• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_IA32
8 
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/compiler.h"
13 #include "src/debug.h"
14 #include "src/full-codegen.h"
15 #include "src/ic/ic.h"
16 #include "src/isolate-inl.h"
17 #include "src/parser.h"
18 #include "src/scopes.h"
19 
20 namespace v8 {
21 namespace internal {
22 
23 #define __ ACCESS_MASM(masm_)
24 
25 
26 class JumpPatchSite BASE_EMBEDDED {
27  public:
JumpPatchSite(MacroAssembler * masm)28   explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
29 #ifdef DEBUG
30     info_emitted_ = false;
31 #endif
32   }
33 
~JumpPatchSite()34   ~JumpPatchSite() {
35     DCHECK(patch_site_.is_bound() == info_emitted_);
36   }
37 
EmitJumpIfNotSmi(Register reg,Label * target,Label::Distance distance=Label::kFar)38   void EmitJumpIfNotSmi(Register reg,
39                         Label* target,
40                         Label::Distance distance = Label::kFar) {
41     __ test(reg, Immediate(kSmiTagMask));
42     EmitJump(not_carry, target, distance);  // Always taken before patched.
43   }
44 
EmitJumpIfSmi(Register reg,Label * target,Label::Distance distance=Label::kFar)45   void EmitJumpIfSmi(Register reg,
46                      Label* target,
47                      Label::Distance distance = Label::kFar) {
48     __ test(reg, Immediate(kSmiTagMask));
49     EmitJump(carry, target, distance);  // Never taken before patched.
50   }
51 
EmitPatchInfo()52   void EmitPatchInfo() {
53     if (patch_site_.is_bound()) {
54       int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
55       DCHECK(is_uint8(delta_to_patch_site));
56       __ test(eax, Immediate(delta_to_patch_site));
57 #ifdef DEBUG
58       info_emitted_ = true;
59 #endif
60     } else {
61       __ nop();  // Signals no inlined code.
62     }
63   }
64 
65  private:
66   // jc will be patched with jz, jnc will become jnz.
EmitJump(Condition cc,Label * target,Label::Distance distance)67   void EmitJump(Condition cc, Label* target, Label::Distance distance) {
68     DCHECK(!patch_site_.is_bound() && !info_emitted_);
69     DCHECK(cc == carry || cc == not_carry);
70     __ bind(&patch_site_);
71     __ j(cc, target, distance);
72   }
73 
74   MacroAssembler* masm_;
75   Label patch_site_;
76 #ifdef DEBUG
77   bool info_emitted_;
78 #endif
79 };
80 
81 
82 // Generate code for a JS function.  On entry to the function the receiver
83 // and arguments have been pushed on the stack left to right, with the
84 // return address on top of them.  The actual argument count matches the
85 // formal parameter count expected by the function.
86 //
87 // The live registers are:
88 //   o edi: the JS function object being called (i.e. ourselves)
89 //   o esi: our context
90 //   o ebp: our caller's frame pointer
91 //   o esp: stack pointer (pointing to return address)
92 //
93 // The function builds a JS frame.  Please see JavaScriptFrameConstants in
94 // frames-ia32.h for its layout.
Generate()95 void FullCodeGenerator::Generate() {
96   CompilationInfo* info = info_;
97   handler_table_ =
98       isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
99 
100   profiling_counter_ = isolate()->factory()->NewCell(
101       Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
102   SetFunctionPosition(function());
103   Comment cmnt(masm_, "[ function compiled by full code generator");
104 
105   ProfileEntryHookStub::MaybeCallEntryHook(masm_);
106 
107 #ifdef DEBUG
108   if (strlen(FLAG_stop_at) > 0 &&
109       info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
110     __ int3();
111   }
112 #endif
113 
114   // Sloppy mode functions and builtins need to replace the receiver with the
115   // global proxy when called as functions (without an explicit receiver
116   // object).
117   if (info->strict_mode() == SLOPPY && !info->is_native()) {
118     Label ok;
119     // +1 for return address.
120     int receiver_offset = (info->scope()->num_parameters() + 1) * kPointerSize;
121     __ mov(ecx, Operand(esp, receiver_offset));
122 
123     __ cmp(ecx, isolate()->factory()->undefined_value());
124     __ j(not_equal, &ok, Label::kNear);
125 
126     __ mov(ecx, GlobalObjectOperand());
127     __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalProxyOffset));
128 
129     __ mov(Operand(esp, receiver_offset), ecx);
130 
131     __ bind(&ok);
132   }
133 
134   // Open a frame scope to indicate that there is a frame on the stack.  The
135   // MANUAL indicates that the scope shouldn't actually generate code to set up
136   // the frame (that is done below).
137   FrameScope frame_scope(masm_, StackFrame::MANUAL);
138 
139   info->set_prologue_offset(masm_->pc_offset());
140   __ Prologue(info->IsCodePreAgingActive());
141   info->AddNoFrameRange(0, masm_->pc_offset());
142 
143   { Comment cmnt(masm_, "[ Allocate locals");
144     int locals_count = info->scope()->num_stack_slots();
145     // Generators allocate locals, if any, in context slots.
146     DCHECK(!info->function()->is_generator() || locals_count == 0);
147     if (locals_count == 1) {
148       __ push(Immediate(isolate()->factory()->undefined_value()));
149     } else if (locals_count > 1) {
150       if (locals_count >= 128) {
151         Label ok;
152         __ mov(ecx, esp);
153         __ sub(ecx, Immediate(locals_count * kPointerSize));
154         ExternalReference stack_limit =
155             ExternalReference::address_of_real_stack_limit(isolate());
156         __ cmp(ecx, Operand::StaticVariable(stack_limit));
157         __ j(above_equal, &ok, Label::kNear);
158         __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
159         __ bind(&ok);
160       }
161       __ mov(eax, Immediate(isolate()->factory()->undefined_value()));
162       const int kMaxPushes = 32;
163       if (locals_count >= kMaxPushes) {
164         int loop_iterations = locals_count / kMaxPushes;
165         __ mov(ecx, loop_iterations);
166         Label loop_header;
167         __ bind(&loop_header);
168         // Do pushes.
169         for (int i = 0; i < kMaxPushes; i++) {
170           __ push(eax);
171         }
172         __ dec(ecx);
173         __ j(not_zero, &loop_header, Label::kNear);
174       }
175       int remaining = locals_count % kMaxPushes;
176       // Emit the remaining pushes.
177       for (int i  = 0; i < remaining; i++) {
178         __ push(eax);
179       }
180     }
181   }
182 
183   bool function_in_register = true;
184 
185   // Possibly allocate a local context.
186   int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
187   if (heap_slots > 0) {
188     Comment cmnt(masm_, "[ Allocate context");
189     bool need_write_barrier = true;
190     // Argument to NewContext is the function, which is still in edi.
191     if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
192       __ push(edi);
193       __ Push(info->scope()->GetScopeInfo());
194       __ CallRuntime(Runtime::kNewGlobalContext, 2);
195     } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
196       FastNewContextStub stub(isolate(), heap_slots);
197       __ CallStub(&stub);
198       // Result of FastNewContextStub is always in new space.
199       need_write_barrier = false;
200     } else {
201       __ push(edi);
202       __ CallRuntime(Runtime::kNewFunctionContext, 1);
203     }
204     function_in_register = false;
205     // Context is returned in eax.  It replaces the context passed to us.
206     // It's saved in the stack and kept live in esi.
207     __ mov(esi, eax);
208     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
209 
210     // Copy parameters into context if necessary.
211     int num_parameters = info->scope()->num_parameters();
212     for (int i = 0; i < num_parameters; i++) {
213       Variable* var = scope()->parameter(i);
214       if (var->IsContextSlot()) {
215         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
216             (num_parameters - 1 - i) * kPointerSize;
217         // Load parameter from stack.
218         __ mov(eax, Operand(ebp, parameter_offset));
219         // Store it in the context.
220         int context_offset = Context::SlotOffset(var->index());
221         __ mov(Operand(esi, context_offset), eax);
222         // Update the write barrier. This clobbers eax and ebx.
223         if (need_write_barrier) {
224           __ RecordWriteContextSlot(esi,
225                                     context_offset,
226                                     eax,
227                                     ebx,
228                                     kDontSaveFPRegs);
229         } else if (FLAG_debug_code) {
230           Label done;
231           __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
232           __ Abort(kExpectedNewSpaceObject);
233           __ bind(&done);
234         }
235       }
236     }
237   }
238 
239   Variable* arguments = scope()->arguments();
240   if (arguments != NULL) {
241     // Function uses arguments object.
242     Comment cmnt(masm_, "[ Allocate arguments object");
243     if (function_in_register) {
244       __ push(edi);
245     } else {
246       __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
247     }
248     // Receiver is just before the parameters on the caller's stack.
249     int num_parameters = info->scope()->num_parameters();
250     int offset = num_parameters * kPointerSize;
251     __ lea(edx,
252            Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset));
253     __ push(edx);
254     __ push(Immediate(Smi::FromInt(num_parameters)));
255     // Arguments to ArgumentsAccessStub:
256     //   function, receiver address, parameter count.
257     // The stub will rewrite receiver and parameter count if the previous
258     // stack frame was an arguments adapter frame.
259     ArgumentsAccessStub::Type type;
260     if (strict_mode() == STRICT) {
261       type = ArgumentsAccessStub::NEW_STRICT;
262     } else if (function()->has_duplicate_parameters()) {
263       type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
264     } else {
265       type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
266     }
267     ArgumentsAccessStub stub(isolate(), type);
268     __ CallStub(&stub);
269 
270     SetVar(arguments, eax, ebx, edx);
271   }
272 
273   if (FLAG_trace) {
274     __ CallRuntime(Runtime::kTraceEnter, 0);
275   }
276 
277   // Visit the declarations and body unless there is an illegal
278   // redeclaration.
279   if (scope()->HasIllegalRedeclaration()) {
280     Comment cmnt(masm_, "[ Declarations");
281     scope()->VisitIllegalRedeclaration(this);
282 
283   } else {
284     PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
285     { Comment cmnt(masm_, "[ Declarations");
286       // For named function expressions, declare the function name as a
287       // constant.
288       if (scope()->is_function_scope() && scope()->function() != NULL) {
289         VariableDeclaration* function = scope()->function();
290         DCHECK(function->proxy()->var()->mode() == CONST ||
291                function->proxy()->var()->mode() == CONST_LEGACY);
292         DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
293         VisitVariableDeclaration(function);
294       }
295       VisitDeclarations(scope()->declarations());
296     }
297 
298     { Comment cmnt(masm_, "[ Stack check");
299       PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
300       Label ok;
301       ExternalReference stack_limit
302           = ExternalReference::address_of_stack_limit(isolate());
303       __ cmp(esp, Operand::StaticVariable(stack_limit));
304       __ j(above_equal, &ok, Label::kNear);
305       __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
306       __ bind(&ok);
307     }
308 
309     { Comment cmnt(masm_, "[ Body");
310       DCHECK(loop_depth() == 0);
311       VisitStatements(function()->body());
312       DCHECK(loop_depth() == 0);
313     }
314   }
315 
316   // Always emit a 'return undefined' in case control fell off the end of
317   // the body.
318   { Comment cmnt(masm_, "[ return <undefined>;");
319     __ mov(eax, isolate()->factory()->undefined_value());
320     EmitReturnSequence();
321   }
322 }
323 
324 
ClearAccumulator()325 void FullCodeGenerator::ClearAccumulator() {
326   __ Move(eax, Immediate(Smi::FromInt(0)));
327 }
328 
329 
EmitProfilingCounterDecrement(int delta)330 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
331   __ mov(ebx, Immediate(profiling_counter_));
332   __ sub(FieldOperand(ebx, Cell::kValueOffset),
333          Immediate(Smi::FromInt(delta)));
334 }
335 
336 
EmitProfilingCounterReset()337 void FullCodeGenerator::EmitProfilingCounterReset() {
338   int reset_value = FLAG_interrupt_budget;
339   __ mov(ebx, Immediate(profiling_counter_));
340   __ mov(FieldOperand(ebx, Cell::kValueOffset),
341          Immediate(Smi::FromInt(reset_value)));
342 }
343 
344 
EmitBackEdgeBookkeeping(IterationStatement * stmt,Label * back_edge_target)345 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
346                                                 Label* back_edge_target) {
347   Comment cmnt(masm_, "[ Back edge bookkeeping");
348   Label ok;
349 
350   DCHECK(back_edge_target->is_bound());
351   int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
352   int weight = Min(kMaxBackEdgeWeight,
353                    Max(1, distance / kCodeSizeMultiplier));
354   EmitProfilingCounterDecrement(weight);
355   __ j(positive, &ok, Label::kNear);
356   __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
357 
358   // Record a mapping of this PC offset to the OSR id.  This is used to find
359   // the AST id from the unoptimized code in order to use it as a key into
360   // the deoptimization input data found in the optimized code.
361   RecordBackEdge(stmt->OsrEntryId());
362 
363   EmitProfilingCounterReset();
364 
365   __ bind(&ok);
366   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
367   // Record a mapping of the OSR id to this PC.  This is used if the OSR
368   // entry becomes the target of a bailout.  We don't expect it to be, but
369   // we want it to work if it is.
370   PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
371 }
372 
373 
EmitReturnSequence()374 void FullCodeGenerator::EmitReturnSequence() {
375   Comment cmnt(masm_, "[ Return sequence");
376   if (return_label_.is_bound()) {
377     __ jmp(&return_label_);
378   } else {
379     // Common return label
380     __ bind(&return_label_);
381     if (FLAG_trace) {
382       __ push(eax);
383       __ CallRuntime(Runtime::kTraceExit, 1);
384     }
385     // Pretend that the exit is a backwards jump to the entry.
386     int weight = 1;
387     if (info_->ShouldSelfOptimize()) {
388       weight = FLAG_interrupt_budget / FLAG_self_opt_count;
389     } else {
390       int distance = masm_->pc_offset();
391       weight = Min(kMaxBackEdgeWeight,
392                    Max(1, distance / kCodeSizeMultiplier));
393     }
394     EmitProfilingCounterDecrement(weight);
395     Label ok;
396     __ j(positive, &ok, Label::kNear);
397     __ push(eax);
398     __ call(isolate()->builtins()->InterruptCheck(),
399             RelocInfo::CODE_TARGET);
400     __ pop(eax);
401     EmitProfilingCounterReset();
402     __ bind(&ok);
403 #ifdef DEBUG
404     // Add a label for checking the size of the code used for returning.
405     Label check_exit_codesize;
406     masm_->bind(&check_exit_codesize);
407 #endif
408     SetSourcePosition(function()->end_position() - 1);
409     __ RecordJSReturn();
410     // Do not use the leave instruction here because it is too short to
411     // patch with the code required by the debugger.
412     __ mov(esp, ebp);
413     int no_frame_start = masm_->pc_offset();
414     __ pop(ebp);
415 
416     int arguments_bytes = (info_->scope()->num_parameters() + 1) * kPointerSize;
417     __ Ret(arguments_bytes, ecx);
418     // Check that the size of the code used for returning is large enough
419     // for the debugger's requirements.
420     DCHECK(Assembler::kJSReturnSequenceLength <=
421            masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
422     info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
423   }
424 }
425 
426 
Plug(Variable * var) const427 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
428   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
429 }
430 
431 
Plug(Variable * var) const432 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
433   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
434   codegen()->GetVar(result_register(), var);
435 }
436 
437 
Plug(Variable * var) const438 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
439   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
440   MemOperand operand = codegen()->VarOperand(var, result_register());
441   // Memory operands can be pushed directly.
442   __ push(operand);
443 }
444 
445 
Plug(Variable * var) const446 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
447   // For simplicity we always test the accumulator register.
448   codegen()->GetVar(result_register(), var);
449   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
450   codegen()->DoTest(this);
451 }
452 
453 
Plug(Heap::RootListIndex index) const454 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
455   UNREACHABLE();  // Not used on IA32.
456 }
457 
458 
Plug(Heap::RootListIndex index) const459 void FullCodeGenerator::AccumulatorValueContext::Plug(
460     Heap::RootListIndex index) const {
461   UNREACHABLE();  // Not used on IA32.
462 }
463 
464 
Plug(Heap::RootListIndex index) const465 void FullCodeGenerator::StackValueContext::Plug(
466     Heap::RootListIndex index) const {
467   UNREACHABLE();  // Not used on IA32.
468 }
469 
470 
Plug(Heap::RootListIndex index) const471 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
472   UNREACHABLE();  // Not used on IA32.
473 }
474 
475 
Plug(Handle<Object> lit) const476 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
477 }
478 
479 
Plug(Handle<Object> lit) const480 void FullCodeGenerator::AccumulatorValueContext::Plug(
481     Handle<Object> lit) const {
482   if (lit->IsSmi()) {
483     __ SafeMove(result_register(), Immediate(lit));
484   } else {
485     __ Move(result_register(), Immediate(lit));
486   }
487 }
488 
489 
Plug(Handle<Object> lit) const490 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
491   if (lit->IsSmi()) {
492     __ SafePush(Immediate(lit));
493   } else {
494     __ push(Immediate(lit));
495   }
496 }
497 
498 
Plug(Handle<Object> lit) const499 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
500   codegen()->PrepareForBailoutBeforeSplit(condition(),
501                                           true,
502                                           true_label_,
503                                           false_label_);
504   DCHECK(!lit->IsUndetectableObject());  // There are no undetectable literals.
505   if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
506     if (false_label_ != fall_through_) __ jmp(false_label_);
507   } else if (lit->IsTrue() || lit->IsJSObject()) {
508     if (true_label_ != fall_through_) __ jmp(true_label_);
509   } else if (lit->IsString()) {
510     if (String::cast(*lit)->length() == 0) {
511       if (false_label_ != fall_through_) __ jmp(false_label_);
512     } else {
513       if (true_label_ != fall_through_) __ jmp(true_label_);
514     }
515   } else if (lit->IsSmi()) {
516     if (Smi::cast(*lit)->value() == 0) {
517       if (false_label_ != fall_through_) __ jmp(false_label_);
518     } else {
519       if (true_label_ != fall_through_) __ jmp(true_label_);
520     }
521   } else {
522     // For simplicity we always test the accumulator register.
523     __ mov(result_register(), lit);
524     codegen()->DoTest(this);
525   }
526 }
527 
528 
DropAndPlug(int count,Register reg) const529 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
530                                                    Register reg) const {
531   DCHECK(count > 0);
532   __ Drop(count);
533 }
534 
535 
DropAndPlug(int count,Register reg) const536 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
537     int count,
538     Register reg) const {
539   DCHECK(count > 0);
540   __ Drop(count);
541   __ Move(result_register(), reg);
542 }
543 
544 
DropAndPlug(int count,Register reg) const545 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
546                                                        Register reg) const {
547   DCHECK(count > 0);
548   if (count > 1) __ Drop(count - 1);
549   __ mov(Operand(esp, 0), reg);
550 }
551 
552 
DropAndPlug(int count,Register reg) const553 void FullCodeGenerator::TestContext::DropAndPlug(int count,
554                                                  Register reg) const {
555   DCHECK(count > 0);
556   // For simplicity we always test the accumulator register.
