
Generate(MacroAssembler * masm)4084 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4085   // ----------- S t a t e -------------
4086   //  -- r0    : element value to store
4087   //  -- r3    : element index as smi
4088   //  -- sp[0] : array literal index in function as smi
4089   //  -- sp[4] : array literal
4090   // clobbers r1, r2, r4
4091   // -----------------------------------
4092 
4093   Label element_done;
4094   Label double_elements;
4095   Label smi_element;
4096   Label slow_elements;
4097   Label fast_elements;
4098 
4099   // Get array literal index, array literal and its map.
4100   __ ldr(r4, MemOperand(sp, 0 * kPointerSize));
4101   __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
4102   __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset));
4103 
4104   __ CheckFastElements(r2, r5, &double_elements);
4105   // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
4106   __ JumpIfSmi(r0, &smi_element);
4107   __ CheckFastSmiElements(r2, r5, &fast_elements);
4108 
4109   // Store into the array literal requires a elements transition. Call into
4110   // the runtime.
4111   __ bind(&slow_elements);
4112   // call.
4113   __ Push(r1, r3, r0);
4114   __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4115   __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
4116   __ Push(r5, r4);
4117   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4118 
4119   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4120   __ bind(&fast_elements);
4121   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
4122   __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
4123   __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4124   __ str(r0, MemOperand(r6, 0));
4125   // Update the write barrier for the array store.
4126   __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
4127                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4128   __ Ret();
4129 
4130   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4131   // and value is Smi.
4132   __ bind(&smi_element);
4133   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
4134   __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
4135   __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
4136   __ Ret();
4137 
4138   // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
4139   __ bind(&double_elements);
4140   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
4141   __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements);
4142   __ Ret();
4143 }
4144 
4145 
Generate(MacroAssembler * masm)4146 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4147   CEntryStub ces(isolate(), 1, kSaveFPRegs);
4148   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4149   int parameter_count_offset =
4150       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4151   __ ldr(r1, MemOperand(fp, parameter_count_offset));
4152   if (function_mode() == JS_FUNCTION_STUB_MODE) {
4153     __ add(r1, r1, Operand(1));
4154   }
4155   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4156   __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
4157   __ add(sp, sp, r1);
4158   __ Ret();
4159 }
4160 
4161 
Generate(MacroAssembler * masm)4162 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4163   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4164   VectorLoadStub stub(isolate(), state());
4165   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4166 }
4167 
4168 
Generate(MacroAssembler * masm)4169 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4170   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4171   VectorKeyedLoadStub stub(isolate());
4172   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4173 }
4174 
4175 
MaybeCallEntryHook(MacroAssembler * masm)4176 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4177   if (masm->isolate()->function_entry_hook() != NULL) {
4178     ProfileEntryHookStub stub(masm->isolate());
4179     int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize;
4180     PredictableCodeSizeScope predictable(masm, code_size);
4181     __ push(lr);
4182     __ CallStub(&stub);
4183     __ pop(lr);
4184   }
4185 }
4186 
4187 
Generate(MacroAssembler * masm)4188 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4189   // The entry hook is a "push lr" instruction, followed by a call.
4190   const int32_t kReturnAddressDistanceFromFunctionStart =
4191       3 * Assembler::kInstrSize;
4192 
4193   // This should contain all kCallerSaved registers.
4194   const RegList kSavedRegs =
4195       1 <<  0 |  // r0
4196       1 <<  1 |  // r1
4197       1 <<  2 |  // r2
4198       1 <<  3 |  // r3
4199       1 <<  5 |  // r5
4200       1 <<  9;   // r9
4201   // We also save lr, so the count here is one higher than the mask indicates.
4202   const int32_t kNumSavedRegs = 7;
4203 
4204   DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
4205 
4206   // Save all caller-save registers as this may be called from anywhere.
4207   __ stm(db_w, sp, kSavedRegs | lr.bit());
4208 
4209   // Compute the function's address for the first argument.
4210   __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
4211 
4212   // The caller's return address is above the saved temporaries.
4213   // Grab that for the second argument to the hook.
