• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/cpu.h"
6 
7 #if V8_LIBC_MSVCRT
8 #include <intrin.h>  // __cpuid()
9 #endif
10 #if V8_OS_POSIX
11 #include <unistd.h>  // sysconf()
12 #endif
13 #if V8_OS_QNX
14 #include <sys/syspage.h>  // cpuinfo
15 #endif
16 
17 #include <ctype.h>
18 #include <limits.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <algorithm>
23 
24 #include "src/base/logging.h"
25 #if V8_OS_WIN
26 #include "src/base/win32-headers.h"  // NOLINT
27 #endif
28 
29 namespace v8 {
30 namespace base {
31 
32 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
33 
34 // Define __cpuid() for non-MSVC libraries.
35 #if !V8_LIBC_MSVCRT
36 
__cpuid(int cpu_info[4],int info_type)37 static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
38 #if defined(__i386__) && defined(__pic__)
39   // Make sure to preserve ebx, which contains the pointer
40   // to the GOT in case we're generating PIC.
41   __asm__ volatile (
42     "mov %%ebx, %%edi\n\t"
43     "cpuid\n\t"
44     "xchg %%edi, %%ebx\n\t"
45     : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
46     : "a"(info_type)
47   );
48 #else
49   __asm__ volatile (
50     "cpuid \n\t"
51     : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
52     : "a"(info_type)
53   );
54 #endif  // defined(__i386__) && defined(__pic__)
55 }
56 
57 #endif  // !V8_LIBC_MSVCRT
58 
59 #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 \
60     || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
61 
62 #if V8_OS_LINUX
63 
64 #if V8_HOST_ARCH_ARM
65 
66 // See <uapi/asm/hwcap.h> kernel header.
67 /*
68  * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
69  */
70 #define HWCAP_SWP (1 << 0)
71 #define HWCAP_HALF  (1 << 1)
72 #define HWCAP_THUMB (1 << 2)
73 #define HWCAP_26BIT (1 << 3)  /* Play it safe */
74 #define HWCAP_FAST_MULT (1 << 4)
75 #define HWCAP_FPA (1 << 5)
76 #define HWCAP_VFP (1 << 6)
77 #define HWCAP_EDSP  (1 << 7)
78 #define HWCAP_JAVA  (1 << 8)
79 #define HWCAP_IWMMXT  (1 << 9)
80 #define HWCAP_CRUNCH  (1 << 10)
81 #define HWCAP_THUMBEE (1 << 11)
82 #define HWCAP_NEON  (1 << 12)
83 #define HWCAP_VFPv3 (1 << 13)
84 #define HWCAP_VFPv3D16  (1 << 14) /* also set for VFPv4-D16 */
85 #define HWCAP_TLS (1 << 15)
86 #define HWCAP_VFPv4 (1 << 16)
87 #define HWCAP_IDIVA (1 << 17)
88 #define HWCAP_IDIVT (1 << 18)
89 #define HWCAP_VFPD32  (1 << 19) /* set if VFP has 32 regs (not 16) */
90 #define HWCAP_IDIV  (HWCAP_IDIVA | HWCAP_IDIVT)
91 #define HWCAP_LPAE  (1 << 20)
92 
93 #define AT_HWCAP 16
94 
95 // Read the ELF HWCAP flags by parsing /proc/self/auxv.
96 static uint32_t ReadELFHWCaps() {
97   uint32_t result = 0;
98   FILE* fp = fopen("/proc/self/auxv", "r");
99   if (fp != NULL) {
100     struct { uint32_t tag; uint32_t value; } entry;
101     for (;;) {
102       size_t n = fread(&entry, sizeof(entry), 1, fp);
103       if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
104         break;
105       }
106       if (entry.tag == AT_HWCAP) {
107         result = entry.value;
108         break;
109       }
110     }
111     fclose(fp);
112   }
113   return result;
114 }
115 
116 #endif  // V8_HOST_ARCH_ARM
117 
118 #if V8_HOST_ARCH_MIPS
119 int __detect_fp64_mode(void) {
120   double result = 0;
121   // Bit representation of (double)1 is 0x3FF0000000000000.