557   __ Drop(count);
558   __ Move(result_register(), reg);
559   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
560   codegen()->DoTest(this);
561 }
562 
563 
Plug(Label * materialize_true,Label * materialize_false) const564 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
565                                             Label* materialize_false) const {
566   DCHECK(materialize_true == materialize_false);
567   __ bind(materialize_true);
568 }
569 
570 
Plug(Label * materialize_true,Label * materialize_false) const571 void FullCodeGenerator::AccumulatorValueContext::Plug(
572     Label* materialize_true,
573     Label* materialize_false) const {
574   Label done;
575   __ bind(materialize_true);
576   __ mov(result_register(), isolate()->factory()->true_value());
577   __ jmp(&done, Label::kNear);
578   __ bind(materialize_false);
579   __ mov(result_register(), isolate()->factory()->false_value());
580   __ bind(&done);
581 }
582 
583 
Plug(Label * materialize_true,Label * materialize_false) const584 void FullCodeGenerator::StackValueContext::Plug(
585     Label* materialize_true,
586     Label* materialize_false) const {
587   Label done;
588   __ bind(materialize_true);
589   __ push(Immediate(isolate()->factory()->true_value()));
590   __ jmp(&done, Label::kNear);
591   __ bind(materialize_false);
592   __ push(Immediate(isolate()->factory()->false_value()));
593   __ bind(&done);
594 }
595 
596 
Plug(Label * materialize_true,Label * materialize_false) const597 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
598                                           Label* materialize_false) const {
599   DCHECK(materialize_true == true_label_);
600   DCHECK(materialize_false == false_label_);
601 }
602 
603 
Plug(bool flag) const604 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
605 }
606 
607 
Plug(bool flag) const608 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
609   Handle<Object> value = flag
610       ? isolate()->factory()->true_value()
611       : isolate()->factory()->false_value();
612   __ mov(result_register(), value);
613 }
614 
615 
Plug(bool flag) const616 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
617   Handle<Object> value = flag
618       ? isolate()->factory()->true_value()
619       : isolate()->factory()->false_value();
620   __ push(Immediate(value));
621 }
622 
623 
Plug(bool flag) const624 void FullCodeGenerator::TestContext::Plug(bool flag) const {
625   codegen()->PrepareForBailoutBeforeSplit(condition(),
626                                           true,
627                                           true_label_,
628                                           false_label_);
629   if (flag) {
630     if (true_label_ != fall_through_) __ jmp(true_label_);
631   } else {
632     if (false_label_ != fall_through_) __ jmp(false_label_);
633   }
634 }
635 
636 
DoTest(Expression * condition,Label * if_true,Label * if_false,Label * fall_through)637 void FullCodeGenerator::DoTest(Expression* condition,
638                                Label* if_true,
639                                Label* if_false,
640                                Label* fall_through) {
641   Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
642   CallIC(ic, condition->test_id());
643   __ test(result_register(), result_register());
644   // The stub returns nonzero for true.
645   Split(not_zero, if_true, if_false, fall_through);
646 }
647 
648 
Split(Condition cc,Label * if_true,Label * if_false,Label * fall_through)649 void FullCodeGenerator::Split(Condition cc,
650                               Label* if_true,
651                               Label* if_false,
652                               Label* fall_through) {
653   if (if_false == fall_through) {
654     __ j(cc, if_true);
655   } else if (if_true == fall_through) {
656     __ j(NegateCondition(cc), if_false);
657   } else {
658     __ j(cc, if_true);
659     __ jmp(if_false);
660   }
661 }
662 
663 
StackOperand(Variable * var)664 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
665   DCHECK(var->IsStackAllocated());
666   // Offset is negative because higher indexes are at lower addresses.
667   int offset = -var->index() * kPointerSize;
668   // Adjust by a (parameter or local) base offset.
669   if (var->IsParameter()) {
670     offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
671   } else {
672     offset += JavaScriptFrameConstants::kLocal0Offset;
673   }
674   return Operand(ebp, offset);
675 }
676 
677 
VarOperand(Variable * var,Register scratch)678 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
679   DCHECK(var->IsContextSlot() || var->IsStackAllocated());
680   if (var->IsContextSlot()) {
681     int context_chain_length = scope()->ContextChainLength(var->scope());
682     __ LoadContext(scratch, context_chain_length);
683     return ContextOperand(scratch, var->index());
684   } else {
685     return StackOperand(var);
686   }
687 }
688 
689 
GetVar(Register dest,Variable * var)690 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
691   DCHECK(var->IsContextSlot() || var->IsStackAllocated());
692   MemOperand location = VarOperand(var, dest);
693   __ mov(dest, location);
694 }
695 
696 
SetVar(Variable * var,Register src,Register scratch0,Register scratch1)697 void FullCodeGenerator::SetVar(Variable* var,
698                                Register src,
699                                Register scratch0,
700                                Register scratch1) {
701   DCHECK(var->IsContextSlot() || var->IsStackAllocated());
702   DCHECK(!scratch0.is(src));
703   DCHECK(!scratch0.is(scratch1));
704   DCHECK(!scratch1.is(src));
705   MemOperand location = VarOperand(var, scratch0);
706   __ mov(location, src);
707 
708   // Emit the write barrier code if the location is in the heap.
709   if (var->IsContextSlot()) {
710     int offset = Context::SlotOffset(var->index());
711     DCHECK(!scratch0.is(esi) && !src.is(esi) && !scratch1.is(esi));
712     __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
713   }
714 }
715 
716 
PrepareForBailoutBeforeSplit(Expression * expr,bool should_normalize,Label * if_true,Label * if_false)717 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
718                                                      bool should_normalize,
719                                                      Label* if_true,
720                                                      Label* if_false) {
721   // Only prepare for bailouts before splits if we're in a test
722   // context. Otherwise, we let the Visit function deal with the
723   // preparation to avoid preparing with the same AST id twice.
724   if (!context()->IsTest() || !info_->IsOptimizable()) return;
725 
726   Label skip;
727   if (should_normalize) __ jmp(&skip, Label::kNear);
728   PrepareForBailout(expr, TOS_REG);
729   if (should_normalize) {
730     __ cmp(eax, isolate()->factory()->true_value());
731     Split(equal, if_true, if_false, NULL);
732     __ bind(&skip);
733   }
734 }
735 
736 
EmitDebugCheckDeclarationContext(Variable * variable)737 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
738   // The variable in the declaration always resides in the current context.
739   DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
740   if (generate_debug_code_) {
741     // Check that we're not inside a with or catch context.
742     __ mov(ebx, FieldOperand(esi, HeapObject::kMapOffset));
743     __ cmp(ebx, isolate()->factory()->with_context_map());
744     __ Check(not_equal, kDeclarationInWithContext);
745     __ cmp(ebx, isolate()->factory()->catch_context_map());
746     __ Check(not_equal, kDeclarationInCatchContext);
747   }
748 }
749 
750 
VisitVariableDeclaration(VariableDeclaration * declaration)751 void FullCodeGenerator::VisitVariableDeclaration(
752     VariableDeclaration* declaration) {
753   // If it was not possible to allocate the variable at compile time, we
754   // need to "declare" it at runtime to make sure it actually exists in the
755   // local context.
756   VariableProxy* proxy = declaration->proxy();
757   VariableMode mode = declaration->mode();
758   Variable* variable = proxy->var();
759   bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
760   switch (variable->location()) {
761     case Variable::UNALLOCATED:
762       globals_->Add(variable->name(), zone());
763       globals_->Add(variable->binding_needs_init()
764                         ? isolate()->factory()->the_hole_value()
765                         : isolate()->factory()->undefined_value(), zone());
766       break;
767 
768     case Variable::PARAMETER:
769     case Variable::LOCAL:
770       if (hole_init) {
771         Comment cmnt(masm_, "[ VariableDeclaration");
772         __ mov(StackOperand(variable),
773                Immediate(isolate()->factory()->the_hole_value()));
774       }
775       break;
776 
777     case Variable::CONTEXT:
778       if (hole_init) {
779         Comment cmnt(masm_, "[ VariableDeclaration");
780         EmitDebugCheckDeclarationContext(variable);
781         __ mov(ContextOperand(esi, variable->index()),
782                Immediate(isolate()->factory()->the_hole_value()));
783         // No write barrier since the hole value is in old space.
784         PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
785       }
786       break;
787 
788     case Variable::LOOKUP: {
789       Comment cmnt(masm_, "[ VariableDeclaration");
790       __ push(esi);
791       __ push(Immediate(variable->name()));
792       // VariableDeclaration nodes are always introduced in one of four modes.
793       DCHECK(IsDeclaredVariableMode(mode));
794       PropertyAttributes attr =
795           IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
796       __ push(Immediate(Smi::FromInt(attr)));
797       // Push initial value, if any.
798       // Note: For variables we must not push an initial value (such as
799       // 'undefined') because we may have a (legal) redeclaration and we
800       // must not destroy the current value.
801       if (hole_init) {
802         __ push(Immediate(isolate()->factory()->the_hole_value()));
803       } else {
804         __ push(Immediate(Smi::FromInt(0)));  // Indicates no initial value.
805       }
806       __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
807       break;
808     }
809   }
810 }
811 
812 
VisitFunctionDeclaration(FunctionDeclaration * declaration)813 void FullCodeGenerator::VisitFunctionDeclaration(
814     FunctionDeclaration* declaration) {
815   VariableProxy* proxy = declaration->proxy();
816   Variable* variable = proxy->var();
817   switch (variable->location()) {
818     case Variable::UNALLOCATED: {
819       globals_->Add(variable->name(), zone());
820       Handle<SharedFunctionInfo> function =
821           Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
822       // Check for stack-overflow exception.
823       if (function.is_null()) return SetStackOverflow();
824       globals_->Add(function, zone());
825       break;
826     }
827 
828     case Variable::PARAMETER:
829     case Variable::LOCAL: {
830       Comment cmnt(masm_, "[ FunctionDeclaration");
831       VisitForAccumulatorValue(declaration->fun());
832       __ mov(StackOperand(variable), result_register());
833       break;
834     }
835 
836     case Variable::CONTEXT: {
837       Comment cmnt(masm_, "[ FunctionDeclaration");
838       EmitDebugCheckDeclarationContext(variable);
839       VisitForAccumulatorValue(declaration->fun());
840       __ mov(ContextOperand(esi, variable->index()), result_register());
841       // We know that we have written a function, which is not a smi.
842       __ RecordWriteContextSlot(esi,
843                                 Context::SlotOffset(variable->index()),
844                                 result_register(),
845                                 ecx,
846                                 kDontSaveFPRegs,
847                                 EMIT_REMEMBERED_SET,
848                                 OMIT_SMI_CHECK);
849       PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
850       break;
851     }
852 
853     case Variable::LOOKUP: {
854       Comment cmnt(masm_, "[ FunctionDeclaration");
855       __ push(esi);
856       __ push(Immediate(variable->name()));
857       __ push(Immediate(Smi::FromInt(NONE)));
858       VisitForStackValue(declaration->fun());
859       __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
860       break;
861     }
862   }
863 }
864 
865 
VisitModuleDeclaration(ModuleDeclaration * declaration)866 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
867   Variable* variable = declaration->proxy()->var();
868   DCHECK(variable->location() == Variable::CONTEXT);
869   DCHECK(variable->interface()->IsFrozen());
870 
871   Comment cmnt(masm_, "[ ModuleDeclaration");
872   EmitDebugCheckDeclarationContext(variable);
873 
874   // Load instance object.
875   __ LoadContext(eax, scope_->ContextChainLength(scope_->GlobalScope()));
876   __ mov(eax, ContextOperand(eax, variable->interface()->Index()));
877   __ mov(eax, ContextOperand(eax, Context::EXTENSION_INDEX));
878 
879   // Assign it.
880   __ mov(ContextOperand(esi, variable->index()), eax);
881   // We know that we have written a module, which is not a smi.
882   __ RecordWriteContextSlot(esi,
883                             Context::SlotOffset(variable->index()),
884                             eax,
885                             ecx,
886                             kDontSaveFPRegs,
887                             EMIT_REMEMBERED_SET,
888                             OMIT_SMI_CHECK);
889   PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
890 
891   // Traverse into body.
892   Visit(declaration->module());
893 }
894 
895 
VisitImportDeclaration(ImportDeclaration * declaration)896 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
897   VariableProxy* proxy = declaration->proxy();
898   Variable* variable = proxy->var();
899   switch (variable->location()) {
900     case Variable::UNALLOCATED:
901       // TODO(rossberg)
902       break;
903 
904     case Variable::CONTEXT: {
905       Comment cmnt(masm_, "[ ImportDeclaration");
906       EmitDebugCheckDeclarationContext(variable);
907       // TODO(rossberg)
908       break;
909     }
910 
911     case Variable::PARAMETER:
912     case Variable::LOCAL:
913     case Variable::LOOKUP:
914       UNREACHABLE();
915   }
916 }
917 
918 
VisitExportDeclaration(ExportDeclaration * declaration)919 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
920   // TODO(rossberg)
921 }
922 
923 
DeclareGlobals(Handle<FixedArray> pairs)924 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
925   // Call the runtime to declare the globals.
926   __ push(esi);  // The context is the first argument.
927   __ Push(pairs);
928   __ Push(Smi::FromInt(DeclareGlobalsFlags()));
929   __ CallRuntime(Runtime::kDeclareGlobals, 3);
930   // Return value is ignored.
931 }
932 
933 
DeclareModules(Handle<FixedArray> descriptions)934 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
935   // Call the runtime to declare the modules.
936   __ Push(descriptions);
937   __ CallRuntime(Runtime::kDeclareModules, 1);
938   // Return value is ignored.
939 }
940 
941 
VisitSwitchStatement(SwitchStatement * stmt)942 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
943   Comment cmnt(masm_, "[ SwitchStatement");
944   Breakable nested_statement(this, stmt);
945   SetStatementPosition(stmt);
946 
947   // Keep the switch value on the stack until a case matches.
948   VisitForStackValue(stmt->tag());
949   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
950 
951   ZoneList<CaseClause*>* clauses = stmt->cases();
952   CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
953 
954   Label next_test;  // Recycled for each test.
955   // Compile all the tests with branches to their bodies.
956   for (int i = 0; i < clauses->length(); i++) {
957     CaseClause* clause = clauses->at(i);
958     clause->body_target()->Unuse();
959 
960     // The default is not a test, but remember it as final fall through.
961     if (clause->is_default()) {
962       default_clause = clause;
963       continue;
964     }
965 
966     Comment cmnt(masm_, "[ Case comparison");
967     __ bind(&next_test);
968     next_test.Unuse();
969 
970     // Compile the label expression.
971     VisitForAccumulatorValue(clause->label());
972 
973     // Perform the comparison as if via '==='.
974     __ mov(edx, Operand(esp, 0));  // Switch value.
975     bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
976     JumpPatchSite patch_site(masm_);
977     if (inline_smi_code) {
978       Label slow_case;
979       __ mov(ecx, edx);
980       __ or_(ecx, eax);
981       patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
982 
983       __ cmp(edx, eax);
984       __ j(not_equal, &next_test);
985       __ Drop(1);  // Switch value is no longer needed.
986       __ jmp(clause->body_target());
987       __ bind(&slow_case);
988     }
989 
990     // Record position before stub call for type feedback.
991     SetSourcePosition(clause->position());
992     Handle<Code> ic =
993         CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
994     CallIC(ic, clause->CompareId());
995     patch_site.EmitPatchInfo();
996 
997     Label skip;
998     __ jmp(&skip, Label::kNear);
999     PrepareForBailout(clause, TOS_REG);
1000     __ cmp(eax, isolate()->factory()->true_value());
1001     __ j(not_equal, &next_test);
1002     __ Drop(1);
1003     __ jmp(clause->body_target());
1004     __ bind(&skip);
1005 
1006     __ test(eax, eax);
1007     __ j(not_equal, &next_test);
1008     __ Drop(1);  // Switch value is no longer needed.
1009     __ jmp(clause->body_target());
1010   }
1011 
1012   // Discard the test value and jump to the default if present, otherwise to
1013   // the end of the statement.
1014   __ bind(&next_test);
1015   __ Drop(1);  // Switch value is no longer needed.
1016   if (default_clause == NULL) {
1017     __ jmp(nested_statement.break_label());
1018   } else {
1019     __ jmp(default_clause->body_target());
1020   }
1021 
1022   // Compile all the case bodies.
1023   for (int i = 0; i < clauses->length(); i++) {
1024     Comment cmnt(masm_, "[ Case body");
1025     CaseClause* clause = clauses->at(i);
1026     __ bind(clause->body_target());
1027     PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1028     VisitStatements(clause->statements());
1029   }
1030 
1031   __ bind(nested_statement.break_label());
1032   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1033 }
1034 
1035 
VisitForInStatement(ForInStatement * stmt)1036 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1037   Comment cmnt(masm_, "[ ForInStatement");
1038   int slot = stmt->ForInFeedbackSlot();
1039 
1040   SetStatementPosition(stmt);
1041 
1042   Label loop, exit;
1043   ForIn loop_statement(this, stmt);
1044   increment_loop_depth();
1045 
1046   // Get the object to enumerate over. If the object is null or undefined, skip
1047   // over the loop.  See ECMA-262 version 5, section 12.6.4.
1048   VisitForAccumulatorValue(stmt->enumerable());
1049   __ cmp(eax, isolate()->factory()->undefined_value());
1050   __ j(equal, &exit);
1051   __ cmp(eax, isolate()->factory()->null_value());
1052   __ j(equal, &exit);
1053 
1054   PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1055 
1056   // Convert the object to a JS object.
1057   Label convert, done_convert;
1058   __ JumpIfSmi(eax, &convert, Label::kNear);
1059   __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1060   __ j(above_equal, &done_convert, Label::kNear);
1061   __ bind(&convert);
1062   __ push(eax);
1063   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1064   __ bind(&done_convert);
1065   __ push(eax);
1066 
1067   // Check for proxies.
1068   Label call_runtime, use_cache, fixed_array;
1069   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1070   __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
1071   __ j(below_equal, &call_runtime);
1072 
1073   // Check cache validity in generated code. This is a fast case for
1074   // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1075   // guarantee cache validity, call the runtime system to check cache
1076   // validity or get the property names in a fixed array.
1077   __ CheckEnumCache(&call_runtime);
1078 
1079   __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
1080   __ jmp(&use_cache, Label::kNear);
1081 
1082   // Get the set of properties to enumerate.
1083   __ bind(&call_runtime);
1084   __ push(eax);
1085   __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1086   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
1087          isolate()->factory()->meta_map());
1088   __ j(not_equal, &fixed_array);
1089 
1090 
1091   // We got a map in register eax. Get the enumeration cache from it.
1092   Label no_descriptors;
1093   __ bind(&use_cache);
1094 
1095   __ EnumLength(edx, eax);
1096   __ cmp(edx, Immediate(Smi::FromInt(0)));
1097   __ j(equal, &no_descriptors);
1098 
1099   __ LoadInstanceDescriptors(eax, ecx);
1100   __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheOffset));
1101   __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
1102 
1103   // Set up the four remaining stack slots.
1104   __ push(eax);  // Map.
1105   __ push(ecx);  // Enumeration cache.
1106   __ push(edx);  // Number of valid entries for the map in the enum cache.
1107   __ push(Immediate(Smi::FromInt(0)));  // Initial index.
1108   __ jmp(&loop);
1109 
1110   __ bind(&no_descriptors);
1111   __ add(esp, Immediate(kPointerSize));
1112   __ jmp(&exit);
1113 
1114   // We got a fixed array in register eax. Iterate through that.
1115   Label non_proxy;
1116   __ bind(&fixed_array);
1117 
1118   // No need for a write barrier, we are storing a Smi in the feedback vector.
1119   __ LoadHeapObject(ebx, FeedbackVector());
1120   __ mov(FieldOperand(ebx, FixedArray::OffsetOfElementAt(slot)),
1121          Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1122 
1123   __ mov(ebx, Immediate(Smi::FromInt(1)));  // Smi indicates slow check
1124   __ mov(ecx, Operand(esp, 0 * kPointerSize));  // Get enumerated object
1125   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1126   __ CmpObjectType(ecx, LAST_JS_PROXY_TYPE, ecx);
1127   __ j(above, &non_proxy);
1128   __ Move(ebx, Immediate(Smi::FromInt(0)));  // Zero indicates proxy
1129   __ bind(&non_proxy);
1130   __ push(ebx);  // Smi
1131   __ push(eax);  // Array
1132   __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
1133   __ push(eax);  // Fixed array length (as smi).
1134   __ push(Immediate(Smi::FromInt(0)));  // Initial index.
1135 
1136   // Generate code for doing the condition check.
1137   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1138   __ bind(&loop);
1139   __ mov(eax, Operand(esp, 0 * kPointerSize));  // Get the current index.
1140   __ cmp(eax, Operand(esp, 1 * kPointerSize));  // Compare to the array length.
1141   __ j(above_equal, loop_statement.break_label());
1142 
1143   // Get the current entry of the array into register ebx.