4214   __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
4215 
4216   // Align the stack if necessary.
4217   int frame_alignment = masm->ActivationFrameAlignment();
4218   if (frame_alignment > kPointerSize) {
4219     __ mov(r5, sp);
4220     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4221     __ and_(sp, sp, Operand(-frame_alignment));
4222   }
4223 
4224 #if V8_HOST_ARCH_ARM
4225   int32_t entry_hook =
4226       reinterpret_cast<int32_t>(isolate()->function_entry_hook());
4227   __ mov(ip, Operand(entry_hook));
4228 #else
4229   // Under the simulator we need to indirect the entry hook through a
4230   // trampoline function at a known address.
4231   // It additionally takes an isolate as a third parameter
4232   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
4233 
4234   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4235   __ mov(ip, Operand(ExternalReference(&dispatcher,
4236                                        ExternalReference::BUILTIN_CALL,
4237                                        isolate())));
4238 #endif
4239   __ Call(ip);
4240 
4241   // Restore the stack pointer if needed.
4242   if (frame_alignment > kPointerSize) {
4243     __ mov(sp, r5);
4244   }
4245 
4246   // Also pop pc to get Ret(0).
4247   __ ldm(ia_w, sp, kSavedRegs | pc.bit());
4248 }
4249 
4250 
4251 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4252 static void CreateArrayDispatch(MacroAssembler* masm,
4253                                 AllocationSiteOverrideMode mode) {
4254   if (mode == DISABLE_ALLOCATION_SITES) {
4255     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4256     __ TailCallStub(&stub);
4257   } else if (mode == DONT_OVERRIDE) {
4258     int last_index = GetSequenceIndexFromFastElementsKind(
4259         TERMINAL_FAST_ELEMENTS_KIND);
4260     for (int i = 0; i <= last_index; ++i) {
4261       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4262       __ cmp(r3, Operand(kind));
4263       T stub(masm->isolate(), kind);
4264       __ TailCallStub(&stub, eq);
4265     }
4266 
4267     // If we reached this point there is a problem.
4268     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4269   } else {
4270     UNREACHABLE();
4271   }
4272 }
4273 
4274 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)4275 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4276                                            AllocationSiteOverrideMode mode) {
4277   // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4278   // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4279   // r0 - number of arguments
4280   // r1 - constructor?
4281   // sp[0] - last argument
4282   Label normal_sequence;
4283   if (mode == DONT_OVERRIDE) {
4284     DCHECK(FAST_SMI_ELEMENTS == 0);
4285     DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4286     DCHECK(FAST_ELEMENTS == 2);
4287     DCHECK(FAST_HOLEY_ELEMENTS == 3);
4288     DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4289     DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4290 
4291     // is the low bit set? If so, we are holey and that is good.
4292     __ tst(r3, Operand(1));
4293     __ b(ne, &normal_sequence);
4294   }
4295 
4296   // look at the first argument
4297   __ ldr(r5, MemOperand(sp, 0));
4298   __ cmp(r5, Operand::Zero());
4299   __ b(eq, &normal_sequence);
4300 
4301   if (mode == DISABLE_ALLOCATION_SITES) {
4302     ElementsKind initial = GetInitialFastElementsKind();
4303     ElementsKind holey_initial = GetHoleyElementsKind(initial);
4304 
4305     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4306                                                   holey_initial,
4307                                                   DISABLE_ALLOCATION_SITES);
4308     __ TailCallStub(&stub_holey);
4309 
4310     __ bind(&normal_sequence);
4311     ArraySingleArgumentConstructorStub stub(masm->isolate(),
4312                                             initial,
4313                                             DISABLE_ALLOCATION_SITES);
4314     __ TailCallStub(&stub);
4315   } else if (mode == DONT_OVERRIDE) {
4316     // We are going to create a holey array, but our kind is non-holey.
4317     // Fix kind and retry (only if we have an allocation site in the slot).