122   asm(
123     "lui $t0, 0x3FF0\n\t"
124     "ldc1 $f0, %0\n\t"
125     "mtc1 $t0, $f1\n\t"
126     "sdc1 $f0, %0\n\t"
127     : "+m" (result)
128     : : "t0", "$f0", "$f1", "memory");
129 
130   return !(result == 1);
131 }
132 
133 
134 int __detect_mips_arch_revision(void) {
135   // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
136   // kernel. Currently fail-back to the least common denominator which is
137   // mips32 revision 1.
138   return 1;
139 }
140 #endif
141 
142 // Extract the information exposed by the kernel via /proc/cpuinfo.
143 class CPUInfo FINAL {
144  public:
145   CPUInfo() : datalen_(0) {
146     // Get the size of the cpuinfo file by reading it until the end. This is
147     // required because files under /proc do not always return a valid size
148     // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
149     static const char PATHNAME[] = "/proc/cpuinfo";
150     FILE* fp = fopen(PATHNAME, "r");
151     if (fp != NULL) {
152       for (;;) {
153         char buffer[256];
154         size_t n = fread(buffer, 1, sizeof(buffer), fp);
155         if (n == 0) {
156           break;
157         }
158         datalen_ += n;
159       }
160       fclose(fp);
161     }
162 
163     // Read the contents of the cpuinfo file.
164     data_ = new char[datalen_ + 1];
165     fp = fopen(PATHNAME, "r");
166     if (fp != NULL) {
167       for (size_t offset = 0; offset < datalen_; ) {
168         size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
169         if (n == 0) {
170           break;
171         }
172         offset += n;
173       }
174       fclose(fp);
175     }
176 
177     // Zero-terminate the data.
178     data_[datalen_] = '\0';
179   }
180 
181   ~CPUInfo() {
182     delete[] data_;
183   }
184 
185   // Extract the content of a the first occurence of a given field in
186   // the content of the cpuinfo file and return it as a heap-allocated
187   // string that must be freed by the caller using delete[].
188   // Return NULL if not found.
189   char* ExtractField(const char* field) const {
190     DCHECK(field != NULL);
191 
192     // Look for first field occurence, and ensure it starts the line.
193     size_t fieldlen = strlen(field);
194     char* p = data_;
195     for (;;) {
196       p = strstr(p, field);
197       if (p == NULL) {
198         return NULL;
199       }
200       if (p == data_ || p[-1] == '\n') {
201         break;
202       }
203       p += fieldlen;
204     }
205 
206     // Skip to the first colon followed by a space.
207     p = strchr(p + fieldlen, ':');
208     if (p == NULL || !isspace(p[1])) {
209       return NULL;
210     }
211     p += 2;
212 
213     // Find the end of the line.
214     char* q = strchr(p, '\n');
215     if (q == NULL) {
216       q = data_ + datalen_;
217     }
218 
219     // Copy the line into a heap-allocated buffer.
220     size_t len = q - p;
221     char* result = new char[len + 1];
222     if (result != NULL) {
223       memcpy(result, p, len);
224       result[len] = '\0';
225     }
226     return result;
227   }
228 
229  private:
230   char* data_;
231   size_t datalen_;
232 };
233 
234 #if V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
235 
236 // Checks that a space-separated list of items contains one given 'item'.
237 static bool HasListItem(const char* list, const char* item) {
238   ssize_t item_len = strlen(item);
239   const char* p = list;
240   if (p != NULL) {
241     while (*p != '\0') {
242       // Skip whitespace.
243       while (isspace(*p)) ++p;
244 
245       // Find end of current list item.
246       const char* q = p;
247       while (*q != '\0' && !isspace(*q)) ++q;
248 
249       if (item_len == q - p && memcmp(p, item, item_len) == 0) {
250         return true;
251       }
252 
253       // Skip to next item.