1144   __ mov(ebx, Operand(esp, 2 * kPointerSize));
1145   __ mov(ebx, FieldOperand(ebx, eax, times_2, FixedArray::kHeaderSize));
1146 
1147   // Get the expected map from the stack or a smi in the
1148   // permanent slow case into register edx.
1149   __ mov(edx, Operand(esp, 3 * kPointerSize));
1150 
1151   // Check if the expected map still matches that of the enumerable.
1152   // If not, we may have to filter the key.
1153   Label update_each;
1154   __ mov(ecx, Operand(esp, 4 * kPointerSize));
1155   __ cmp(edx, FieldOperand(ecx, HeapObject::kMapOffset));
1156   __ j(equal, &update_each, Label::kNear);
1157 
1158   // For proxies, no filtering is done.
1159   // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1160   DCHECK(Smi::FromInt(0) == 0);
1161   __ test(edx, edx);
1162   __ j(zero, &update_each);
1163 
1164   // Convert the entry to a string or null if it isn't a property
1165   // anymore. If the property has been removed while iterating, we
1166   // just skip it.
1167   __ push(ecx);  // Enumerable.
1168   __ push(ebx);  // Current entry.
1169   __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1170   __ test(eax, eax);
1171   __ j(equal, loop_statement.continue_label());
1172   __ mov(ebx, eax);
1173 
1174   // Update the 'each' property or variable from the possibly filtered
1175   // entry in register ebx.
1176   __ bind(&update_each);
1177   __ mov(result_register(), ebx);
1178   // Perform the assignment as if via '='.
1179   { EffectContext context(this);
1180     EmitAssignment(stmt->each());
1181   }
1182 
1183   // Generate code for the body of the loop.
1184   Visit(stmt->body());
1185 
1186   // Generate code for going to the next element by incrementing the
1187   // index (smi) stored on top of the stack.
1188   __ bind(loop_statement.continue_label());
1189   __ add(Operand(esp, 0 * kPointerSize), Immediate(Smi::FromInt(1)));
1190 
1191   EmitBackEdgeBookkeeping(stmt, &loop);
1192   __ jmp(&loop);
1193 
1194   // Remove the pointers stored on the stack.
1195   __ bind(loop_statement.break_label());
1196   __ add(esp, Immediate(5 * kPointerSize));
1197 
1198   // Exit and decrement the loop depth.
1199   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1200   __ bind(&exit);
1201   decrement_loop_depth();
1202 }
1203 
1204 
VisitForOfStatement(ForOfStatement * stmt)1205 void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
1206   Comment cmnt(masm_, "[ ForOfStatement");
1207   SetStatementPosition(stmt);
1208 
1209   Iteration loop_statement(this, stmt);
1210   increment_loop_depth();
1211 
1212   // var iterator = iterable[Symbol.iterator]();
1213   VisitForEffect(stmt->assign_iterator());
1214 
1215   // Loop entry.
1216   __ bind(loop_statement.continue_label());
1217 
1218   // result = iterator.next()
1219   VisitForEffect(stmt->next_result());
1220 
1221   // if (result.done) break;
1222   Label result_not_done;
1223   VisitForControl(stmt->result_done(),
1224                   loop_statement.break_label(),
1225                   &result_not_done,
1226                   &result_not_done);
1227   __ bind(&result_not_done);
1228 
1229   // each = result.value
1230   VisitForEffect(stmt->assign_each());
1231 
1232   // Generate code for the body of the loop.
1233   Visit(stmt->body());
1234 
1235   // Check stack before looping.
1236   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1237   EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
1238   __ jmp(loop_statement.continue_label());
1239 
1240   // Exit and decrement the loop depth.
1241   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1242   __ bind(loop_statement.break_label());
1243   decrement_loop_depth();
1244 }
1245 
1246 
EmitNewClosure(Handle<SharedFunctionInfo> info,bool pretenure)1247 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1248                                        bool pretenure) {
1249   // Use the fast case closure allocation code that allocates in new
1250   // space for nested functions that don't need literals cloning. If
1251   // we're running with the --always-opt or the --prepare-always-opt
1252   // flag, we need to use the runtime function so that the new function
1253   // we are creating here gets a chance to have its code optimized and
1254   // doesn't just get a copy of the existing unoptimized code.
1255   if (!FLAG_always_opt &&
1256       !FLAG_prepare_always_opt &&
1257       !pretenure &&
1258       scope()->is_function_scope() &&
1259       info->num_literals() == 0) {
1260     FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind());
1261     __ mov(ebx, Immediate(info));
1262     __ CallStub(&stub);
1263   } else {
1264     __ push(esi);
1265     __ push(Immediate(info));
1266     __ push(Immediate(pretenure
1267                       ? isolate()->factory()->true_value()
1268                       : isolate()->factory()->false_value()));
1269     __ CallRuntime(Runtime::kNewClosure, 3);
1270   }
1271   context()->Plug(eax);
1272 }
1273 
1274 
VisitVariableProxy(VariableProxy * expr)1275 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1276   Comment cmnt(masm_, "[ VariableProxy");
1277   EmitVariableLoad(expr);
1278 }
1279 
1280 
EmitLoadHomeObject(SuperReference * expr)1281 void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) {
1282   Comment cnmt(masm_, "[ SuperReference ");
1283 
1284   __ mov(LoadDescriptor::ReceiverRegister(),
1285          Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1286 
1287   Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol());
1288   __ mov(LoadDescriptor::NameRegister(), home_object_symbol);
1289 
1290   CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId());
1291 
1292   __ cmp(eax, isolate()->factory()->undefined_value());
1293   Label done;
1294   __ j(not_equal, &done);
1295   __ CallRuntime(Runtime::kThrowNonMethodError, 0);
1296   __ bind(&done);
1297 }
1298 
1299 
EmitLoadGlobalCheckExtensions(VariableProxy * proxy,TypeofState typeof_state,Label * slow)1300 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1301                                                       TypeofState typeof_state,
1302                                                       Label* slow) {
1303   Register context = esi;
1304   Register temp = edx;
1305 
1306   Scope* s = scope();
1307   while (s != NULL) {
1308     if (s->num_heap_slots() > 0) {
1309       if (s->calls_sloppy_eval()) {
1310         // Check that extension is NULL.
1311         __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
1312                Immediate(0));
1313         __ j(not_equal, slow);
1314       }
1315       // Load next context in chain.
1316       __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1317       // Walk the rest of the chain without clobbering esi.
1318       context = temp;
1319     }
1320     // If no outer scope calls eval, we do not need to check more
1321     // context extensions.  If we have reached an eval scope, we check
1322     // all extensions from this point.
1323     if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1324     s = s->outer_scope();
1325   }
1326 
1327   if (s != NULL && s->is_eval_scope()) {
1328     // Loop up the context chain.  There is no frame effect so it is
1329     // safe to use raw labels here.
1330     Label next, fast;
1331     if (!context.is(temp)) {
1332       __ mov(temp, context);
1333     }
1334     __ bind(&next);
1335     // Terminate at native context.
1336     __ cmp(FieldOperand(temp, HeapObject::kMapOffset),
1337            Immediate(isolate()->factory()->native_context_map()));
1338     __ j(equal, &fast, Label::kNear);
1339     // Check that extension is NULL.
1340     __ cmp(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0));
1341     __ j(not_equal, slow);
1342     // Load next context in chain.
1343     __ mov(temp, ContextOperand(temp, Context::PREVIOUS_INDEX));
1344     __ jmp(&next);
1345     __ bind(&fast);
1346   }
1347 
1348   // All extension objects were empty and it is safe to use a global
1349   // load IC call.
1350   __ mov(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1351   __ mov(LoadDescriptor::NameRegister(), proxy->var()->name());
1352   if (FLAG_vector_ics) {
1353     __ mov(VectorLoadICDescriptor::SlotRegister(),
1354            Immediate(Smi::FromInt(proxy->VariableFeedbackSlot())));
1355   }
1356 
1357   ContextualMode mode = (typeof_state == INSIDE_TYPEOF)
1358       ? NOT_CONTEXTUAL
1359       : CONTEXTUAL;
1360 
1361   CallLoadIC(mode);
1362 }
1363 
1364 
ContextSlotOperandCheckExtensions(Variable * var,Label * slow)1365 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1366                                                                 Label* slow) {
1367   DCHECK(var->IsContextSlot());
1368   Register context = esi;
1369   Register temp = ebx;
1370 
1371   for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1372     if (s->num_heap_slots() > 0) {
1373       if (s->calls_sloppy_eval()) {
1374         // Check that extension is NULL.
1375         __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
1376                Immediate(0));
1377         __ j(not_equal, slow);
1378       }
1379       __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1380       // Walk the rest of the chain without clobbering esi.
1381       context = temp;
1382     }
1383   }
1384   // Check that last extension is NULL.
1385   __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
1386   __ j(not_equal, slow);
1387 
1388   // This function is used only for loads, not stores, so it's safe to
1389   // return an esi-based operand (the write barrier cannot be allowed to
1390   // destroy the esi register).
1391   return ContextOperand(context, var->index());
1392 }
1393 
1394 
EmitDynamicLookupFastCase(VariableProxy * proxy,TypeofState typeof_state,Label * slow,Label * done)1395 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1396                                                   TypeofState typeof_state,
1397                                                   Label* slow,
1398                                                   Label* done) {
1399   // Generate fast-case code for variables that might be shadowed by
1400   // eval-introduced variables.  Eval is used a lot without
1401   // introducing variables.  In those cases, we do not want to
1402   // perform a runtime call for all variables in the scope
1403   // containing the eval.
1404   Variable* var = proxy->var();
1405   if (var->mode() == DYNAMIC_GLOBAL) {
1406     EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
1407     __ jmp(done);
1408   } else if (var->mode() == DYNAMIC_LOCAL) {
1409     Variable* local = var->local_if_not_shadowed();
1410     __ mov(eax, ContextSlotOperandCheckExtensions(local, slow));
1411     if (local->mode() == LET || local->mode() == CONST ||
1412         local->mode() == CONST_LEGACY) {
1413       __ cmp(eax, isolate()->factory()->the_hole_value());
1414       __ j(not_equal, done);
1415       if (local->mode() == CONST_LEGACY) {
1416         __ mov(eax, isolate()->factory()->undefined_value());
1417       } else {  // LET || CONST
1418         __ push(Immediate(var->name()));
1419         __ CallRuntime(Runtime::kThrowReferenceError, 1);
1420       }
1421     }
1422     __ jmp(done);
1423   }
1424 }
1425 
1426 
EmitVariableLoad(VariableProxy * proxy)1427 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1428   // Record position before possible IC call.
1429   SetSourcePosition(proxy->position());
1430   Variable* var = proxy->var();
1431 
1432   // Three cases: global variables, lookup variables, and all other types of
1433   // variables.
1434   switch (var->location()) {
1435     case Variable::UNALLOCATED: {
1436       Comment cmnt(masm_, "[ Global variable");
1437       __ mov(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1438       __ mov(LoadDescriptor::NameRegister(), var->name());
1439       if (FLAG_vector_ics) {
1440         __ mov(VectorLoadICDescriptor::SlotRegister(),
1441                Immediate(Smi::FromInt(proxy->VariableFeedbackSlot())));
1442       }
1443       CallLoadIC(CONTEXTUAL);
1444       context()->Plug(eax);
1445       break;
1446     }
1447 
1448     case Variable::PARAMETER:
1449     case Variable::LOCAL:
1450     case Variable::CONTEXT: {
1451       Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
1452                                                : "[ Stack variable");
1453       if (var->binding_needs_init()) {
1454         // var->scope() may be NULL when the proxy is located in eval code and
1455         // refers to a potential outside binding. Currently those bindings are
1456         // always looked up dynamically, i.e. in that case
1457         //     var->location() == LOOKUP.
1458         // always holds.
1459         DCHECK(var->scope() != NULL);
1460 
1461         // Check if the binding really needs an initialization check. The check
1462         // can be skipped in the following situation: we have a LET or CONST
1463         // binding in harmony mode, both the Variable and the VariableProxy have
1464         // the same declaration scope (i.e. they are both in global code, in the
1465         // same function or in the same eval code) and the VariableProxy is in
1466         // the source physically located after the initializer of the variable.
1467         //
1468         // We cannot skip any initialization checks for CONST in non-harmony
1469         // mode because const variables may be declared but never initialized:
1470         //   if (false) { const x; }; var y = x;
1471         //
1472         // The condition on the declaration scopes is a conservative check for
1473         // nested functions that access a binding and are called before the
1474         // binding is initialized:
1475         //   function() { f(); let x = 1; function f() { x = 2; } }
1476         //
1477         bool skip_init_check;
1478         if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1479           skip_init_check = false;
1480         } else {
1481           // Check that we always have valid source position.
1482           DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1483           DCHECK(proxy->position() != RelocInfo::kNoPosition);
1484           skip_init_check = var->mode() != CONST_LEGACY &&
1485               var->initializer_position() < proxy->position();
1486         }
1487 
1488         if (!skip_init_check) {
1489           // Let and const need a read barrier.
1490           Label done;
1491           GetVar(eax, var);
1492           __ cmp(eax, isolate()->factory()->the_hole_value());
1493           __ j(not_equal, &done, Label::kNear);
1494           if (var->mode() == LET || var->mode() == CONST) {
1495             // Throw a reference error when using an uninitialized let/const
1496             // binding in harmony mode.
1497             __ push(Immediate(var->name()));
1498             __ CallRuntime(Runtime::kThrowReferenceError, 1);
1499           } else {
1500             // Uninitalized const bindings outside of harmony mode are unholed.
1501             DCHECK(var->mode() == CONST_LEGACY);
1502             __ mov(eax, isolate()->factory()->undefined_value());
1503           }
1504           __ bind(&done);
1505           context()->Plug(eax);
1506           break;
1507         }
1508       }
1509       context()->Plug(var);
1510       break;
1511     }
1512 
1513     case Variable::LOOKUP: {
1514       Comment cmnt(masm_, "[ Lookup variable");
1515       Label done, slow;
1516       // Generate code for loading from variables potentially shadowed
1517       // by eval-introduced variables.
1518       EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
1519       __ bind(&slow);
1520       __ push(esi);  // Context.
1521       __ push(Immediate(var->name()));
1522       __ CallRuntime(Runtime::kLoadLookupSlot, 2);
1523       __ bind(&done);
1524       context()->Plug(eax);
1525       break;
1526     }
1527   }
1528 }
1529 
1530 
VisitRegExpLiteral(RegExpLiteral * expr)1531 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1532   Comment cmnt(masm_, "[ RegExpLiteral");
1533   Label materialized;
1534   // Registers will be used as follows:
1535   // edi = JS function.
1536   // ecx = literals array.
1537   // ebx = regexp literal.
1538   // eax = regexp literal clone.
1539   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1540   __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset));
1541   int literal_offset =
1542       FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1543   __ mov(ebx, FieldOperand(ecx, literal_offset));
1544   __ cmp(ebx, isolate()->factory()->undefined_value());
1545   __ j(not_equal, &materialized, Label::kNear);
1546 
1547   // Create regexp literal using runtime function
1548   // Result will be in eax.
1549   __ push(ecx);
1550   __ push(Immediate(Smi::FromInt(expr->literal_index())));
1551   __ push(Immediate(expr->pattern()));
1552   __ push(Immediate(expr->flags()));
1553   __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1554   __ mov(ebx, eax);
1555 
1556   __ bind(&materialized);
1557   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1558   Label allocated, runtime_allocate;
1559   __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
1560   __ jmp(&allocated);
1561 
1562   __ bind(&runtime_allocate);
1563   __ push(ebx);
1564   __ push(Immediate(Smi::FromInt(size)));
1565   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1566   __ pop(ebx);
1567 
1568   __ bind(&allocated);
1569   // Copy the content into the newly allocated memory.
1570   // (Unroll copy loop once for better throughput).
1571   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
1572     __ mov(edx, FieldOperand(ebx, i));
1573     __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
1574     __ mov(FieldOperand(eax, i), edx);
1575     __ mov(FieldOperand(eax, i + kPointerSize), ecx);
1576   }
1577   if ((size % (2 * kPointerSize)) != 0) {
1578     __ mov(edx, FieldOperand(ebx, size - kPointerSize));
1579     __ mov(FieldOperand(eax, size - kPointerSize), edx);
1580   }
1581   context()->Plug(eax);
1582 }
1583 
1584 
EmitAccessor(Expression * expression)1585 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1586   if (expression == NULL) {
1587     __ push(Immediate(isolate()->factory()->null_value()));
1588   } else {
1589     VisitForStackValue(expression);
1590   }
1591 }
1592 
1593 
VisitObjectLiteral(ObjectLiteral * expr)1594 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1595   Comment cmnt(masm_, "[ ObjectLiteral");
1596 
1597   expr->BuildConstantProperties(isolate());
1598   Handle<FixedArray> constant_properties = expr->constant_properties();
1599   int flags = expr->fast_elements()
1600       ? ObjectLiteral::kFastElements
1601       : ObjectLiteral::kNoFlags;
1602   flags |= expr->has_function()
1603       ? ObjectLiteral::kHasFunction
1604       : ObjectLiteral::kNoFlags;
1605   int properties_count = constant_properties->length() / 2;
1606   if (expr->may_store_doubles() || expr->depth() > 1 ||
1607       masm()->serializer_enabled() ||
1608       flags != ObjectLiteral::kFastElements ||
1609       properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
1610     __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1611     __ push(FieldOperand(edi, JSFunction::kLiteralsOffset));
1612     __ push(Immediate(Smi::FromInt(expr->literal_index())));
1613     __ push(Immediate(constant_properties));
1614     __ push(Immediate(Smi::FromInt(flags)));
1615     __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1616   } else {
1617     __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1618     __ mov(eax, FieldOperand(edi, JSFunction::kLiteralsOffset));
1619     __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
1620     __ mov(ecx, Immediate(constant_properties));
1621     __ mov(edx, Immediate(Smi::FromInt(flags)));
1622     FastCloneShallowObjectStub stub(isolate(), properties_count);
1623     __ CallStub(&stub);
1624   }
1625 
1626   // If result_saved is true the result is on top of the stack.  If
1627   // result_saved is false the result is in eax.
1628   bool result_saved = false;
1629 
1630   // Mark all computed expressions that are bound to a key that
1631   // is shadowed by a later occurrence of the same key. For the
1632   // marked expressions, no store code is emitted.
1633   expr->CalculateEmitStore(zone());
1634 
1635   AccessorTable accessor_table(zone());
1636   for (int i = 0; i < expr->properties()->length(); i++) {
1637     ObjectLiteral::Property* property = expr->properties()->at(i);
1638     if (property->IsCompileTimeValue()) continue;
1639 
1640     Literal* key = property->key();
1641     Expression* value = property->value();
1642     if (!result_saved) {
1643       __ push(eax);  // Save result on the stack
1644       result_saved = true;
1645     }
1646     switch (property->kind()) {
1647       case ObjectLiteral::Property::CONSTANT:
1648         UNREACHABLE();
1649       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1650         DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
1651         // Fall through.
1652       case ObjectLiteral::Property::COMPUTED:
1653         if (key->value()->IsInternalizedString()) {
1654           if (property->emit_store()) {
1655             VisitForAccumulatorValue(value);
1656             DCHECK(StoreDescriptor::ValueRegister().is(eax));
1657             __ mov(StoreDescriptor::NameRegister(), Immediate(key->value()));
1658             __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
1659             CallStoreIC(key->LiteralFeedbackId());
1660             PrepareForBailoutForId(key->id(), NO_REGISTERS);
1661           } else {
1662             VisitForEffect(value);
1663           }
1664           break;
1665         }
1666         __ push(Operand(esp, 0));  // Duplicate receiver.
1667         VisitForStackValue(key);
1668         VisitForStackValue(value);
1669         if (property->emit_store()) {
1670           __ push(Immediate(Smi::FromInt(SLOPPY)));  // Strict mode
1671           __ CallRuntime(Runtime::kSetProperty, 4);
1672         } else {
1673           __ Drop(3);
1674         }
1675         break;
1676       case ObjectLiteral::Property::PROTOTYPE:
1677         __ push(Operand(esp, 0));  // Duplicate receiver.