4318     __ add(r3, r3, Operand(1));
4319 
4320     if (FLAG_debug_code) {
4321       __ ldr(r5, FieldMemOperand(r2, 0));
4322       __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
4323       __ Assert(eq, kExpectedAllocationSite);
4324     }
4325 
4326     // Save the resulting elements kind in type info. We can't just store r3
4327     // in the AllocationSite::transition_info field because elements kind is
4328     // restricted to a portion of the field...upper bits need to be left alone.
4329     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4330     __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
4331     __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4332     __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
4333 
4334     __ bind(&normal_sequence);
4335     int last_index = GetSequenceIndexFromFastElementsKind(
4336         TERMINAL_FAST_ELEMENTS_KIND);
4337     for (int i = 0; i <= last_index; ++i) {
4338       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4339       __ cmp(r3, Operand(kind));
4340       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4341       __ TailCallStub(&stub, eq);
4342     }
4343 
4344     // If we reached this point there is a problem.
4345     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4346   } else {
4347     UNREACHABLE();
4348   }
4349 }
4350 
4351 
4352 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)4353 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4354   int to_index = GetSequenceIndexFromFastElementsKind(
4355       TERMINAL_FAST_ELEMENTS_KIND);
4356   for (int i = 0; i <= to_index; ++i) {
4357     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4358     T stub(isolate, kind);
4359     stub.GetCode();
4360     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4361       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4362       stub1.GetCode();
4363     }
4364   }
4365 }
4366 
4367 
GenerateStubsAheadOfTime(Isolate * isolate)4368 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4369   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4370       isolate);
4371   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4372       isolate);
4373   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4374       isolate);
4375 }
4376 
4377 
GenerateStubsAheadOfTime(Isolate * isolate)4378 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4379     Isolate* isolate) {
4380   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4381   for (int i = 0; i < 2; i++) {
4382     // For internal arrays we only need a few things
4383     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4384     stubh1.GetCode();
4385     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4386     stubh2.GetCode();
4387     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4388     stubh3.GetCode();
4389   }
4390 }
4391 
4392 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)4393 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4394     MacroAssembler* masm,
4395     AllocationSiteOverrideMode mode) {
4396   if (argument_count() == ANY) {
4397     Label not_zero_case, not_one_case;
4398     __ tst(r0, r0);
4399     __ b(ne, &not_zero_case);
4400     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4401 
4402     __ bind(&not_zero_case);
4403     __ cmp(r0, Operand(1));
4404     __ b(gt, &not_one_case);
4405     CreateArrayDispatchOneArgument(masm, mode);
4406 
4407     __ bind(&not_one_case);
4408     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4409   } else if (argument_count() == NONE) {
4410     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4411   } else if (argument_count() == ONE) {
4412     CreateArrayDispatchOneArgument(masm, mode);
4413   } else if (argument_count() == MORE_THAN_ONE) {
4414     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4415   } else {
4416     UNREACHABLE();
4417   }
4418 }
4419 
4420 
Generate(MacroAssembler * masm)4421 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4422   // ----------- S t a t e -------------
4423   //  -- r0 : argc (only if argument_count() == ANY)
4424   //  -- r1 : constructor
4425   //  -- r2 : AllocationSite or undefined
4426   //  -- sp[0] : return address
4427   //  -- sp[4] : last argument
4428   // -----------------------------------
4429 
4430   if (FLAG_debug_code) {
4431     // The array construct code is only set for the global and natives
4432     // builtin Array functions which always have maps.
4433 
4434     // Initial map for the builtin Array function should be a map.
4435     __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
4436     // Will both indicate a NULL and a Smi.
4437     __ tst(r4, Operand(kSmiTagMask));
4438     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
4439     __ CompareObjectType(r4, r4, r5, MAP_TYPE);
4440     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4441 
4442     // We should either have undefined in r2 or a valid AllocationSite
4443     __ AssertUndefinedOrAllocationSite(r2, r4);
4444   }
4445 
4446   Label no_info;
4447   // Get the elements kind and case on that.