254       p = q;
255     }
256   }
257   return false;
258 }
259 
260 #endif  // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
261 
262 #endif  // V8_OS_LINUX
263 
264 #endif  // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
265 
CPU()266 CPU::CPU() : stepping_(0),
267              model_(0),
268              ext_model_(0),
269              family_(0),
270              ext_family_(0),
271              type_(0),
272              implementer_(0),
273              architecture_(0),
274              part_(0),
275              has_fpu_(false),
276              has_cmov_(false),
277              has_sahf_(false),
278              has_mmx_(false),
279              has_sse_(false),
280              has_sse2_(false),
281              has_sse3_(false),
282              has_ssse3_(false),
283              has_sse41_(false),
284              has_sse42_(false),
285              has_idiva_(false),
286              has_neon_(false),
287              has_thumb2_(false),
288              has_vfp_(false),
289              has_vfp3_(false),
290              has_vfp3_d32_(false),
291              is_fp64_mode_(false) {
292   memcpy(vendor_, "Unknown", 8);
293 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
294   int cpu_info[4];
295 
296   // __cpuid with an InfoType argument of 0 returns the number of
297   // valid Ids in CPUInfo[0] and the CPU identification string in
298   // the other three array elements. The CPU identification string is
299   // not in linear order. The code below arranges the information
300   // in a human readable form. The human readable order is CPUInfo[1] |
301   // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
302   // before using memcpy to copy these three array elements to cpu_string.
303   __cpuid(cpu_info, 0);
304   unsigned num_ids = cpu_info[0];
305   std::swap(cpu_info[2], cpu_info[3]);
306   memcpy(vendor_, cpu_info + 1, 12);
307   vendor_[12] = '\0';
308 
309   // Interpret CPU feature information.
310   if (num_ids > 0) {
311     __cpuid(cpu_info, 1);
312     stepping_ = cpu_info[0] & 0xf;
313     model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
314     family_ = (cpu_info[0] >> 8) & 0xf;
315     type_ = (cpu_info[0] >> 12) & 0x3;
316     ext_model_ = (cpu_info[0] >> 16) & 0xf;
317     ext_family_ = (cpu_info[0] >> 20) & 0xff;
318     has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
319     has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
320     has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
321     has_sse_ = (cpu_info[3] & 0x02000000) != 0;
322     has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
323     has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
324     has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
325     has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
326     has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
327   }
328 
329 #if V8_HOST_ARCH_IA32
330   // SAHF is always available in compat/legacy mode,
331   has_sahf_ = true;
332 #else
333   // Query extended IDs.
334   __cpuid(cpu_info, 0x80000000);
335   unsigned num_ext_ids = cpu_info[0];
336 
337   // Interpret extended CPU feature information.
338   if (num_ext_ids > 0x80000000) {
339     __cpuid(cpu_info, 0x80000001);
340     // SAHF must be probed in long mode.
341     has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
342   }
343 #endif
344 
345 #elif V8_HOST_ARCH_ARM
346 
347 #if V8_OS_LINUX
348 
349   CPUInfo cpu_info;
350 
351   // Extract implementor from the "CPU implementer" field.
352   char* implementer = cpu_info.ExtractField("CPU implementer");
353   if (implementer != NULL) {
354     char* end ;
355     implementer_ = strtol(implementer, &end, 0);
356     if (end == implementer) {
357       implementer_ = 0;
358     }
359     delete[] implementer;
360   }
361 
362   // Extract part number from the "CPU part" field.
363   char* part = cpu_info.ExtractField("CPU part");
364   if (part != NULL) {
365     char* end ;
366     part_ = strtol(part, &end, 0);
367     if (end == part) {
368       part_ = 0;
369     }
370     delete[] part;
371   }
372 
373   // Extract architecture from the "CPU Architecture" field.
374   // The list is well-known, unlike the the output of
375   // the 'Processor' field which can vary greatly.
376   // See the definition of the 'proc_arch' array in
377   // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
378   // same file.
379   char* architecture = cpu_info.ExtractField("CPU architecture");
380   if (architecture != NULL) {
381     char* end;
382     architecture_ = strtol(architecture, &end, 10);
383     if (end == architecture) {
384       architecture_ = 0;
385     }
386     delete[] architecture;
387 
388     // Unfortunately, it seems that certain ARMv6-based CPUs
389     // report an incorrect architecture number of 7!
390     //
391     // See http://code.google.com/p/android/issues/detail?id=10812
392     //
393     // We try to correct this by looking at the 'elf_format'
394     // field reported by the 'Processor' field, which is of the
395     // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
396     // an ARMv6-one. For example, the Raspberry Pi is one popular
397     // ARMv6 device that reports architecture 7.
398     if (architecture_ == 7) {
399       char* processor = cpu_info.ExtractField("Processor");
400       if (HasListItem(processor, "(v6l)")) {
401         architecture_ = 6;
402       }
403       delete[] processor;
404     }
405   }
406 
407   // Try to extract the list of CPU features from ELF hwcaps.