1678         VisitForStackValue(value);
1679         if (property->emit_store()) {
1680           __ CallRuntime(Runtime::kSetPrototype, 2);
1681         } else {
1682           __ Drop(2);
1683         }
1684         break;
1685       case ObjectLiteral::Property::GETTER:
1686         accessor_table.lookup(key)->second->getter = value;
1687         break;
1688       case ObjectLiteral::Property::SETTER:
1689         accessor_table.lookup(key)->second->setter = value;
1690         break;
1691     }
1692   }
1693 
1694   // Emit code to define accessors, using only a single call to the runtime for
1695   // each pair of corresponding getters and setters.
1696   for (AccessorTable::Iterator it = accessor_table.begin();
1697        it != accessor_table.end();
1698        ++it) {
1699     __ push(Operand(esp, 0));  // Duplicate receiver.
1700     VisitForStackValue(it->first);
1701     EmitAccessor(it->second->getter);
1702     EmitAccessor(it->second->setter);
1703     __ push(Immediate(Smi::FromInt(NONE)));
1704     __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1705   }
1706 
1707   if (expr->has_function()) {
1708     DCHECK(result_saved);
1709     __ push(Operand(esp, 0));
1710     __ CallRuntime(Runtime::kToFastProperties, 1);
1711   }
1712 
1713   if (result_saved) {
1714     context()->PlugTOS();
1715   } else {
1716     context()->Plug(eax);
1717   }
1718 }
1719 
1720 
VisitArrayLiteral(ArrayLiteral * expr)1721 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1722   Comment cmnt(masm_, "[ ArrayLiteral");
1723 
1724   expr->BuildConstantElements(isolate());
1725   int flags = expr->depth() == 1
1726       ? ArrayLiteral::kShallowElements
1727       : ArrayLiteral::kNoFlags;
1728 
1729   ZoneList<Expression*>* subexprs = expr->values();
1730   int length = subexprs->length();
1731   Handle<FixedArray> constant_elements = expr->constant_elements();
1732   DCHECK_EQ(2, constant_elements->length());
1733   ElementsKind constant_elements_kind =
1734       static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1735   bool has_constant_fast_elements =
1736       IsFastObjectElementsKind(constant_elements_kind);
1737   Handle<FixedArrayBase> constant_elements_values(
1738       FixedArrayBase::cast(constant_elements->get(1)));
1739 
1740   AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1741   if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) {
1742     // If the only customer of allocation sites is transitioning, then
1743     // we can turn it off if we don't have anywhere else to transition to.
1744     allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1745   }
1746 
1747   if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
1748     __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1749     __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
1750     __ push(Immediate(Smi::FromInt(expr->literal_index())));
1751     __ push(Immediate(constant_elements));
1752     __ push(Immediate(Smi::FromInt(flags)));
1753     __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1754   } else {
1755     __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1756     __ mov(eax, FieldOperand(ebx, JSFunction::kLiteralsOffset));
1757     __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
1758     __ mov(ecx, Immediate(constant_elements));
1759     FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1760     __ CallStub(&stub);
1761   }
1762 
1763   bool result_saved = false;  // Is the result saved to the stack?
1764 
1765   // Emit code to evaluate all the non-constant subexpressions and to store
1766   // them into the newly cloned array.
1767   for (int i = 0; i < length; i++) {
1768     Expression* subexpr = subexprs->at(i);
1769     // If the subexpression is a literal or a simple materialized literal it
1770     // is already set in the cloned array.
1771     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1772 
1773     if (!result_saved) {
1774       __ push(eax);  // array literal.
1775       __ push(Immediate(Smi::FromInt(expr->literal_index())));
1776       result_saved = true;
1777     }
1778     VisitForAccumulatorValue(subexpr);
1779 
1780     if (IsFastObjectElementsKind(constant_elements_kind)) {
1781       // Fast-case array literal with ElementsKind of FAST_*_ELEMENTS, they
1782       // cannot transition and don't need to call the runtime stub.
1783       int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1784       __ mov(ebx, Operand(esp, kPointerSize));  // Copy of array literal.
1785       __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
1786       // Store the subexpression value in the array's elements.
1787       __ mov(FieldOperand(ebx, offset), result_register());
1788       // Update the write barrier for the array store.
1789       __ RecordWriteField(ebx, offset, result_register(), ecx,
1790                           kDontSaveFPRegs,
1791                           EMIT_REMEMBERED_SET,
1792                           INLINE_SMI_CHECK);
1793     } else {
1794       // Store the subexpression value in the array's elements.
1795       __ mov(ecx, Immediate(Smi::FromInt(i)));
1796       StoreArrayLiteralElementStub stub(isolate());
1797       __ CallStub(&stub);
1798     }
1799 
1800     PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1801   }
1802 
1803   if (result_saved) {
1804     __ add(esp, Immediate(kPointerSize));  // literal index
1805     context()->PlugTOS();
1806   } else {
1807     context()->Plug(eax);
1808   }
1809 }
1810 
1811 
VisitAssignment(Assignment * expr)1812 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1813   DCHECK(expr->target()->IsValidReferenceExpression());
1814 
1815   Comment cmnt(masm_, "[ Assignment");
1816 
1817   // Left-hand side can only be a property, a global or a (parameter or local)
1818   // slot.
1819   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1820   LhsKind assign_type = VARIABLE;
1821   Property* property = expr->target()->AsProperty();
1822   if (property != NULL) {
1823     assign_type = (property->key()->IsPropertyName())
1824         ? NAMED_PROPERTY
1825         : KEYED_PROPERTY;
1826   }
1827 
1828   // Evaluate LHS expression.
1829   switch (assign_type) {
1830     case VARIABLE:
1831       // Nothing to do here.
1832       break;
1833     case NAMED_PROPERTY:
1834       if (expr->is_compound()) {
1835         // We need the receiver both on the stack and in the register.
1836         VisitForStackValue(property->obj());
1837         __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
1838       } else {
1839         VisitForStackValue(property->obj());
1840       }
1841       break;
1842     case KEYED_PROPERTY: {
1843       if (expr->is_compound()) {
1844         VisitForStackValue(property->obj());
1845         VisitForStackValue(property->key());
1846         __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, kPointerSize));
1847         __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0));
1848       } else {
1849         VisitForStackValue(property->obj());
1850         VisitForStackValue(property->key());
1851       }
1852       break;
1853     }
1854   }
1855 
1856   // For compound assignments we need another deoptimization point after the
1857   // variable/property load.
1858   if (expr->is_compound()) {
1859     AccumulatorValueContext result_context(this);
1860     { AccumulatorValueContext left_operand_context(this);
1861       switch (assign_type) {
1862         case VARIABLE:
1863           EmitVariableLoad(expr->target()->AsVariableProxy());
1864           PrepareForBailout(expr->target(), TOS_REG);
1865           break;
1866         case NAMED_PROPERTY:
1867           EmitNamedPropertyLoad(property);
1868           PrepareForBailoutForId(property->LoadId(), TOS_REG);
1869           break;
1870         case KEYED_PROPERTY:
1871           EmitKeyedPropertyLoad(property);
1872           PrepareForBailoutForId(property->LoadId(), TOS_REG);
1873           break;
1874       }
1875     }
1876 
1877     Token::Value op = expr->binary_op();
1878     __ push(eax);  // Left operand goes on the stack.
1879     VisitForAccumulatorValue(expr->value());
1880 
1881     OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1882         ? OVERWRITE_RIGHT
1883         : NO_OVERWRITE;
1884     SetSourcePosition(expr->position() + 1);
1885     if (ShouldInlineSmiCase(op)) {
1886       EmitInlineSmiBinaryOp(expr->binary_operation(),
1887                             op,
1888                             mode,
1889                             expr->target(),
1890                             expr->value());
1891     } else {
1892       EmitBinaryOp(expr->binary_operation(), op, mode);
1893     }
1894 
1895     // Deoptimization point in case the binary operation may have side effects.
1896     PrepareForBailout(expr->binary_operation(), TOS_REG);
1897   } else {
1898     VisitForAccumulatorValue(expr->value());
1899   }
1900 
1901   // Record source position before possible IC call.
1902   SetSourcePosition(expr->position());
1903 
1904   // Store the value.
1905   switch (assign_type) {
1906     case VARIABLE:
1907       EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1908                              expr->op());
1909       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1910       context()->Plug(eax);
1911       break;
1912     case NAMED_PROPERTY:
1913       EmitNamedPropertyAssignment(expr);
1914       break;
1915     case KEYED_PROPERTY:
1916       EmitKeyedPropertyAssignment(expr);
1917       break;
1918   }
1919 }
1920 
1921 
VisitYield(Yield * expr)1922 void FullCodeGenerator::VisitYield(Yield* expr) {
1923   Comment cmnt(masm_, "[ Yield");
1924   // Evaluate yielded value first; the initial iterator definition depends on
1925   // this.  It stays on the stack while we update the iterator.
1926   VisitForStackValue(expr->expression());
1927 
1928   switch (expr->yield_kind()) {
1929     case Yield::kSuspend:
1930       // Pop value from top-of-stack slot; box result into result register.
1931       EmitCreateIteratorResult(false);
1932       __ push(result_register());
1933       // Fall through.
1934     case Yield::kInitial: {
1935       Label suspend, continuation, post_runtime, resume;
1936 
1937       __ jmp(&suspend);
1938 
1939       __ bind(&continuation);
1940       __ jmp(&resume);
1941 
1942       __ bind(&suspend);
1943       VisitForAccumulatorValue(expr->generator_object());
1944       DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
1945       __ mov(FieldOperand(eax, JSGeneratorObject::kContinuationOffset),
1946              Immediate(Smi::FromInt(continuation.pos())));
1947       __ mov(FieldOperand(eax, JSGeneratorObject::kContextOffset), esi);
1948       __ mov(ecx, esi);
1949       __ RecordWriteField(eax, JSGeneratorObject::kContextOffset, ecx, edx,
1950                           kDontSaveFPRegs);
1951       __ lea(ebx, Operand(ebp, StandardFrameConstants::kExpressionsOffset));
1952       __ cmp(esp, ebx);
1953       __ j(equal, &post_runtime);
1954       __ push(eax);  // generator object
1955       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
1956       __ mov(context_register(),
1957              Operand(ebp, StandardFrameConstants::kContextOffset));
1958       __ bind(&post_runtime);
1959       __ pop(result_register());
1960       EmitReturnSequence();
1961 
1962       __ bind(&resume);
1963       context()->Plug(result_register());
1964       break;
1965     }
1966 
1967     case Yield::kFinal: {
1968       VisitForAccumulatorValue(expr->generator_object());
1969       __ mov(FieldOperand(result_register(),
1970                           JSGeneratorObject::kContinuationOffset),
1971              Immediate(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
1972       // Pop value from top-of-stack slot, box result into result register.
1973       EmitCreateIteratorResult(true);
1974       EmitUnwindBeforeReturn();
1975       EmitReturnSequence();
1976       break;
1977     }
1978 
1979     case Yield::kDelegating: {
1980       VisitForStackValue(expr->generator_object());
1981 
1982       // Initial stack layout is as follows:
1983       // [sp + 1 * kPointerSize] iter
1984       // [sp + 0 * kPointerSize] g
1985 
1986       Label l_catch, l_try, l_suspend, l_continuation, l_resume;
1987       Label l_next, l_call, l_loop;
1988       Register load_receiver = LoadDescriptor::ReceiverRegister();
1989       Register load_name = LoadDescriptor::NameRegister();
1990 
1991       // Initial send value is undefined.
1992       __ mov(eax, isolate()->factory()->undefined_value());
1993       __ jmp(&l_next);
1994 
1995       // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
1996       __ bind(&l_catch);
1997       handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
1998       __ mov(load_name, isolate()->factory()->throw_string());  // "throw"
1999       __ push(load_name);                                       // "throw"
2000       __ push(Operand(esp, 2 * kPointerSize));                  // iter
2001       __ push(eax);                                             // exception
2002       __ jmp(&l_call);
2003 
2004       // try { received = %yield result }
2005       // Shuffle the received result above a try handler and yield it without
2006       // re-boxing.
2007       __ bind(&l_try);
2008       __ pop(eax);                                       // result
2009       __ PushTryHandler(StackHandler::CATCH, expr->index());
2010       const int handler_size = StackHandlerConstants::kSize;
2011       __ push(eax);                                      // result
2012       __ jmp(&l_suspend);
2013       __ bind(&l_continuation);
2014       __ jmp(&l_resume);
2015       __ bind(&l_suspend);
2016       const int generator_object_depth = kPointerSize + handler_size;
2017       __ mov(eax, Operand(esp, generator_object_depth));
2018       __ push(eax);                                      // g
2019       DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
2020       __ mov(FieldOperand(eax, JSGeneratorObject::kContinuationOffset),
2021              Immediate(Smi::FromInt(l_continuation.pos())));
2022       __ mov(FieldOperand(eax, JSGeneratorObject::kContextOffset), esi);
2023       __ mov(ecx, esi);
2024       __ RecordWriteField(eax, JSGeneratorObject::kContextOffset, ecx, edx,
2025                           kDontSaveFPRegs);
2026       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2027       __ mov(context_register(),
2028              Operand(ebp, StandardFrameConstants::kContextOffset));
2029       __ pop(eax);                                       // result
2030       EmitReturnSequence();
2031       __ bind(&l_resume);                                // received in eax
2032       __ PopTryHandler();
2033 
2034       // receiver = iter; f = iter.next; arg = received;
2035       __ bind(&l_next);
2036 
2037       __ mov(load_name, isolate()->factory()->next_string());
2038       __ push(load_name);                           // "next"
2039       __ push(Operand(esp, 2 * kPointerSize));      // iter
2040       __ push(eax);                                 // received
2041 
2042       // result = receiver[f](arg);
2043       __ bind(&l_call);
2044       __ mov(load_receiver, Operand(esp, kPointerSize));
2045       if (FLAG_vector_ics) {
2046         __ mov(VectorLoadICDescriptor::SlotRegister(),
2047                Immediate(Smi::FromInt(expr->KeyedLoadFeedbackSlot())));
2048       }
2049       Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2050       CallIC(ic, TypeFeedbackId::None());
2051       __ mov(edi, eax);
2052       __ mov(Operand(esp, 2 * kPointerSize), edi);
2053       CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
2054       __ CallStub(&stub);
2055 
2056       __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2057       __ Drop(1);  // The function is still on the stack; drop it.
2058 
2059       // if (!result.done) goto l_try;
2060       __ bind(&l_loop);
2061       __ push(eax);                                      // save result
2062       __ Move(load_receiver, eax);                       // result
2063       __ mov(load_name,
2064              isolate()->factory()->done_string());       // "done"
2065       if (FLAG_vector_ics) {
2066         __ mov(VectorLoadICDescriptor::SlotRegister(),
2067                Immediate(Smi::FromInt(expr->DoneFeedbackSlot())));
2068       }
2069       CallLoadIC(NOT_CONTEXTUAL);                        // result.done in eax
2070       Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2071       CallIC(bool_ic);
2072       __ test(eax, eax);
2073       __ j(zero, &l_try);
2074 
2075       // result.value
2076       __ pop(load_receiver);                              // result
2077       __ mov(load_name,
2078              isolate()->factory()->value_string());       // "value"
2079       if (FLAG_vector_ics) {
2080         __ mov(VectorLoadICDescriptor::SlotRegister(),
2081                Immediate(Smi::FromInt(expr->ValueFeedbackSlot())));
2082       }
2083       CallLoadIC(NOT_CONTEXTUAL);                         // result.value in eax
2084       context()->DropAndPlug(2, eax);                     // drop iter and g
2085       break;
2086     }
2087   }
2088 }
2089 
2090 
EmitGeneratorResume(Expression * generator,Expression * value,JSGeneratorObject::ResumeMode resume_mode)2091 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
2092     Expression *value,
2093     JSGeneratorObject::ResumeMode resume_mode) {
2094   // The value stays in eax, and is ultimately read by the resumed generator, as
2095   // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2096   // is read to throw the value when the resumed generator is already closed.
2097   // ebx will hold the generator object until the activation has been resumed.
2098   VisitForStackValue(generator);
2099   VisitForAccumulatorValue(value);
2100   __ pop(ebx);
2101 
2102   // Check generator state.
2103   Label wrong_state, closed_state, done;
2104   STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
2105   STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
2106   __ cmp(FieldOperand(ebx, JSGeneratorObject::kContinuationOffset),
2107          Immediate(Smi::FromInt(0)));
2108   __ j(equal, &closed_state);
2109   __ j(less, &wrong_state);
2110 
2111   // Load suspended function and context.
2112   __ mov(esi, FieldOperand(ebx, JSGeneratorObject::kContextOffset));
2113   __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
2114 
2115   // Push receiver.
2116   __ push(FieldOperand(ebx, JSGeneratorObject::kReceiverOffset));
2117 
2118   // Push holes for arguments to generator function.
2119   __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2120   __ mov(edx,
2121          FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2122   __ mov(ecx, isolate()->factory()->the_hole_value());
2123   Label push_argument_holes, push_frame;
2124   __ bind(&push_argument_holes);
2125   __ sub(edx, Immediate(Smi::FromInt(1)));
2126   __ j(carry, &push_frame);
2127   __ push(ecx);
2128   __ jmp(&push_argument_holes);
2129 
2130   // Enter a new JavaScript frame, and initialize its slots as they were when
2131   // the generator was suspended.
2132   Label resume_frame;
2133   __ bind(&push_frame);
2134   __ call(&resume_frame);
2135   __ jmp(&done);
2136   __ bind(&resume_frame);
2137   __ push(ebp);  // Caller's frame pointer.
2138   __ mov(ebp, esp);
2139   __ push(esi);  // Callee's context.
2140   __ push(edi);  // Callee's JS Function.
2141 
2142   // Load the operand stack size.
2143   __ mov(edx, FieldOperand(ebx, JSGeneratorObject::kOperandStackOffset));
2144   __ mov(edx, FieldOperand(edx, FixedArray::kLengthOffset));
2145   __ SmiUntag(edx);
2146 
2147   // If we are sending a value and there is no operand stack, we can jump back
2148   // in directly.
2149   if (resume_mode == JSGeneratorObject::NEXT) {
2150     Label slow_resume;
2151     __ cmp(edx, Immediate(0));
2152     __ j(not_zero, &slow_resume);
2153     __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2154     __ mov(ecx, FieldOperand(ebx, JSGeneratorObject::kContinuationOffset));
2155     __ SmiUntag(ecx);
2156     __ add(edx, ecx);
2157     __ mov(FieldOperand(ebx, JSGeneratorObject::kContinuationOffset),
2158            Immediate(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
2159     __ jmp(edx);
2160     __ bind(&slow_resume);
2161   }
2162 
2163   // Otherwise, we push holes for the operand stack and call the runtime to fix
2164   // up the stack and the handlers.
2165   Label push_operand_holes, call_resume;
2166   __ bind(&push_operand_holes);
2167   __ sub(edx, Immediate(1));
2168   __ j(carry, &call_resume);
2169   __ push(ecx);
2170   __ jmp(&push_operand_holes);
2171   __ bind(&call_resume);
2172   __ push(ebx);
2173   __ push(result_register());
2174   __ Push(Smi::FromInt(resume_mode));
2175   __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
2176   // Not reached: the runtime call returns elsewhere.
2177   __ Abort(kGeneratorFailedToResume);
2178 
2179   // Reach here when generator is closed.
2180   __ bind(&closed_state);
2181   if (resume_mode == JSGeneratorObject::NEXT) {
2182     // Return completed iterator result when generator is closed.
2183     __ push(Immediate(isolate()->factory()->undefined_value()));
2184     // Pop value from top-of-stack slot; box result into result register.
2185     EmitCreateIteratorResult(true);
2186   } else {
2187     // Throw the provided value.
2188     __ push(eax);
2189     __ CallRuntime(Runtime::kThrow, 1);
2190   }
2191   __ jmp(&done);
2192 
2193   // Throw error if we attempt to operate on a running generator.