4448   __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
4449   __ b(eq, &no_info);
4450 
4451   __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
4452   __ SmiUntag(r3);
4453   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4454   __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
4455   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4456 
4457   __ bind(&no_info);
4458   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4459 }
4460 
4461 
GenerateCase(MacroAssembler * masm,ElementsKind kind)4462 void InternalArrayConstructorStub::GenerateCase(
4463     MacroAssembler* masm, ElementsKind kind) {
4464   __ cmp(r0, Operand(1));
4465 
4466   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4467   __ TailCallStub(&stub0, lo);
4468 
4469   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4470   __ TailCallStub(&stubN, hi);
4471 
4472   if (IsFastPackedElementsKind(kind)) {
4473     // We might need to create a holey array
4474     // look at the first argument
4475     __ ldr(r3, MemOperand(sp, 0));
4476     __ cmp(r3, Operand::Zero());
4477 
4478     InternalArraySingleArgumentConstructorStub
4479         stub1_holey(isolate(), GetHoleyElementsKind(kind));
4480     __ TailCallStub(&stub1_holey, ne);
4481   }
4482 
4483   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4484   __ TailCallStub(&stub1);
4485 }
4486 
4487 
Generate(MacroAssembler * masm)4488 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4489   // ----------- S t a t e -------------
4490   //  -- r0 : argc
4491   //  -- r1 : constructor
4492   //  -- sp[0] : return address
4493   //  -- sp[4] : last argument
4494   // -----------------------------------
4495 
4496   if (FLAG_debug_code) {
4497     // The array construct code is only set for the global and natives
4498     // builtin Array functions which always have maps.
4499 
4500     // Initial map for the builtin Array function should be a map.
4501     __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
4502     // Will both indicate a NULL and a Smi.
4503     __ tst(r3, Operand(kSmiTagMask));
4504     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
4505     __ CompareObjectType(r3, r3, r4, MAP_TYPE);
4506     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4507   }
4508 
4509   // Figure out the right elements kind
4510   __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
4511   // Load the map's "bit field 2" into |result|. We only need the first byte,
4512   // but the following bit field extraction takes care of that anyway.
4513   __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
4514   // Retrieve elements_kind from bit field 2.
4515   __ DecodeField<Map::ElementsKindBits>(r3);
4516 
4517   if (FLAG_debug_code) {
4518     Label done;
4519     __ cmp(r3, Operand(FAST_ELEMENTS));
4520     __ b(eq, &done);
4521     __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
4522     __ Assert(eq,
4523               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4524     __ bind(&done);
4525   }
4526 
4527   Label fast_elements_case;
4528   __ cmp(r3, Operand(FAST_ELEMENTS));
4529   __ b(eq, &fast_elements_case);
4530   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4531 
4532   __ bind(&fast_elements_case);
4533   GenerateCase(masm, FAST_ELEMENTS);
4534 }
4535 
4536 
Generate(MacroAssembler * masm)4537 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4538   // ----------- S t a t e -------------
4539   //  -- r0                  : callee
4540   //  -- r4                  : call_data
4541   //  -- r2                  : holder
4542   //  -- r1                  : api_function_address
4543   //  -- cp                  : context
4544   //  --
4545   //  -- sp[0]               : last argument
4546   //  -- ...
4547   //  -- sp[(argc - 1)* 4]   : first argument
4548   //  -- sp[argc * 4]        : receiver
4549   // -----------------------------------
4550 
4551   Register callee = r0;
4552   Register call_data = r4;
4553   Register holder = r2;
4554   Register api_function_address = r1;
4555   Register context = cp;
4556 
4557   int argc = this->argc();
4558   bool is_store = this->is_store();
4559   bool call_data_undefined = this->call_data_undefined();
4560 
4561   typedef FunctionCallbackArguments FCA;
4562 
4563   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4564   STATIC_ASSERT(FCA::kCalleeIndex == 5);
4565   STATIC_ASSERT(FCA::kDataIndex == 4);
4566   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4567   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4568   STATIC_ASSERT(FCA::kIsolateIndex == 1);
4569   STATIC_ASSERT(FCA::kHolderIndex == 0);
4570   STATIC_ASSERT(FCA::kArgsLength == 7);
4571 
4572   // context save
4573   __ push(context);
4574   // load context from callee
4575   __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4576 
4577   // callee
4578   __ push(callee);
4579 
4580   // call data
4581   __ push(call_data);
4582 
4583   Register scratch = call_data;
4584   if (!call_data_undefined) {
4585     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4586   }
4587   // return value
4588   __ push(scratch);
4589   // return value default
4590   __ push(scratch);
4591   // isolate
4592   __ mov(scratch,
4593          Operand(ExternalReference::isolate_address(isolate())));
4594   __ push(scratch);
4595   // holder
4596   __ push(holder);
4597 
4598   // Prepare arguments.