408   uint32_t hwcaps = ReadELFHWCaps();
409   if (hwcaps != 0) {
410     has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
411     has_neon_ = (hwcaps & HWCAP_NEON) != 0;
412     has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
413     has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
414     has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
415                                    (hwcaps & HWCAP_VFPD32) != 0));
416   } else {
417     // Try to fallback to "Features" CPUInfo field.
418     char* features = cpu_info.ExtractField("Features");
419     has_idiva_ = HasListItem(features, "idiva");
420     has_neon_ = HasListItem(features, "neon");
421     has_thumb2_ = HasListItem(features, "thumb2");
422     has_vfp_ = HasListItem(features, "vfp");
423     if (HasListItem(features, "vfpv3d16")) {
424       has_vfp3_ = true;
425     } else if (HasListItem(features, "vfpv3")) {
426       has_vfp3_ = true;
427       has_vfp3_d32_ = true;
428     }
429     delete[] features;
430   }
431 
432   // Some old kernels will report vfp not vfpv3. Here we make an attempt
433   // to detect vfpv3 by checking for vfp *and* neon, since neon is only
434   // available on architectures with vfpv3. Checking neon on its own is
435   // not enough as it is possible to have neon without vfp.
436   if (has_vfp_ && has_neon_) {
437     has_vfp3_ = true;
438   }
439 
440   // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
441   if (architecture_ < 7 && has_vfp3_) {
442     architecture_ = 7;
443   }
444 
445   // ARMv7 implies Thumb2.
446   if (architecture_ >= 7) {
447     has_thumb2_ = true;
448   }
449 
450   // The earliest architecture with Thumb2 is ARMv6T2.
451   if (has_thumb2_ && architecture_ < 6) {
452     architecture_ = 6;
453   }
454 
455   // We don't support any FPUs other than VFP.
456   has_fpu_ = has_vfp_;
457 
458 #elif V8_OS_QNX
459 
460   uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
461   if (cpu_flags & ARM_CPU_FLAG_V7) {
462     architecture_ = 7;
463     has_thumb2_ = true;
464   } else if (cpu_flags & ARM_CPU_FLAG_V6) {
465     architecture_ = 6;
466     // QNX doesn't say if Thumb2 is available.
467     // Assume false for the architectures older than ARMv7.
468   }
469   DCHECK(architecture_ >= 6);
470   has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
471   has_vfp_ = has_fpu_;
472   if (cpu_flags & ARM_CPU_FLAG_NEON) {
473     has_neon_ = true;
474     has_vfp3_ = has_vfp_;
475 #ifdef ARM_CPU_FLAG_VFP_D32
476     has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
477 #endif
478   }
479   has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
480 
481 #endif  // V8_OS_LINUX
482 
483 #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
484 
485   // Simple detection of FPU at runtime for Linux.
486   // It is based on /proc/cpuinfo, which reveals hardware configuration
487   // to user-space applications.  According to MIPS (early 2010), no similar
488   // facility is universally available on the MIPS architectures,
489   // so it's up to individual OSes to provide such.
490   CPUInfo cpu_info;
491   char* cpu_model = cpu_info.ExtractField("cpu model");
492   has_fpu_ = HasListItem(cpu_model, "FPU");
493   delete[] cpu_model;
494 #ifdef V8_HOST_ARCH_MIPS
495   is_fp64_mode_ = __detect_fp64_mode();
496   architecture_ = __detect_mips_arch_revision();
497 #endif
498 
499 #elif V8_HOST_ARCH_ARM64
500 
501   CPUInfo cpu_info;
502 
503   // Extract implementor from the "CPU implementer" field.
504   char* implementer = cpu_info.ExtractField("CPU implementer");
505   if (implementer != NULL) {
506     char* end ;
507     implementer_ = strtol(implementer, &end, 0);
508     if (end == implementer) {
509       implementer_ = 0;
510     }
511     delete[] implementer;
512   }
513 
514   // Extract part number from the "CPU part" field.
515   char* part = cpu_info.ExtractField("CPU part");
516   if (part != NULL) {
517     char* end ;
518     part_ = strtol(part, &end, 0);
519     if (end == part) {
520       part_ = 0;
521     }
522     delete[] part;
523   }
524 
525 #endif
526 }
527 
528 } }  // namespace v8::base
529