2194   __ bind(&wrong_state);
2195   __ push(ebx);
2196   __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
2197 
2198   __ bind(&done);
2199   context()->Plug(result_register());
2200 }
2201 
2202 
EmitCreateIteratorResult(bool done)2203 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2204   Label gc_required;
2205   Label allocated;
2206 
2207   Handle<Map> map(isolate()->native_context()->iterator_result_map());
2208 
2209   __ Allocate(map->instance_size(), eax, ecx, edx, &gc_required, TAG_OBJECT);
2210   __ jmp(&allocated);
2211 
2212   __ bind(&gc_required);
2213   __ Push(Smi::FromInt(map->instance_size()));
2214   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
2215   __ mov(context_register(),
2216          Operand(ebp, StandardFrameConstants::kContextOffset));
2217 
2218   __ bind(&allocated);
2219   __ mov(ebx, map);
2220   __ pop(ecx);
2221   __ mov(edx, isolate()->factory()->ToBoolean(done));
2222   DCHECK_EQ(map->instance_size(), 5 * kPointerSize);
2223   __ mov(FieldOperand(eax, HeapObject::kMapOffset), ebx);
2224   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
2225          isolate()->factory()->empty_fixed_array());
2226   __ mov(FieldOperand(eax, JSObject::kElementsOffset),
2227          isolate()->factory()->empty_fixed_array());
2228   __ mov(FieldOperand(eax, JSGeneratorObject::kResultValuePropertyOffset), ecx);
2229   __ mov(FieldOperand(eax, JSGeneratorObject::kResultDonePropertyOffset), edx);
2230 
2231   // Only the value field needs a write barrier, as the other values are in the
2232   // root set.
2233   __ RecordWriteField(eax, JSGeneratorObject::kResultValuePropertyOffset,
2234                       ecx, edx, kDontSaveFPRegs);
2235 }
2236 
2237 
EmitNamedPropertyLoad(Property * prop)2238 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2239   SetSourcePosition(prop->position());
2240   Literal* key = prop->key()->AsLiteral();
2241   DCHECK(!key->value()->IsSmi());
2242   __ mov(LoadDescriptor::NameRegister(), Immediate(key->value()));
2243   if (FLAG_vector_ics) {
2244     __ mov(VectorLoadICDescriptor::SlotRegister(),
2245            Immediate(Smi::FromInt(prop->PropertyFeedbackSlot())));
2246     CallLoadIC(NOT_CONTEXTUAL);
2247   } else {
2248     CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
2249   }
2250 }
2251 
2252 
EmitNamedSuperPropertyLoad(Property * prop)2253 void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
2254   SetSourcePosition(prop->position());
2255   Literal* key = prop->key()->AsLiteral();
2256   DCHECK(!key->value()->IsSmi());
2257   DCHECK(prop->IsSuperAccess());
2258 
2259   SuperReference* super_ref = prop->obj()->AsSuperReference();
2260   EmitLoadHomeObject(super_ref);
2261   __ push(eax);
2262   VisitForStackValue(super_ref->this_var());
2263   __ push(Immediate(key->value()));
2264   __ CallRuntime(Runtime::kLoadFromSuper, 3);
2265 }
2266 
2267 
EmitKeyedPropertyLoad(Property * prop)2268 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2269   SetSourcePosition(prop->position());
2270   Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2271   if (FLAG_vector_ics) {
2272     __ mov(VectorLoadICDescriptor::SlotRegister(),
2273            Immediate(Smi::FromInt(prop->PropertyFeedbackSlot())));
2274     CallIC(ic);
2275   } else {
2276     CallIC(ic, prop->PropertyFeedbackId());
2277   }
2278 }
2279 
2280 
EmitInlineSmiBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode,Expression * left,Expression * right)2281 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2282                                               Token::Value op,
2283                                               OverwriteMode mode,
2284                                               Expression* left,
2285                                               Expression* right) {
2286   // Do combined smi check of the operands. Left operand is on the
2287   // stack. Right operand is in eax.
2288   Label smi_case, done, stub_call;
2289   __ pop(edx);
2290   __ mov(ecx, eax);
2291   __ or_(eax, edx);
2292   JumpPatchSite patch_site(masm_);
2293   patch_site.EmitJumpIfSmi(eax, &smi_case, Label::kNear);
2294 
2295   __ bind(&stub_call);
2296   __ mov(eax, ecx);
2297   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2298   CallIC(code, expr->BinaryOperationFeedbackId());
2299   patch_site.EmitPatchInfo();
2300   __ jmp(&done, Label::kNear);
2301 
2302   // Smi case.
2303   __ bind(&smi_case);
2304   __ mov(eax, edx);  // Copy left operand in case of a stub call.
2305 
2306   switch (op) {
2307     case Token::SAR:
2308       __ SmiUntag(ecx);
2309       __ sar_cl(eax);  // No checks of result necessary
2310       __ and_(eax, Immediate(~kSmiTagMask));
2311       break;
2312     case Token::SHL: {
2313       Label result_ok;
2314       __ SmiUntag(eax);
2315       __ SmiUntag(ecx);
2316       __ shl_cl(eax);
2317       // Check that the *signed* result fits in a smi.
2318       __ cmp(eax, 0xc0000000);
2319       __ j(positive, &result_ok);
2320       __ SmiTag(ecx);
2321       __ jmp(&stub_call);
2322       __ bind(&result_ok);
2323       __ SmiTag(eax);
2324       break;
2325     }
2326     case Token::SHR: {
2327       Label result_ok;
2328       __ SmiUntag(eax);
2329       __ SmiUntag(ecx);
2330       __ shr_cl(eax);
2331       __ test(eax, Immediate(0xc0000000));
2332       __ j(zero, &result_ok);
2333       __ SmiTag(ecx);
2334       __ jmp(&stub_call);
2335       __ bind(&result_ok);
2336       __ SmiTag(eax);
2337       break;
2338     }
2339     case Token::ADD:
2340       __ add(eax, ecx);
2341       __ j(overflow, &stub_call);
2342       break;
2343     case Token::SUB:
2344       __ sub(eax, ecx);
2345       __ j(overflow, &stub_call);
2346       break;
2347     case Token::MUL: {
2348       __ SmiUntag(eax);
2349       __ imul(eax, ecx);
2350       __ j(overflow, &stub_call);
2351       __ test(eax, eax);
2352       __ j(not_zero, &done, Label::kNear);
2353       __ mov(ebx, edx);
2354       __ or_(ebx, ecx);
2355       __ j(negative, &stub_call);
2356       break;
2357     }
2358     case Token::BIT_OR:
2359       __ or_(eax, ecx);
2360       break;
2361     case Token::BIT_AND:
2362       __ and_(eax, ecx);
2363       break;
2364     case Token::BIT_XOR:
2365       __ xor_(eax, ecx);
2366       break;
2367     default:
2368       UNREACHABLE();
2369   }
2370 
2371   __ bind(&done);
2372   context()->Plug(eax);
2373 }
2374 
2375 
EmitBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode)2376 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
2377                                      Token::Value op,
2378                                      OverwriteMode mode) {
2379   __ pop(edx);
2380   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2381   JumpPatchSite patch_site(masm_);    // unbound, signals no inlined smi code.
2382   CallIC(code, expr->BinaryOperationFeedbackId());
2383   patch_site.EmitPatchInfo();
2384   context()->Plug(eax);
2385 }
2386 
2387 
EmitAssignment(Expression * expr)2388 void FullCodeGenerator::EmitAssignment(Expression* expr) {
2389   DCHECK(expr->IsValidReferenceExpression());
2390 
2391   // Left-hand side can only be a property, a global or a (parameter or local)
2392   // slot.
2393   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
2394   LhsKind assign_type = VARIABLE;
2395   Property* prop = expr->AsProperty();
2396   if (prop != NULL) {
2397     assign_type = (prop->key()->IsPropertyName())
2398         ? NAMED_PROPERTY
2399         : KEYED_PROPERTY;
2400   }
2401 
2402   switch (assign_type) {
2403     case VARIABLE: {
2404       Variable* var = expr->AsVariableProxy()->var();
2405       EffectContext context(this);
2406       EmitVariableAssignment(var, Token::ASSIGN);
2407       break;
2408     }
2409     case NAMED_PROPERTY: {
2410       __ push(eax);  // Preserve value.
2411       VisitForAccumulatorValue(prop->obj());
2412       __ Move(StoreDescriptor::ReceiverRegister(), eax);
2413       __ pop(StoreDescriptor::ValueRegister());  // Restore value.
2414       __ mov(StoreDescriptor::NameRegister(),
2415              prop->key()->AsLiteral()->value());
2416       CallStoreIC();
2417       break;
2418     }
2419     case KEYED_PROPERTY: {
2420       __ push(eax);  // Preserve value.
2421       VisitForStackValue(prop->obj());
2422       VisitForAccumulatorValue(prop->key());
2423       __ Move(StoreDescriptor::NameRegister(), eax);
2424       __ pop(StoreDescriptor::ReceiverRegister());  // Receiver.
2425       __ pop(StoreDescriptor::ValueRegister());     // Restore value.
2426       Handle<Code> ic =
2427           CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2428       CallIC(ic);
2429       break;
2430     }
2431   }
2432   context()->Plug(eax);
2433 }
2434 
2435 
EmitStoreToStackLocalOrContextSlot(Variable * var,MemOperand location)2436 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2437     Variable* var, MemOperand location) {
2438   __ mov(location, eax);
2439   if (var->IsContextSlot()) {
2440     __ mov(edx, eax);
2441     int offset = Context::SlotOffset(var->index());
2442     __ RecordWriteContextSlot(ecx, offset, edx, ebx, kDontSaveFPRegs);
2443   }
2444 }
2445 
2446 
EmitVariableAssignment(Variable * var,Token::Value op)2447 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
2448                                                Token::Value op) {
2449   if (var->IsUnallocated()) {
2450     // Global var, const, or let.
2451     __ mov(StoreDescriptor::NameRegister(), var->name());
2452     __ mov(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand());
2453     CallStoreIC();
2454 
2455   } else if (op == Token::INIT_CONST_LEGACY) {
2456     // Const initializers need a write barrier.
2457     DCHECK(!var->IsParameter());  // No const parameters.
2458     if (var->IsLookupSlot()) {
2459       __ push(eax);
2460       __ push(esi);
2461       __ push(Immediate(var->name()));
2462       __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2463     } else {
2464       DCHECK(var->IsStackLocal() || var->IsContextSlot());
2465       Label skip;
2466       MemOperand location = VarOperand(var, ecx);
2467       __ mov(edx, location);
2468       __ cmp(edx, isolate()->factory()->the_hole_value());
2469       __ j(not_equal, &skip, Label::kNear);
2470       EmitStoreToStackLocalOrContextSlot(var, location);
2471       __ bind(&skip);
2472     }
2473 
2474   } else if (var->mode() == LET && op != Token::INIT_LET) {
2475     // Non-initializing assignment to let variable needs a write barrier.
2476     DCHECK(!var->IsLookupSlot());
2477     DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2478     Label assign;
2479     MemOperand location = VarOperand(var, ecx);
2480     __ mov(edx, location);
2481     __ cmp(edx, isolate()->factory()->the_hole_value());
2482     __ j(not_equal, &assign, Label::kNear);
2483     __ push(Immediate(var->name()));
2484     __ CallRuntime(Runtime::kThrowReferenceError, 1);
2485     __ bind(&assign);
2486     EmitStoreToStackLocalOrContextSlot(var, location);
2487 
2488   } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2489     if (var->IsLookupSlot()) {
2490       // Assignment to var.
2491       __ push(eax);  // Value.
2492       __ push(esi);  // Context.
2493       __ push(Immediate(var->name()));
2494       __ push(Immediate(Smi::FromInt(strict_mode())));
2495       __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2496     } else {
2497       // Assignment to var or initializing assignment to let/const in harmony
2498       // mode.
2499       DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2500       MemOperand location = VarOperand(var, ecx);
2501       if (generate_debug_code_ && op == Token::INIT_LET) {
2502         // Check for an uninitialized let binding.
2503         __ mov(edx, location);
2504         __ cmp(edx, isolate()->factory()->the_hole_value());
2505         __ Check(equal, kLetBindingReInitialization);
2506       }
2507       EmitStoreToStackLocalOrContextSlot(var, location);
2508     }
2509   }
2510   // Non-initializing assignments to consts are ignored.
2511 }
2512 
2513 
EmitNamedPropertyAssignment(Assignment * expr)2514 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2515   // Assignment to a property, using a named store IC.
2516   // eax    : value
2517   // esp[0] : receiver
2518 
2519   Property* prop = expr->target()->AsProperty();
2520   DCHECK(prop != NULL);
2521   DCHECK(prop->key()->IsLiteral());
2522 
2523   // Record source code position before IC call.
2524   SetSourcePosition(expr->position());
2525   __ mov(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value());
2526   __ pop(StoreDescriptor::ReceiverRegister());
2527   CallStoreIC(expr->AssignmentFeedbackId());
2528   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2529   context()->Plug(eax);
2530 }
2531 
2532 
EmitKeyedPropertyAssignment(Assignment * expr)2533 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2534   // Assignment to a property, using a keyed store IC.
2535   // eax               : value
2536   // esp[0]            : key
2537   // esp[kPointerSize] : receiver
2538 
2539   __ pop(StoreDescriptor::NameRegister());  // Key.
2540   __ pop(StoreDescriptor::ReceiverRegister());
2541   DCHECK(StoreDescriptor::ValueRegister().is(eax));
2542   // Record source code position before IC call.
2543   SetSourcePosition(expr->position());
2544   Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2545   CallIC(ic, expr->AssignmentFeedbackId());
2546 
2547   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2548   context()->Plug(eax);
2549 }
2550 
2551 
VisitProperty(Property * expr)2552 void FullCodeGenerator::VisitProperty(Property* expr) {
2553   Comment cmnt(masm_, "[ Property");
2554   Expression* key = expr->key();
2555 
2556   if (key->IsPropertyName()) {
2557     if (!expr->IsSuperAccess()) {
2558       VisitForAccumulatorValue(expr->obj());
2559       __ Move(LoadDescriptor::ReceiverRegister(), result_register());
2560       EmitNamedPropertyLoad(expr);
2561     } else {
2562       EmitNamedSuperPropertyLoad(expr);
2563     }
2564     PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2565     context()->Plug(eax);
2566   } else {
2567     VisitForStackValue(expr->obj());
2568     VisitForAccumulatorValue(expr->key());
2569     __ pop(LoadDescriptor::ReceiverRegister());                  // Object.
2570     __ Move(LoadDescriptor::NameRegister(), result_register());  // Key.
2571     EmitKeyedPropertyLoad(expr);
2572     context()->Plug(eax);
2573   }
2574 }
2575 
2576 
CallIC(Handle<Code> code,TypeFeedbackId ast_id)2577 void FullCodeGenerator::CallIC(Handle<Code> code,
2578                                TypeFeedbackId ast_id) {
2579   ic_total_count_++;
2580   __ call(code, RelocInfo::CODE_TARGET, ast_id);
2581 }
2582 
2583 
2584 // Code common for calls using the IC.
EmitCallWithLoadIC(Call * expr)2585 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2586   Expression* callee = expr->expression();
2587 
2588   CallICState::CallType call_type =
2589       callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
2590   // Get the target function.
2591   if (call_type == CallICState::FUNCTION) {
2592     { StackValueContext context(this);
2593       EmitVariableLoad(callee->AsVariableProxy());
2594       PrepareForBailout(callee, NO_REGISTERS);
2595     }
2596     // Push undefined as receiver. This is patched in the method prologue if it
2597     // is a sloppy mode method.
2598     __ push(Immediate(isolate()->factory()->undefined_value()));
2599   } else {
2600     // Load the function from the receiver.
2601     DCHECK(callee->IsProperty());
2602     DCHECK(!callee->AsProperty()->IsSuperAccess());
2603     __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
2604     EmitNamedPropertyLoad(callee->AsProperty());
2605     PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2606     // Push the target function under the receiver.
2607     __ push(Operand(esp, 0));
2608     __ mov(Operand(esp, kPointerSize), eax);
2609   }
2610 
2611   EmitCall(expr, call_type);
2612 }
2613 
2614 
EmitSuperCallWithLoadIC(Call * expr)2615 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2616   Expression* callee = expr->expression();
2617   DCHECK(callee->IsProperty());
2618   Property* prop = callee->AsProperty();
2619   DCHECK(prop->IsSuperAccess());
2620 
2621   SetSourcePosition(prop->position());
2622   Literal* key = prop->key()->AsLiteral();
2623   DCHECK(!key->value()->IsSmi());
2624   // Load the function from the receiver.
2625   SuperReference* super_ref = callee->AsProperty()->obj()->AsSuperReference();
2626   EmitLoadHomeObject(super_ref);
2627   __ push(eax);
2628   VisitForAccumulatorValue(super_ref->this_var());
2629   __ push(eax);
2630   __ push(Operand(esp, kPointerSize));
2631   __ push(eax);
2632   __ push(Immediate(key->value()));
2633   // Stack here:
2634   //  - home_object
2635   //  - this (receiver)
2636   //  - home_object <-- LoadFromSuper will pop here and below.
2637   //  - this (receiver)
2638   //  - key
2639   __ CallRuntime(Runtime::kLoadFromSuper, 3);
2640 
2641   // Replace home_object with target function.
2642   __ mov(Operand(esp, kPointerSize), eax);
2643 
2644   // Stack here:
2645   // - target function
2646   // - this (receiver)
2647   EmitCall(expr, CallICState::METHOD);
2648 }
2649 
2650 
2651 // Code common for calls using the IC.
EmitKeyedCallWithLoadIC(Call * expr,Expression * key)2652 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2653                                                 Expression* key) {
2654   // Load the key.
2655   VisitForAccumulatorValue(key);
2656 
2657   Expression* callee = expr->expression();
2658 
2659   // Load the function from the receiver.
2660   DCHECK(callee->IsProperty());
2661   __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
2662   __ mov(LoadDescriptor::NameRegister(), eax);
2663   EmitKeyedPropertyLoad(callee->AsProperty());
2664   PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2665 
2666   // Push the target function under the receiver.
2667   __ push(Operand(esp, 0));
2668   __ mov(Operand(esp, kPointerSize), eax);
2669 
2670   EmitCall(expr, CallICState::METHOD);
2671 }
2672 
2673 
EmitCall(Call * expr,CallICState::CallType call_type)2674 void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
2675   // Load the arguments.
2676   ZoneList<Expression*>* args = expr->arguments();
2677   int arg_count = args->length();
2678   { PreservePositionScope scope(masm()->positions_recorder());
2679     for (int i = 0; i < arg_count; i++) {
2680       VisitForStackValue(args->at(i));
2681     }
2682   }
2683 
2684   // Record source position of the IC call.
2685   SetSourcePosition(expr->position());
2686   Handle<Code> ic = CallIC::initialize_stub(
2687       isolate(), arg_count, call_type);
2688   __ Move(edx, Immediate(Smi::FromInt(expr->CallFeedbackSlot())));
2689   __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
2690   // Don't assign a type feedback id to the IC, since type feedback is provided
2691   // by the vector above.
2692   CallIC(ic);
2693 
2694   RecordJSReturnSite(expr);
2695 
2696   // Restore context register.
2697   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2698 
2699   context()->DropAndPlug(1, eax);
2700 }
2701 
2702 
EmitResolvePossiblyDirectEval(int arg_count)2703 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2704   // Push copy of the first argument or undefined if it doesn't exist.
2705   if (arg_count > 0) {
2706     __ push(Operand(esp, arg_count * kPointerSize));
2707   } else {
2708     __ push(Immediate(isolate()->factory()->undefined_value()));
2709   }
2710 
2711   // Push the enclosing function.
2712   __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2713   // Push the receiver of the enclosing function.
2714   __ push(Operand(ebp, (2 + info_->scope()->num_parameters()) * kPointerSize));
2715   // Push the language mode.
2716   __ push(Immediate(Smi::FromInt(strict_mode())));
2717 
2718   // Push the start position of the scope the calls resides in.
2719   __ push(Immediate(Smi::FromInt(scope()->start_position())));
2720 
2721   // Do the runtime call.