4599   __ mov(scratch, sp);
4600 
4601   // Allocate the v8::Arguments structure in the arguments' space since
4602   // it's not controlled by GC.
4603   const int kApiStackSpace = 4;
4604 
4605   FrameScope frame_scope(masm, StackFrame::MANUAL);
4606   __ EnterExitFrame(false, kApiStackSpace);
4607 
4608   DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
4609   // r0 = FunctionCallbackInfo&
4610   // Arguments is after the return address.
4611   __ add(r0, sp, Operand(1 * kPointerSize));
4612   // FunctionCallbackInfo::implicit_args_
4613   __ str(scratch, MemOperand(r0, 0 * kPointerSize));
4614   // FunctionCallbackInfo::values_
4615   __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4616   __ str(ip, MemOperand(r0, 1 * kPointerSize));
4617   // FunctionCallbackInfo::length_ = argc
4618   __ mov(ip, Operand(argc));
4619   __ str(ip, MemOperand(r0, 2 * kPointerSize));
4620   // FunctionCallbackInfo::is_construct_call = 0
4621   __ mov(ip, Operand::Zero());
4622   __ str(ip, MemOperand(r0, 3 * kPointerSize));
4623 
4624   const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4625   ExternalReference thunk_ref =
4626       ExternalReference::invoke_function_callback(isolate());
4627 
4628   AllowExternalCallThatCantCauseGC scope(masm);
4629   MemOperand context_restore_operand(
4630       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4631   // Stores return the first js argument
4632   int return_value_offset = 0;
4633   if (is_store) {
4634     return_value_offset = 2 + FCA::kArgsLength;
4635   } else {
4636     return_value_offset = 2 + FCA::kReturnValueOffset;
4637   }
4638   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4639 
4640   __ CallApiFunctionAndReturn(api_function_address,
4641                               thunk_ref,
4642                               kStackUnwindSpace,
4643                               return_value_operand,
4644                               &context_restore_operand);
4645 }
4646 
4647 
Generate(MacroAssembler * masm)4648 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4649   // ----------- S t a t e -------------
4650   //  -- sp[0]                  : name
4651   //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
4652   //  -- ...
4653   //  -- r2                     : api_function_address
4654   // -----------------------------------
4655 
4656   Register api_function_address = ApiGetterDescriptor::function_address();
4657   DCHECK(api_function_address.is(r2));
4658 
4659   __ mov(r0, sp);  // r0 = Handle<Name>
4660   __ add(r1, r0, Operand(1 * kPointerSize));  // r1 = PCA
4661 
4662   const int kApiStackSpace = 1;
4663   FrameScope frame_scope(masm, StackFrame::MANUAL);
4664   __ EnterExitFrame(false, kApiStackSpace);
4665 
4666   // Create PropertyAccessorInfo instance on the stack above the exit frame with
4667   // r1 (internal::Object** args_) as the data.
4668   __ str(r1, MemOperand(sp, 1 * kPointerSize));
4669   __ add(r1, sp, Operand(1 * kPointerSize));  // r1 = AccessorInfo&
4670 
4671   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4672 
4673   ExternalReference thunk_ref =
4674       ExternalReference::invoke_accessor_getter_callback(isolate());
4675   __ CallApiFunctionAndReturn(api_function_address,
4676                               thunk_ref,
4677                               kStackUnwindSpace,
4678                               MemOperand(fp, 6 * kPointerSize),
4679                               NULL);
4680 }
4681 
4682 
4683 #undef __
4684 
4685 } }  // namespace v8::internal
4686 
4687 #endif  // V8_TARGET_ARCH_ARM
4688