2722   __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6);
2723 }
2724 
2725 
VisitCall(Call * expr)2726 void FullCodeGenerator::VisitCall(Call* expr) {
2727 #ifdef DEBUG
2728   // We want to verify that RecordJSReturnSite gets called on all paths
2729   // through this function.  Avoid early returns.
2730   expr->return_is_recorded_ = false;
2731 #endif
2732 
2733   Comment cmnt(masm_, "[ Call");
2734   Expression* callee = expr->expression();
2735   Call::CallType call_type = expr->GetCallType(isolate());
2736 
2737   if (call_type == Call::POSSIBLY_EVAL_CALL) {
2738     // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2739     // to resolve the function we need to call and the receiver of the call.
2740     // Then we call the resolved function using the given arguments.
2741     ZoneList<Expression*>* args = expr->arguments();
2742     int arg_count = args->length();
2743     { PreservePositionScope pos_scope(masm()->positions_recorder());
2744       VisitForStackValue(callee);
2745       // Reserved receiver slot.
2746       __ push(Immediate(isolate()->factory()->undefined_value()));
2747       // Push the arguments.
2748       for (int i = 0; i < arg_count; i++) {
2749         VisitForStackValue(args->at(i));
2750       }
2751 
2752       // Push a copy of the function (found below the arguments) and
2753       // resolve eval.
2754       __ push(Operand(esp, (arg_count + 1) * kPointerSize));
2755       EmitResolvePossiblyDirectEval(arg_count);
2756 
2757       // The runtime call returns a pair of values in eax (function) and
2758       // edx (receiver). Touch up the stack with the right values.
2759       __ mov(Operand(esp, (arg_count + 0) * kPointerSize), edx);
2760       __ mov(Operand(esp, (arg_count + 1) * kPointerSize), eax);
2761     }
2762     // Record source position for debugger.
2763     SetSourcePosition(expr->position());
2764     CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
2765     __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
2766     __ CallStub(&stub);
2767     RecordJSReturnSite(expr);
2768     // Restore context register.
2769     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2770     context()->DropAndPlug(1, eax);
2771 
2772   } else if (call_type == Call::GLOBAL_CALL) {
2773     EmitCallWithLoadIC(expr);
2774 
2775   } else if (call_type == Call::LOOKUP_SLOT_CALL) {
2776     // Call to a lookup slot (dynamically introduced variable).
2777     VariableProxy* proxy = callee->AsVariableProxy();
2778     Label slow, done;
2779     { PreservePositionScope scope(masm()->positions_recorder());
2780       // Generate code for loading from variables potentially shadowed by
2781       // eval-introduced variables.
2782       EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
2783     }
2784     __ bind(&slow);
2785     // Call the runtime to find the function to call (returned in eax) and
2786     // the object holding it (returned in edx).
2787     __ push(context_register());
2788     __ push(Immediate(proxy->name()));
2789     __ CallRuntime(Runtime::kLoadLookupSlot, 2);
2790     __ push(eax);  // Function.
2791     __ push(edx);  // Receiver.
2792 
2793     // If fast case code has been generated, emit code to push the function
2794     // and receiver and have the slow path jump around this code.
2795     if (done.is_linked()) {
2796       Label call;
2797       __ jmp(&call, Label::kNear);
2798       __ bind(&done);
2799       // Push function.
2800       __ push(eax);
2801       // The receiver is implicitly the global receiver. Indicate this by
2802       // passing the hole to the call function stub.
2803       __ push(Immediate(isolate()->factory()->undefined_value()));
2804       __ bind(&call);
2805     }
2806 
2807     // The receiver is either the global receiver or an object found by
2808     // LoadContextSlot.
2809     EmitCall(expr);
2810 
2811   } else if (call_type == Call::PROPERTY_CALL) {
2812     Property* property = callee->AsProperty();
2813     bool is_named_call = property->key()->IsPropertyName();
2814     // super.x() is handled in EmitCallWithLoadIC.
2815     if (property->IsSuperAccess() && is_named_call) {
2816       EmitSuperCallWithLoadIC(expr);
2817     } else {
2818       {
2819         PreservePositionScope scope(masm()->positions_recorder());
2820         VisitForStackValue(property->obj());
2821       }
2822       if (is_named_call) {
2823         EmitCallWithLoadIC(expr);
2824       } else {
2825         EmitKeyedCallWithLoadIC(expr, property->key());
2826       }
2827     }
2828   } else {
2829     DCHECK(call_type == Call::OTHER_CALL);
2830     // Call to an arbitrary expression not handled specially above.
2831     { PreservePositionScope scope(masm()->positions_recorder());
2832       VisitForStackValue(callee);
2833     }
2834     __ push(Immediate(isolate()->factory()->undefined_value()));
2835     // Emit function call.
2836     EmitCall(expr);
2837   }
2838 
2839 #ifdef DEBUG
2840   // RecordJSReturnSite should have been called.
2841   DCHECK(expr->return_is_recorded_);
2842 #endif
2843 }
2844 
2845 
VisitCallNew(CallNew * expr)2846 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2847   Comment cmnt(masm_, "[ CallNew");
2848   // According to ECMA-262, section 11.2.2, page 44, the function
2849   // expression in new calls must be evaluated before the
2850   // arguments.
2851 
2852   // Push constructor on the stack.  If it's not a function it's used as
2853   // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2854   // ignored.
2855   VisitForStackValue(expr->expression());
2856 
2857   // Push the arguments ("left-to-right") on the stack.
2858   ZoneList<Expression*>* args = expr->arguments();
2859   int arg_count = args->length();
2860   for (int i = 0; i < arg_count; i++) {
2861     VisitForStackValue(args->at(i));
2862   }
2863 
2864   // Call the construct call builtin that handles allocation and
2865   // constructor invocation.
2866   SetSourcePosition(expr->position());
2867 
2868   // Load function and argument count into edi and eax.
2869   __ Move(eax, Immediate(arg_count));
2870   __ mov(edi, Operand(esp, arg_count * kPointerSize));
2871 
2872   // Record call targets in unoptimized code.
2873   if (FLAG_pretenuring_call_new) {
2874     EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
2875     DCHECK(expr->AllocationSiteFeedbackSlot() ==
2876            expr->CallNewFeedbackSlot() + 1);
2877   }
2878 
2879   __ LoadHeapObject(ebx, FeedbackVector());
2880   __ mov(edx, Immediate(Smi::FromInt(expr->CallNewFeedbackSlot())));
2881 
2882   CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
2883   __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2884   PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2885   context()->Plug(eax);
2886 }
2887 
2888 
EmitIsSmi(CallRuntime * expr)2889 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2890   ZoneList<Expression*>* args = expr->arguments();
2891   DCHECK(args->length() == 1);
2892 
2893   VisitForAccumulatorValue(args->at(0));
2894 
2895   Label materialize_true, materialize_false;
2896   Label* if_true = NULL;
2897   Label* if_false = NULL;
2898   Label* fall_through = NULL;
2899   context()->PrepareTest(&materialize_true, &materialize_false,
2900                          &if_true, &if_false, &fall_through);
2901 
2902   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2903   __ test(eax, Immediate(kSmiTagMask));
2904   Split(zero, if_true, if_false, fall_through);
2905 
2906   context()->Plug(if_true, if_false);
2907 }
2908 
2909 
EmitIsNonNegativeSmi(CallRuntime * expr)2910 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
2911   ZoneList<Expression*>* args = expr->arguments();
2912   DCHECK(args->length() == 1);
2913 
2914   VisitForAccumulatorValue(args->at(0));
2915 
2916   Label materialize_true, materialize_false;
2917   Label* if_true = NULL;
2918   Label* if_false = NULL;
2919   Label* fall_through = NULL;
2920   context()->PrepareTest(&materialize_true, &materialize_false,
2921                          &if_true, &if_false, &fall_through);
2922 
2923   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2924   __ test(eax, Immediate(kSmiTagMask | 0x80000000));
2925   Split(zero, if_true, if_false, fall_through);
2926 
2927   context()->Plug(if_true, if_false);
2928 }
2929 
2930 
EmitIsObject(CallRuntime * expr)2931 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
2932   ZoneList<Expression*>* args = expr->arguments();
2933   DCHECK(args->length() == 1);
2934 
2935   VisitForAccumulatorValue(args->at(0));
2936 
2937   Label materialize_true, materialize_false;
2938   Label* if_true = NULL;
2939   Label* if_false = NULL;
2940   Label* fall_through = NULL;
2941   context()->PrepareTest(&materialize_true, &materialize_false,
2942                          &if_true, &if_false, &fall_through);
2943 
2944   __ JumpIfSmi(eax, if_false);
2945   __ cmp(eax, isolate()->factory()->null_value());
2946   __ j(equal, if_true);
2947   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
2948   // Undetectable objects behave like undefined when tested with typeof.
2949   __ movzx_b(ecx, FieldOperand(ebx, Map::kBitFieldOffset));
2950   __ test(ecx, Immediate(1 << Map::kIsUndetectable));
2951   __ j(not_zero, if_false);
2952   __ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2953   __ cmp(ecx, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
2954   __ j(below, if_false);
2955   __ cmp(ecx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
2956   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2957   Split(below_equal, if_true, if_false, fall_through);
2958 
2959   context()->Plug(if_true, if_false);
2960 }
2961 
2962 
EmitIsSpecObject(CallRuntime * expr)2963 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
2964   ZoneList<Expression*>* args = expr->arguments();
2965   DCHECK(args->length() == 1);
2966 
2967   VisitForAccumulatorValue(args->at(0));
2968 
2969   Label materialize_true, materialize_false;
2970   Label* if_true = NULL;
2971   Label* if_false = NULL;
2972   Label* fall_through = NULL;
2973   context()->PrepareTest(&materialize_true, &materialize_false,
2974                          &if_true, &if_false, &fall_through);
2975 
2976   __ JumpIfSmi(eax, if_false);
2977   __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ebx);
2978   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2979   Split(above_equal, if_true, if_false, fall_through);
2980 
2981   context()->Plug(if_true, if_false);
2982 }
2983 
2984 
EmitIsUndetectableObject(CallRuntime * expr)2985 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
2986   ZoneList<Expression*>* args = expr->arguments();
2987   DCHECK(args->length() == 1);
2988 
2989   VisitForAccumulatorValue(args->at(0));
2990 
2991   Label materialize_true, materialize_false;
2992   Label* if_true = NULL;
2993   Label* if_false = NULL;
2994   Label* fall_through = NULL;
2995   context()->PrepareTest(&materialize_true, &materialize_false,
2996                          &if_true, &if_false, &fall_through);
2997 
2998   __ JumpIfSmi(eax, if_false);
2999   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3000   __ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset));
3001   __ test(ebx, Immediate(1 << Map::kIsUndetectable));
3002   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3003   Split(not_zero, if_true, if_false, fall_through);
3004 
3005   context()->Plug(if_true, if_false);
3006 }
3007 
3008 
EmitIsStringWrapperSafeForDefaultValueOf(CallRuntime * expr)3009 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
3010     CallRuntime* expr) {
3011   ZoneList<Expression*>* args = expr->arguments();
3012   DCHECK(args->length() == 1);
3013 
3014   VisitForAccumulatorValue(args->at(0));
3015 
3016   Label materialize_true, materialize_false, skip_lookup;
3017   Label* if_true = NULL;
3018   Label* if_false = NULL;
3019   Label* fall_through = NULL;
3020   context()->PrepareTest(&materialize_true, &materialize_false,
3021                          &if_true, &if_false, &fall_through);
3022 
3023   __ AssertNotSmi(eax);
3024 
3025   // Check whether this map has already been checked to be safe for default
3026   // valueOf.
3027   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3028   __ test_b(FieldOperand(ebx, Map::kBitField2Offset),
3029             1 << Map::kStringWrapperSafeForDefaultValueOf);
3030   __ j(not_zero, &skip_lookup);
3031 
3032   // Check for fast case object. Return false for slow case objects.
3033   __ mov(ecx, FieldOperand(eax, JSObject::kPropertiesOffset));
3034   __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
3035   __ cmp(ecx, isolate()->factory()->hash_table_map());
3036   __ j(equal, if_false);
3037 
3038   // Look for valueOf string in the descriptor array, and indicate false if
3039   // found. Since we omit an enumeration index check, if it is added via a
3040   // transition that shares its descriptor array, this is a false positive.
3041   Label entry, loop, done;
3042 
3043   // Skip loop if no descriptors are valid.
3044   __ NumberOfOwnDescriptors(ecx, ebx);
3045   __ cmp(ecx, 0);
3046   __ j(equal, &done);
3047 
3048   __ LoadInstanceDescriptors(ebx, ebx);
3049   // ebx: descriptor array.
3050   // ecx: valid entries in the descriptor array.
3051   // Calculate the end of the descriptor array.
3052   STATIC_ASSERT(kSmiTag == 0);
3053   STATIC_ASSERT(kSmiTagSize == 1);
3054   STATIC_ASSERT(kPointerSize == 4);
3055   __ imul(ecx, ecx, DescriptorArray::kDescriptorSize);
3056   __ lea(ecx, Operand(ebx, ecx, times_4, DescriptorArray::kFirstOffset));
3057   // Calculate location of the first key name.
3058   __ add(ebx, Immediate(DescriptorArray::kFirstOffset));
3059   // Loop through all the keys in the descriptor array. If one of these is the
3060   // internalized string "valueOf" the result is false.
3061   __ jmp(&entry);
3062   __ bind(&loop);
3063   __ mov(edx, FieldOperand(ebx, 0));
3064   __ cmp(edx, isolate()->factory()->value_of_string());
3065   __ j(equal, if_false);
3066   __ add(ebx, Immediate(DescriptorArray::kDescriptorSize * kPointerSize));
3067   __ bind(&entry);
3068   __ cmp(ebx, ecx);
3069   __ j(not_equal, &loop);
3070 
3071   __ bind(&done);
3072 
3073   // Reload map as register ebx was used as temporary above.
3074   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3075 
3076   // Set the bit in the map to indicate that there is no local valueOf field.
3077   __ or_(FieldOperand(ebx, Map::kBitField2Offset),
3078          Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
3079 
3080   __ bind(&skip_lookup);
3081 
3082   // If a valueOf property is not found on the object check that its
3083   // prototype is the un-modified String prototype. If not result is false.
3084   __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
3085   __ JumpIfSmi(ecx, if_false);
3086   __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
3087   __ mov(edx, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
3088   __ mov(edx,
3089          FieldOperand(edx, GlobalObject::kNativeContextOffset));
3090   __ cmp(ecx,
3091          ContextOperand(edx,
3092                         Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
3093   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3094   Split(equal, if_true, if_false, fall_through);
3095 
3096   context()->Plug(if_true, if_false);
3097 }
3098 
3099 
EmitIsFunction(CallRuntime * expr)3100 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3101   ZoneList<Expression*>* args = expr->arguments();
3102   DCHECK(args->length() == 1);
3103 
3104   VisitForAccumulatorValue(args->at(0));
3105 
3106   Label materialize_true, materialize_false;
3107   Label* if_true = NULL;
3108   Label* if_false = NULL;
3109   Label* fall_through = NULL;
3110   context()->PrepareTest(&materialize_true, &materialize_false,
3111                          &if_true, &if_false, &fall_through);
3112 
3113   __ JumpIfSmi(eax, if_false);
3114   __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
3115   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3116   Split(equal, if_true, if_false, fall_through);
3117 
3118   context()->Plug(if_true, if_false);
3119 }
3120 
3121 
EmitIsMinusZero(CallRuntime * expr)3122 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3123   ZoneList<Expression*>* args = expr->arguments();
3124   DCHECK(args->length() == 1);
3125 
3126   VisitForAccumulatorValue(args->at(0));
3127 
3128   Label materialize_true, materialize_false;
3129   Label* if_true = NULL;
3130   Label* if_false = NULL;
3131   Label* fall_through = NULL;
3132   context()->PrepareTest(&materialize_true, &materialize_false,
3133                          &if_true, &if_false, &fall_through);
3134 
3135   Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
3136   __ CheckMap(eax, map, if_false, DO_SMI_CHECK);
3137   // Check if the exponent half is 0x80000000. Comparing against 1 and
3138   // checking for overflow is the shortest possible encoding.
3139   __ cmp(FieldOperand(eax, HeapNumber::kExponentOffset), Immediate(0x1));
3140   __ j(no_overflow, if_false);
3141   __ cmp(FieldOperand(eax, HeapNumber::kMantissaOffset), Immediate(0x0));
3142   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3143   Split(equal, if_true, if_false, fall_through);
3144 
3145   context()->Plug(if_true, if_false);
3146 }
3147 
3148 
3149 
EmitIsArray(CallRuntime * expr)3150 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3151   ZoneList<Expression*>* args = expr->arguments();
3152   DCHECK(args->length() == 1);
3153 
3154   VisitForAccumulatorValue(args->at(0));
3155 
3156   Label materialize_true, materialize_false;
3157   Label* if_true = NULL;
3158   Label* if_false = NULL;
3159   Label* fall_through = NULL;
3160   context()->PrepareTest(&materialize_true, &materialize_false,
3161                          &if_true, &if_false, &fall_through);
3162 
3163   __ JumpIfSmi(eax, if_false);
3164   __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
3165   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3166   Split(equal, if_true, if_false, fall_through);
3167 
3168   context()->Plug(if_true, if_false);
3169 }
3170 
3171 
EmitIsRegExp(CallRuntime * expr)3172 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3173   ZoneList<Expression*>* args = expr->arguments();
3174   DCHECK(args->length() == 1);
3175 
3176   VisitForAccumulatorValue(args->at(0));
3177 
3178   Label materialize_true, materialize_false;
3179   Label* if_true = NULL;
3180   Label* if_false = NULL;
3181   Label* fall_through = NULL;
3182   context()->PrepareTest(&materialize_true, &materialize_false,
3183                          &if_true, &if_false, &fall_through);
3184 
3185   __ JumpIfSmi(eax, if_false);
3186   __ CmpObjectType(eax, JS_REGEXP_TYPE, ebx);
3187   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3188   Split(equal, if_true, if_false, fall_through);
3189 
3190   context()->Plug(if_true, if_false);
3191 }
3192 
3193 
3194 
EmitIsConstructCall(CallRuntime * expr)3195 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
3196   DCHECK(expr->arguments()->length() == 0);
3197 
3198   Label materialize_true, materialize_false;
3199   Label* if_true = NULL;
3200   Label* if_false = NULL;
3201   Label* fall_through = NULL;
3202   context()->PrepareTest(&materialize_true, &materialize_false,
3203                          &if_true, &if_false, &fall_through);
3204 
3205   // Get the frame pointer for the calling frame.
3206   __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3207 
3208   // Skip the arguments adaptor frame if it exists.
3209   Label check_frame_marker;
3210   __ cmp(Operand(eax, StandardFrameConstants::kContextOffset),
3211          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3212   __ j(not_equal, &check_frame_marker);
3213   __ mov(eax, Operand(eax, StandardFrameConstants::kCallerFPOffset));
3214 
3215   // Check the marker in the calling frame.
3216   __ bind(&check_frame_marker);
3217   __ cmp(Operand(eax, StandardFrameConstants::kMarkerOffset),
3218          Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
3219   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3220   Split(equal, if_true, if_false, fall_through);
3221 
3222   context()->Plug(if_true, if_false);
3223 }
3224 
3225 
EmitObjectEquals(CallRuntime * expr)3226 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3227   ZoneList<Expression*>* args = expr->arguments();
3228   DCHECK(args->length() == 2);
3229 
3230   // Load the two objects into registers and perform the comparison.
3231   VisitForStackValue(args->at(0));
3232   VisitForAccumulatorValue(args->at(1));
3233 
3234   Label materialize_true, materialize_false;
3235   Label* if_true = NULL;
3236   Label* if_false = NULL;
3237   Label* fall_through = NULL;
3238   context()->PrepareTest(&materialize_true, &materialize_false,
3239                          &if_true, &if_false, &fall_through);
3240 
3241   __ pop(ebx);
3242   __ cmp(eax, ebx);
3243   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3244   Split(equal, if_true, if_false, fall_through);
3245 
3246   context()->Plug(if_true, if_false);
3247 }
3248 
3249 
EmitArguments(CallRuntime * expr)3250 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3251   ZoneList<Expression*>* args = expr->arguments();
3252   DCHECK(args->length() == 1);
3253 
3254   // ArgumentsAccessStub expects the key in edx and the formal
3255   // parameter count in eax.
3256   VisitForAccumulatorValue(args->at(0));
3257   __ mov(edx, eax);
3258   __ Move(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
3259   ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3260   __ CallStub(&stub);
3261   context()->Plug(eax);
3262 }
3263 
3264 
EmitArgumentsLength(CallRuntime * expr)3265 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3266   DCHECK(expr->arguments()->length() == 0);
3267 
3268   Label exit;
3269   // Get the number of formal parameters.
3270   __ Move(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
3271 
3272   // Check if the calling frame is an arguments adaptor frame.
3273   __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3274   __ cmp(Operand(ebx, StandardFrameConstants::kContextOffset),
3275          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3276   __ j(not_equal, &exit);
3277 
3278   // Arguments adaptor case: Read the arguments length from the
3279   // adaptor frame.
3280   __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
3281 
3282   __ bind(&exit);
3283   __ AssertSmi(eax);
3284   context()->Plug(eax);
3285 }
3286 
3287 
EmitClassOf(CallRuntime * expr)3288 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3289   ZoneList<Expression*>* args = expr->arguments();
3290   DCHECK(args->length() == 1);
3291   Label done, null, function, non_function_constructor;
3292 
3293   VisitForAccumulatorValue(args->at(0));
3294 
3295   // If the object is a smi, we return null.
3296   __ JumpIfSmi(eax, &null);
3297 
3298   // Check that the object is a JS object but take special care of JS
3299   // functions to make sure they have 'Function' as their class.
3300   // Assume that there are only two callable types, and one of them is at
3301   // either end of the type range for JS object types. Saves extra comparisons.
3302   STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3303   __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, eax);
3304   // Map is now in eax.
3305   __ j(below, &null);
3306   STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3307                 FIRST_SPEC_OBJECT_TYPE + 1);
3308   __ j(equal, &function);
3309 
3310   __ CmpInstanceType(eax, LAST_SPEC_OBJECT_TYPE);
3311   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3312                 LAST_SPEC_OBJECT_TYPE - 1);
3313   __ j(equal, &function);
3314   // Assume that there is no larger type.
3315   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3316 
3317   // Check if the constructor in the map is a JS function.
3318   __ mov(eax, FieldOperand(eax, Map::kConstructorOffset));
3319   __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
3320   __ j(not_equal, &non_function_constructor);
3321 
3322   // eax now contains the constructor function. Grab the
3323   // instance class name from there.
3324   __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
3325   __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kInstanceClassNameOffset));
3326   __ jmp(&done);
3327 
3328   // Functions have class 'Function'.
3329   __ bind(&function);
3330   __ mov(eax, isolate()->factory()->Function_string());
3331   __ jmp(&done);
3332 
3333   // Objects with a non-function constructor have class 'Object'.
3334   __ bind(&non_function_constructor);
3335   __ mov(eax, isolate()->factory()->Object_string());
3336   __ jmp(&done);
3337 
3338   // Non-JS objects have class null.
3339   __ bind(&null);
3340   __ mov(eax, isolate()->factory()->null_value());
3341 
3342   // All done.
3343   __ bind(&done);
3344 
3345   context()->Plug(eax);
3346 }
3347 
3348 
EmitSubString(CallRuntime * expr)3349 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3350   // Load the arguments on the stack and call the stub.
3351   SubStringStub stub(isolate());
3352   ZoneList<Expression*>* args = expr->arguments();
3353   DCHECK(args->length() == 3);
3354   VisitForStackValue(args->at(0));
3355   VisitForStackValue(args->at(1));
3356   VisitForStackValue(args->at(2));
3357   __ CallStub(&stub);
3358   context()->Plug(eax);
3359 }
3360 
3361 
EmitRegExpExec(CallRuntime * expr)3362 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3363   // Load the arguments on the stack and call the stub.
3364   RegExpExecStub stub(isolate());
3365   ZoneList<Expression*>* args = expr->arguments();
3366   DCHECK(args->length() == 4);
3367   VisitForStackValue(args->at(0));
3368   VisitForStackValue(args->at(1));
3369   VisitForStackValue(args->at(2));
3370   VisitForStackValue(args->at(3));
3371   __ CallStub(&stub);
3372   context()->Plug(eax);
3373 }
3374 
3375 
EmitValueOf(CallRuntime * expr)3376 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3377   ZoneList<Expression*>* args = expr->arguments();
3378   DCHECK(args->length() == 1);
3379 
3380   VisitForAccumulatorValue(args->at(0));  // Load the object.
3381 
3382   Label done;
3383   // If the object is a smi return the object.
3384   __ JumpIfSmi(eax, &done, Label::kNear);
3385   // If the object is not a value type, return the object.
3386   __ CmpObjectType(eax, JS_VALUE_TYPE, ebx);
3387   __ j(not_equal, &done, Label::kNear);
3388   __ mov(eax, FieldOperand(eax, JSValue::kValueOffset));
3389 
3390   __ bind(&done);
3391   context()->Plug(eax);
3392 }
3393 
3394 
EmitDateField(CallRuntime * expr)3395 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3396   ZoneList<Expression*>* args = expr->arguments();
3397   DCHECK(args->length() == 2);
3398   DCHECK_NE(NULL, args->at(1)->AsLiteral());
3399   Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3400 
3401   VisitForAccumulatorValue(args->at(0));  // Load the object.
3402 
3403   Label runtime, done, not_date_object;
3404   Register object = eax;
3405   Register result = eax;
3406   Register scratch = ecx;
3407 
3408   __ JumpIfSmi(object, &not_date_object);
3409   __ CmpObjectType(object, JS_DATE_TYPE, scratch);
3410   __ j(not_equal, &not_date_object);
3411 
3412   if (index->value() == 0) {
3413     __ mov(result, FieldOperand(object, JSDate::kValueOffset));
3414     __ jmp(&done);
3415   } else {
3416     if (index->value() < JSDate::kFirstUncachedField) {
3417       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3418       __ mov(scratch, Operand::StaticVariable(stamp));
3419       __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
3420       __ j(not_equal, &runtime, Label::kNear);
3421       __ mov(result, FieldOperand(object, JSDate::kValueOffset +
3422                                           kPointerSize * index->value()));
3423       __ jmp(&done);
3424     }
3425     __ bind(&runtime);
3426     __ PrepareCallCFunction(2, scratch);
3427     __ mov(Operand(esp, 0), object);
3428     __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
3429     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3430     __ jmp(&done);
3431   }
3432 
3433   __ bind(&not_date_object);
3434   __ CallRuntime(Runtime::kThrowNotDateError, 0);
3435   __ bind(&done);
3436   context()->Plug(result);
3437 }
3438 
3439 
EmitOneByteSeqStringSetChar(CallRuntime * expr)3440 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3441   ZoneList<Expression*>* args = expr->arguments();
3442   DCHECK_EQ(3, args->length());
3443 
3444   Register string = eax;
3445   Register index = ebx;
3446   Register value = ecx;
3447 
3448   VisitForStackValue(args->at(0));        // index
3449   VisitForStackValue(args->at(1));        // value
3450   VisitForAccumulatorValue(args->at(2));  // string
3451 
3452   __ pop(value);
3453   __ pop(index);
3454 
3455   if (FLAG_debug_code) {
3456     __ test(value, Immediate(kSmiTagMask));
3457     __ Check(zero, kNonSmiValue);
3458     __ test(index, Immediate(kSmiTagMask));
3459     __ Check(zero, kNonSmiValue);
3460   }
3461 
3462   __ SmiUntag(value);
3463   __ SmiUntag(index);
3464 
3465   if (FLAG_debug_code) {
3466     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3467     __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3468   }
3469 
3470   __ mov_b(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize),
3471            value);
3472   context()->Plug(string);
3473 }
3474 
3475 
EmitTwoByteSeqStringSetChar(CallRuntime * expr)3476 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3477   ZoneList<Expression*>* args = expr->arguments();
3478   DCHECK_EQ(3, args->length());
3479 
3480   Register string = eax;
3481   Register index = ebx;
3482   Register value = ecx;
3483 
3484   VisitForStackValue(args->at(0));        // index
3485   VisitForStackValue(args->at(1));        // value
3486   VisitForAccumulatorValue(args->at(2));  // string
3487   __ pop(value);
3488   __ pop(index);
3489 
3490   if (FLAG_debug_code) {
3491     __ test(value, Immediate(kSmiTagMask));
3492     __ Check(zero, kNonSmiValue);
3493     __ test(index, Immediate(kSmiTagMask));
3494     __ Check(zero, kNonSmiValue);
3495     __ SmiUntag(index);
3496     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3497     __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3498     __ SmiTag(index);
3499   }
3500 
3501   __ SmiUntag(value);
3502   // No need to untag a smi for two-byte addressing.
3503   __ mov_w(FieldOperand(string, index, times_1, SeqTwoByteString::kHeaderSize),
3504            value);
3505   context()->Plug(string);
3506 }
3507 
3508 
EmitMathPow(CallRuntime * expr)3509 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3510   // Load the arguments on the stack and call the runtime function.
3511   ZoneList<Expression*>* args = expr->arguments();
3512   DCHECK(args->length() == 2);
3513   VisitForStackValue(args->at(0));
3514   VisitForStackValue(args->at(1));
3515 
3516   MathPowStub stub(isolate(), MathPowStub::ON_STACK);
3517   __ CallStub(&stub);
3518   context()->Plug(eax);
3519 }
3520 
3521 
EmitSetValueOf(CallRuntime * expr)3522 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3523   ZoneList<Expression*>* args = expr->arguments();
3524   DCHECK(args->length() == 2);
3525 
3526   VisitForStackValue(args->at(0));  // Load the object.
3527   VisitForAccumulatorValue(args->at(1));  // Load the value.
3528   __ pop(ebx);  // eax = value. ebx = object.
3529 
3530   Label done;
3531   // If the object is a smi, return the value.
3532   __ JumpIfSmi(ebx, &done, Label::kNear);
3533 
3534   // If the object is not a value type, return the value.
3535   __ CmpObjectType(ebx, JS_VALUE_TYPE, ecx);
3536   __ j(not_equal, &done, Label::kNear);
3537 
3538   // Store the value.
3539   __ mov(FieldOperand(ebx, JSValue::kValueOffset), eax);
3540 
3541   // Update the write barrier.  Save the value as it will be
3542   // overwritten by the write barrier code and is needed afterward.
3543   __ mov(edx, eax);
3544   __ RecordWriteField(ebx, JSValue::kValueOffset, edx, ecx, kDontSaveFPRegs);
3545 
3546   __ bind(&done);
3547   context()->Plug(eax);
3548 }
3549 
3550 
EmitNumberToString(CallRuntime * expr)3551 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3552   ZoneList<Expression*>* args = expr->arguments();
3553   DCHECK_EQ(args->length(), 1);
3554 
3555   // Load the argument into eax and call the stub.
3556   VisitForAccumulatorValue(args->at(0));
3557 
3558   NumberToStringStub stub(isolate());
3559   __ CallStub(&stub);
3560   context()->Plug(eax);
3561 }
3562 
3563 
EmitStringCharFromCode(CallRuntime * expr)3564 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3565   ZoneList<Expression*>* args = expr->arguments();
3566   DCHECK(args->length() == 1);
3567 
3568   VisitForAccumulatorValue(args->at(0));
3569 
3570   Label done;
3571   StringCharFromCodeGenerator generator(eax, ebx);
3572   generator.GenerateFast(masm_);
3573   __ jmp(&done);
3574 
3575   NopRuntimeCallHelper call_helper;
3576   generator.GenerateSlow(masm_, call_helper);
3577 
3578   __ bind(&done);
3579   context()->Plug(ebx);
3580 }
3581 
3582 
EmitStringCharCodeAt(CallRuntime * expr)3583 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3584   ZoneList<Expression*>* args = expr->arguments();
3585   DCHECK(args->length() == 2);
3586 
3587   VisitForStackValue(args->at(0));
3588   VisitForAccumulatorValue(args->at(1));
3589 
3590   Register object = ebx;
3591   Register index = eax;
3592   Register result = edx;
3593 
3594   __ pop(object);
3595 
3596   Label need_conversion;
3597   Label index_out_of_range;
3598   Label done;
3599   StringCharCodeAtGenerator generator(object,
3600                                       index,
3601                                       result,
3602                                       &need_conversion,
3603                                       &need_conversion,
3604                                       &index_out_of_range,
3605                                       STRING_INDEX_IS_NUMBER);
3606   generator.GenerateFast(masm_);
3607   __ jmp(&done);
3608 
3609   __ bind(&index_out_of_range);
3610   // When the index is out of range, the spec requires us to return
3611   // NaN.
3612   __ Move(result, Immediate(isolate()->factory()->nan_value()));
3613   __ jmp(&done);
3614 
3615   __ bind(&need_conversion);
3616   // Move the undefined value into the result register, which will
3617   // trigger conversion.
3618   __ Move(result, Immediate(isolate()->factory()->undefined_value()));
3619   __ jmp(&done);
3620 
3621   NopRuntimeCallHelper call_helper;
3622   generator.GenerateSlow(masm_, call_helper);
3623 
3624   __ bind(&done);
3625   context()->Plug(result);
3626 }
3627 
3628 
EmitStringCharAt(CallRuntime * expr)3629 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3630   ZoneList<Expression*>* args = expr->arguments();
3631   DCHECK(args->length() == 2);
3632 
3633   VisitForStackValue(args->at(0));
3634   VisitForAccumulatorValue(args->at(1));
3635 
3636   Register object = ebx;
3637   Register index = eax;
3638   Register scratch = edx;
3639   Register result = eax;
3640 
3641   __ pop(object);
3642 
3643   Label need_conversion;
3644   Label index_out_of_range;
3645   Label done;
3646   StringCharAtGenerator generator(object,
3647                                   index,
3648                                   scratch,
3649                                   result,
3650                                   &need_conversion,
3651                                   &need_conversion,
3652                                   &index_out_of_range,
3653                                   STRING_INDEX_IS_NUMBER);
3654   generator.GenerateFast(masm_);
3655   __ jmp(&done);
3656 
3657   __ bind(&index_out_of_range);
3658   // When the index is out of range, the spec requires us to return
3659   // the empty string.
3660   __ Move(result, Immediate(isolate()->factory()->empty_string()));
3661   __ jmp(&done);
3662 
3663   __ bind(&need_conversion);
3664   // Move smi zero into the result register, which will trigger
3665   // conversion.
3666   __ Move(result, Immediate(Smi::FromInt(0)));
3667   __ jmp(&done);
3668 
3669   NopRuntimeCallHelper call_helper;
3670   generator.GenerateSlow(masm_, call_helper);
3671 
3672   __ bind(&done);
3673   context()->Plug(result);
3674 }
3675 
3676 
EmitStringAdd(CallRuntime * expr)3677 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3678   ZoneList<Expression*>* args = expr->arguments();
3679   DCHECK_EQ(2, args->length());
3680   VisitForStackValue(args->at(0));
3681   VisitForAccumulatorValue(args->at(1));
3682 
3683   __ pop(edx);
3684   StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
3685   __ CallStub(&stub);
3686   context()->Plug(eax);
3687 }
3688 
3689 
EmitStringCompare(CallRuntime * expr)3690 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3691   ZoneList<Expression*>* args = expr->arguments();
3692   DCHECK_EQ(2, args->length());
3693 
3694   VisitForStackValue(args->at(0));
3695   VisitForStackValue(args->at(1));
3696 
3697   StringCompareStub stub(isolate());
3698   __ CallStub(&stub);
3699   context()->Plug(eax);
3700 }
3701 
3702 
EmitCallFunction(CallRuntime * expr)3703 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3704   ZoneList<Expression*>* args = expr->arguments();
3705   DCHECK(args->length() >= 2);
3706 
3707   int arg_count = args->length() - 2;  // 2 ~ receiver and function.
3708   for (int i = 0; i < arg_count + 1; ++i) {
3709     VisitForStackValue(args->at(i));
3710   }
3711   VisitForAccumulatorValue(args->last());  // Function.
3712 
3713   Label runtime, done;
3714   // Check for non-function argument (including proxy).
3715   __ JumpIfSmi(eax, &runtime);
3716   __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
3717   __ j(not_equal, &runtime);
3718 
3719   // InvokeFunction requires the function in edi. Move it in there.
3720   __ mov(edi, result_register());
3721   ParameterCount count(arg_count);
3722   __ InvokeFunction(edi, count, CALL_FUNCTION, NullCallWrapper());
3723   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
3724   __ jmp(&done);
3725 
3726   __ bind(&runtime);
3727   __ push(eax);
3728   __ CallRuntime(Runtime::kCall, args->length());
3729   __ bind(&done);
3730 
3731   context()->Plug(eax);
3732 }
3733 
3734 
EmitRegExpConstructResult(CallRuntime * expr)3735 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3736   // Load the arguments on the stack and call the stub.
3737   RegExpConstructResultStub stub(isolate());
3738   ZoneList<Expression*>* args = expr->arguments();
3739   DCHECK(args->length() == 3);
3740   VisitForStackValue(args->at(0));
3741   VisitForStackValue(args->at(1));
3742   VisitForAccumulatorValue(args->at(2));
3743   __ pop(ebx);
3744   __ pop(ecx);
3745   __ CallStub(&stub);
3746   context()->Plug(eax);
3747 }
3748 
3749 
EmitGetFromCache(CallRuntime * expr)3750 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3751   ZoneList<Expression*>* args = expr->arguments();
3752   DCHECK_EQ(2, args->length());
3753 
3754   DCHECK_NE(NULL, args->at(0)->AsLiteral());
3755   int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
3756 
3757   Handle<FixedArray> jsfunction_result_caches(
3758       isolate()->native_context()->jsfunction_result_caches());
3759   if (jsfunction_result_caches->length() <= cache_id) {
3760     __ Abort(kAttemptToUseUndefinedCache);
3761     __ mov(eax, isolate()->factory()->undefined_value());
3762     context()->Plug(eax);
3763     return;
3764   }
3765 
3766   VisitForAccumulatorValue(args->at(1));
3767 
3768   Register key = eax;
3769   Register cache = ebx;
3770   Register tmp = ecx;
3771   __ mov(cache, ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX));
3772   __ mov(cache,
3773          FieldOperand(cache, GlobalObject::kNativeContextOffset));
3774   __ mov(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
3775   __ mov(cache,
3776          FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
3777 
3778   Label done, not_found;
3779   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
3780   __ mov(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset));
3781   // tmp now holds finger offset as a smi.
3782   __ cmp(key, FixedArrayElementOperand(cache, tmp));
3783   __ j(not_equal, &not_found);
3784 
3785   __ mov(eax, FixedArrayElementOperand(cache, tmp, 1));
3786   __ jmp(&done);
3787 
3788   __ bind(&not_found);
3789   // Call runtime to perform the lookup.
3790   __ push(cache);
3791   __ push(key);
3792   __ CallRuntime(Runtime::kGetFromCache, 2);
3793 
3794   __ bind(&done);
3795   context()->Plug(eax);
3796 }
3797 
3798 
EmitHasCachedArrayIndex(CallRuntime * expr)3799 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3800   ZoneList<Expression*>* args = expr->arguments();
3801   DCHECK(args->length() == 1);
3802 
3803   VisitForAccumulatorValue(args->at(0));
3804 
3805   __ AssertString(eax);
3806 
3807   Label materialize_true, materialize_false;
3808   Label* if_true = NULL;
3809   Label* if_false = NULL;
3810   Label* fall_through = NULL;
3811   context()->PrepareTest(&materialize_true, &materialize_false,
3812                          &if_true, &if_false, &fall_through);
3813 
3814   __ test(FieldOperand(eax, String::kHashFieldOffset),
3815           Immediate(String::kContainsCachedArrayIndexMask));
3816   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3817   Split(zero, if_true, if_false, fall_through);
3818 
3819   context()->Plug(if_true, if_false);
3820 }
3821 
3822 
EmitGetCachedArrayIndex(CallRuntime * expr)3823 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3824   ZoneList<Expression*>* args = expr->arguments();
3825   DCHECK(args->length() == 1);
3826   VisitForAccumulatorValue(args->at(0));
3827 
3828   __ AssertString(eax);
3829 
3830   __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
3831   __ IndexFromHash(eax, eax);
3832 
3833   context()->Plug(eax);
3834 }
3835 
3836 
EmitFastOneByteArrayJoin(CallRuntime * expr)3837 void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3838   Label bailout, done, one_char_separator, long_separator,
3839       non_trivial_array, not_size_one_array, loop,
3840       loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
3841 
3842   ZoneList<Expression*>* args = expr->arguments();
3843   DCHECK(args->length() == 2);
3844   // We will leave the separator on the stack until the end of the function.
3845   VisitForStackValue(args->at(1));
3846   // Load this to eax (= array)
3847   VisitForAccumulatorValue(args->at(0));
3848   // All aliases of the same register have disjoint lifetimes.
3849   Register array = eax;
3850   Register elements = no_reg;  // Will be eax.
3851 
3852   Register index = edx;
3853 
3854   Register string_length = ecx;
3855 
3856   Register string = esi;
3857 
3858   Register scratch = ebx;
3859 
3860   Register array_length = edi;
3861   Register result_pos = no_reg;  // Will be edi.
3862 
3863   // Separator operand is already pushed.
3864   Operand separator_operand = Operand(esp, 2 * kPointerSize);
3865   Operand result_operand = Operand(esp, 1 * kPointerSize);
3866   Operand array_length_operand = Operand(esp, 0);
3867   __ sub(esp, Immediate(2 * kPointerSize));
3868   __ cld();
3869   // Check that the array is a JSArray
3870   __ JumpIfSmi(array, &bailout);
3871   __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
3872   __ j(not_equal, &bailout);
3873 
3874   // Check that the array has fast elements.
3875   __ CheckFastElements(scratch, &bailout);
3876 
3877   // If the array has length zero, return the empty string.
3878   __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset));
3879   __ SmiUntag(array_length);
3880   __ j(not_zero, &non_trivial_array);
3881   __ mov(result_operand, isolate()->factory()->empty_string());
3882   __ jmp(&done);
3883 
3884   // Save the array length.
3885   __ bind(&non_trivial_array);
3886   __ mov(array_length_operand, array_length);
3887 
3888   // Save the FixedArray containing array's elements.
3889   // End of array's live range.
3890   elements = array;
3891   __ mov(elements, FieldOperand(array, JSArray::kElementsOffset));
3892   array = no_reg;
3893 
3894 
3895   // Check that all array elements are sequential one-byte strings, and
3896   // accumulate the sum of their lengths, as a smi-encoded value.
3897   __ Move(index, Immediate(0));
3898   __ Move(string_length, Immediate(0));
3899   // Loop condition: while (index < length).
3900   // Live loop registers: index, array_length, string,
3901   //                      scratch, string_length, elements.
3902   if (generate_debug_code_) {
3903     __ cmp(index, array_length);
3904     __ Assert(less, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3905   }
3906   __ bind(&loop);
3907   __ mov(string, FieldOperand(elements,
3908                               index,
3909                               times_pointer_size,
3910                               FixedArray::kHeaderSize));
3911   __ JumpIfSmi(string, &bailout);
3912   __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
3913   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
3914   __ and_(scratch, Immediate(
3915       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
3916   __ cmp(scratch, kStringTag | kOneByteStringTag | kSeqStringTag);
3917   __ j(not_equal, &bailout);
3918   __ add(string_length,
3919          FieldOperand(string, SeqOneByteString::kLengthOffset));
3920   __ j(overflow, &bailout);
3921   __ add(index, Immediate(1));
3922   __ cmp(index, array_length);
3923   __ j(less, &loop);
3924 
3925   // If array_length is 1, return elements[0], a string.
3926   __ cmp(array_length, 1);
3927   __ j(not_equal, &not_size_one_array);
3928   __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize));
3929   __ mov(result_operand, scratch);
3930   __ jmp(&done);
3931 
3932   __ bind(&not_size_one_array);
3933 
3934   // End of array_length live range.
3935   result_pos = array_length;
3936   array_length = no_reg;
3937 
3938   // Live registers:
3939   // string_length: Sum of string lengths, as a smi.
3940   // elements: FixedArray of strings.
3941 
3942   // Check that the separator is a flat one-byte string.
3943   __ mov(string, separator_operand);
3944   __ JumpIfSmi(string, &bailout);
3945   __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
3946   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
3947   __ and_(scratch, Immediate(
3948       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
3949   __ cmp(scratch, kStringTag | kOneByteStringTag | kSeqStringTag);
3950   __ j(not_equal, &bailout);
3951 
3952   // Add (separator length times array_length) - separator length
3953   // to string_length.
3954   __ mov(scratch, separator_operand);
3955   __ mov(scratch, FieldOperand(scratch, SeqOneByteString::kLengthOffset));
3956   __ sub(string_length, scratch);  // May be negative, temporarily.
3957   __ imul(scratch, array_length_operand);
3958   __ j(overflow, &bailout);
3959   __ add(string_length, scratch);
3960   __ j(overflow, &bailout);
3961 
3962   __ shr(string_length, 1);
3963   // Live registers and stack values:
3964   //   string_length
3965   //   elements
3966   __ AllocateOneByteString(result_pos, string_length, scratch, index, string,
3967                            &bailout);
3968   __ mov(result_operand, result_pos);
3969   __ lea(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize));
3970 
3971 
3972   __ mov(string, separator_operand);
3973   __ cmp(FieldOperand(string, SeqOneByteString::kLengthOffset),
3974          Immediate(Smi::FromInt(1)));
3975   __ j(equal, &one_char_separator);
3976   __ j(greater, &long_separator);
3977 
3978 
3979   // Empty separator case
3980   __ mov(index, Immediate(0));
3981   __ jmp(&loop_1_condition);
3982   // Loop condition: while (index < length).
3983   __ bind(&loop_1);
3984   // Each iteration of the loop concatenates one string to the result.
3985   // Live values in registers:
3986   //   index: which element of the elements array we are adding to the result.
3987   //   result_pos: the position to which we are currently copying characters.
3988   //   elements: the FixedArray of strings we are joining.
3989 
3990   // Get string = array[index].
3991   __ mov(string, FieldOperand(elements, index,
3992                               times_pointer_size,
3993                               FixedArray::kHeaderSize));
3994   __ mov(string_length,
3995          FieldOperand(string, String::kLengthOffset));
3996   __ shr(string_length, 1);
3997   __ lea(string,
3998          FieldOperand(string, SeqOneByteString::kHeaderSize));
3999   __ CopyBytes(string, result_pos, string_length, scratch);
4000   __ add(index, Immediate(1));
4001   __ bind(&loop_1_condition);
4002   __ cmp(index, array_length_operand);
4003   __ j(less, &loop_1);  // End while (index < length).
4004   __ jmp(&done);
4005 
4006 
4007 
4008   // One-character separator case
4009   __ bind(&one_char_separator);
4010   // Replace separator with its one-byte character value.
4011   __ mov_b(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize));
4012   __ mov_b(separator_operand, scratch);
4013 
4014   __ Move(index, Immediate(0));
4015   // Jump into the loop after the code that copies the separator, so the first
4016   // element is not preceded by a separator
4017   __ jmp(&loop_2_entry);
4018   // Loop condition: while (index < length).
4019   __ bind(&loop_2);
4020   // Each iteration of the loop concatenates one string to the result.
4021   // Live values in registers:
4022   //   index: which element of the elements array we are adding to the result.
4023   //   result_pos: the position to which we are currently copying characters.
4024 
4025   // Copy the separator character to the result.
4026   __ mov_b(scratch, separator_operand);
4027   __ mov_b(Operand(result_pos, 0), scratch);
4028   __ inc(result_pos);
4029 
4030   __ bind(&loop_2_entry);
4031   // Get string = array[index].
4032   __ mov(string, FieldOperand(elements, index,
4033                               times_pointer_size,
4034                               FixedArray::kHeaderSize));
4035   __ mov(string_length,
4036          FieldOperand(string, String::kLengthOffset));
4037   __ shr(string_length, 1);
4038   __ lea(string,
4039          FieldOperand(string, SeqOneByteString::kHeaderSize));
4040   __ CopyBytes(string, result_pos, string_length, scratch);
4041   __ add(index, Immediate(1));
4042 
4043   __ cmp(index, array_length_operand);
4044   __ j(less, &loop_2);  // End while (index < length).
4045   __ jmp(&done);
4046 
4047 
4048   // Long separator case (separator is more than one character).
4049   __ bind(&long_separator);
4050 
4051   __ Move(index, Immediate(0));
4052   // Jump into the loop after the code that copies the separator, so the first
4053   // element is not preceded by a separator
4054   __ jmp(&loop_3_entry);
4055   // Loop condition: while (index < length).
4056   __ bind(&loop_3);
4057   // Each iteration of the loop concatenates one string to the result.
4058   // Live values in registers:
4059   //   index: which element of the elements array we are adding to the result.
4060   //   result_pos: the position to which we are currently copying characters.
4061 
4062   // Copy the separator to the result.
4063   __ mov(string, separator_operand);
4064   __ mov(string_length,
4065          FieldOperand(string, String::kLengthOffset));
4066   __ shr(string_length, 1);
4067   __ lea(string,
4068          FieldOperand(string, SeqOneByteString::kHeaderSize));
4069   __ CopyBytes(string, result_pos, string_length, scratch);
4070 
4071   __ bind(&loop_3_entry);
4072   // Get string = array[index].
4073   __ mov(string, FieldOperand(elements, index,
4074                               times_pointer_size,
4075                               FixedArray::kHeaderSize));
4076   __ mov(string_length,
4077          FieldOperand(string, String::kLengthOffset));
4078   __ shr(string_length, 1);
4079   __ lea(string,
4080          FieldOperand(string, SeqOneByteString::kHeaderSize));
4081   __ CopyBytes(string, result_pos, string_length, scratch);
4082   __ add(index, Immediate(1));
4083 
4084   __ cmp(index, array_length_operand);
4085   __ j(less, &loop_3);  // End while (index < length).
4086   __ jmp(&done);
4087 
4088 
4089   __ bind(&bailout);
4090   __ mov(result_operand, isolate()->factory()->undefined_value());
4091   __ bind(&done);
4092   __ mov(eax, result_operand);
4093   // Drop temp values from the stack, and restore context register.
4094   __ add(esp, Immediate(3 * kPointerSize));
4095 
4096   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4097   context()->Plug(eax);
4098 }
4099 
4100 
EmitDebugIsActive(CallRuntime * expr)4101 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
4102   DCHECK(expr->arguments()->length() == 0);
4103   ExternalReference debug_is_active =
4104       ExternalReference::debug_is_active_address(isolate());
4105   __ movzx_b(eax, Operand::StaticVariable(debug_is_active));
4106   __ SmiTag(eax);
4107   context()->Plug(eax);
4108 }
4109 
4110 
VisitCallRuntime(CallRuntime * expr)4111 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
4112   if (expr->function() != NULL &&
4113       expr->function()->intrinsic_type == Runtime::INLINE) {
4114     Comment cmnt(masm_, "[ InlineRuntimeCall");
4115     EmitInlineRuntimeCall(expr);
4116     return;
4117   }
4118 
4119   Comment cmnt(masm_, "[ CallRuntime");
4120   ZoneList<Expression*>* args = expr->arguments();
4121 
4122   if (expr->is_jsruntime()) {
4123     // Push the builtins object as receiver.
4124     __ mov(eax, GlobalObjectOperand());
4125     __ push(FieldOperand(eax, GlobalObject::kBuiltinsOffset));
4126 
4127     // Load the function from the receiver.
4128     __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
4129     __ mov(LoadDescriptor::NameRegister(), Immediate(expr->name()));
4130     if (FLAG_vector_ics) {
4131       __ mov(VectorLoadICDescriptor::SlotRegister(),
4132              Immediate(Smi::FromInt(expr->CallRuntimeFeedbackSlot())));
4133       CallLoadIC(NOT_CONTEXTUAL);
4134     } else {
4135       CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
4136     }
4137 
4138     // Push the target function under the receiver.
4139     __ push(Operand(esp, 0));
4140     __ mov(Operand(esp, kPointerSize), eax);
4141 
4142     // Code common for calls using the IC.
4143     ZoneList<Expression*>* args = expr->arguments();
4144     int arg_count = args->length();
4145     for (int i = 0; i < arg_count; i++) {
4146       VisitForStackValue(args->at(i));
4147     }
4148 
4149     // Record source position of the IC call.
4150     SetSourcePosition(expr->position());
4151     CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
4152     __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
4153     __ CallStub(&stub);
4154     // Restore context register.
4155     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4156     context()->DropAndPlug(1, eax);
4157 
4158   } else {
4159     // Push the arguments ("left-to-right").
4160     int arg_count = args->length();
4161     for (int i = 0; i < arg_count; i++) {
4162       VisitForStackValue(args->at(i));
4163     }
4164 
4165     // Call the C runtime function.
4166     __ CallRuntime(expr->function(), arg_count);
4167 
4168     context()->Plug(eax);
4169   }
4170 }
4171 
4172 
VisitUnaryOperation(UnaryOperation * expr)4173 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4174   switch (expr->op()) {
4175     case Token::DELETE: {
4176       Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4177       Property* property = expr->expression()->AsProperty();
4178       VariableProxy* proxy = expr->expression()->AsVariableProxy();
4179 
4180       if (property != NULL) {
4181         VisitForStackValue(property->obj());
4182         VisitForStackValue(property->key());
4183         __ push(Immediate(Smi::FromInt(strict_mode())));
4184         __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4185         context()->Plug(eax);
4186       } else if (proxy != NULL) {
4187         Variable* var = proxy->var();
4188         // Delete of an unqualified identifier is disallowed in strict mode
4189         // but "delete this" is allowed.
4190         DCHECK(strict_mode() == SLOPPY || var->is_this());
4191         if (var->IsUnallocated()) {
4192           __ push(GlobalObjectOperand());
4193           __ push(Immediate(var->name()));
4194           __ push(Immediate(Smi::FromInt(SLOPPY)));
4195           __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4196           context()->Plug(eax);
4197         } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4198           // Result of deleting non-global variables is false.  'this' is
4199           // not really a variable, though we implement it as one.  The
4200           // subexpression does not have side effects.
4201           context()->Plug(var->is_this());
4202         } else {
4203           // Non-global variable.  Call the runtime to try to delete from the
4204           // context where the variable was introduced.
4205           __ push(context_register());
4206           __ push(Immediate(var->name()));
4207           __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
4208           context()->Plug(eax);
4209         }
4210       } else {
4211         // Result of deleting non-property, non-variable reference is true.
4212         // The subexpression may have side effects.
4213         VisitForEffect(expr->expression());
4214         context()->Plug(true);
4215       }
4216       break;
4217     }
4218 
4219     case Token::VOID: {
4220       Comment cmnt(masm_, "[ UnaryOperation (VOID)");
4221       VisitForEffect(expr->expression());
4222       context()->Plug(isolate()->factory()->undefined_value());
4223       break;
4224     }
4225 
4226     case Token::NOT: {
4227       Comment cmnt(masm_, "[ UnaryOperation (NOT)");
4228       if (context()->IsEffect()) {
4229         // Unary NOT has no side effects so it's only necessary to visit the
4230         // subexpression.  Match the optimizing compiler by not branching.
4231         VisitForEffect(expr->expression());
4232       } else if (context()->IsTest()) {
4233         const TestContext* test = TestContext::cast(context());
4234         // The labels are swapped for the recursive call.
4235         VisitForControl(expr->expression(),
4236                         test->false_label(),
4237                         test->true_label(),
4238                         test->fall_through());
4239         context()->Plug(test->true_label(), test->false_label());
4240       } else {
4241         // We handle value contexts explicitly rather than simply visiting
4242         // for control and plugging the control flow into the context,
4243         // because we need to prepare a pair of extra administrative AST ids
4244         // for the optimizing compiler.
4245         DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4246         Label materialize_true, materialize_false, done;
4247         VisitForControl(expr->expression(),
4248                         &materialize_false,
4249                         &materialize_true,
4250                         &materialize_true);
4251         __ bind(&materialize_true);
4252         PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4253         if (context()->IsAccumulatorValue()) {
4254           __ mov(eax, isolate()->factory()->true_value());
4255         } else {
4256           __ Push(isolate()->factory()->true_value());
4257         }
4258         __ jmp(&done, Label::kNear);
4259         __ bind(&materialize_false);
4260         PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4261         if (context()->IsAccumulatorValue()) {
4262           __ mov(eax, isolate()->factory()->false_value());
4263         } else {
4264           __ Push(isolate()->factory()->false_value());
4265         }
4266         __ bind(&done);
4267       }
4268       break;
4269     }
4270 
4271     case Token::TYPEOF: {
4272       Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4273       { StackValueContext context(this);
4274         VisitForTypeofValue(expr->expression());
4275       }
4276       __ CallRuntime(Runtime::kTypeof, 1);
4277       context()->Plug(eax);
4278       break;
4279     }
4280 
4281     default:
4282       UNREACHABLE();
4283   }
4284 }
4285 
4286 
VisitCountOperation(CountOperation * expr)4287 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
4288   DCHECK(expr->expression()->IsValidReferenceExpression());
4289 
4290   Comment cmnt(masm_, "[ CountOperation");
4291   SetSourcePosition(expr->position());
4292 
4293   // Expression can only be a property, a global or a (parameter or local)
4294   // slot.
4295   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
4296   LhsKind assign_type = VARIABLE;
4297   Property* prop = expr->expression()->AsProperty();
4298   // In case of a property we use the uninitialized expression context
4299   // of the key to detect a named property.
4300   if (prop != NULL) {
4301     assign_type =
4302         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
4303   }
4304 
4305   // Evaluate expression and get value.
4306   if (assign_type == VARIABLE) {
4307     DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4308     AccumulatorValueContext context(this);
4309     EmitVariableLoad(expr->expression()->AsVariableProxy());
4310   } else {
4311     // Reserve space for result of postfix operation.
4312     if (expr->is_postfix() && !context()->IsEffect()) {
4313       __ push(Immediate(Smi::FromInt(0)));
4314     }
4315     if (assign_type == NAMED_PROPERTY) {
4316       // Put the object both on the stack and in the register.
4317       VisitForStackValue(prop->obj());
4318       __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
4319       EmitNamedPropertyLoad(prop);
4320     } else {
4321       VisitForStackValue(prop->obj());
4322       VisitForStackValue(prop->key());
4323       __ mov(LoadDescriptor::ReceiverRegister(),
4324              Operand(esp, kPointerSize));                       // Object.
4325       __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0));  // Key.
4326       EmitKeyedPropertyLoad(prop);
4327     }
4328   }
4329 
4330   // We need a second deoptimization point after loading the value
4331   // in case evaluating the property load my have a side effect.
4332   if (assign_type == VARIABLE) {
4333     PrepareForBailout(expr->expression(), TOS_REG);
4334   } else {
4335     PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4336   }
4337 
4338   // Inline smi case if we are in a loop.
4339   Label done, stub_call;
4340   JumpPatchSite patch_site(masm_);
4341   if (ShouldInlineSmiCase(expr->op())) {
4342     Label slow;
4343     patch_site.EmitJumpIfNotSmi(eax, &slow, Label::kNear);
4344 
4345     // Save result for postfix expressions.
4346     if (expr->is_postfix()) {
4347       if (!context()->IsEffect()) {
4348         // Save the result on the stack. If we have a named or keyed property
4349         // we store the result under the receiver that is currently on top
4350         // of the stack.
4351         switch (assign_type) {
4352           case VARIABLE:
4353             __ push(eax);
4354             break;
4355           case NAMED_PROPERTY:
4356             __ mov(Operand(esp, kPointerSize), eax);
4357             break;
4358           case KEYED_PROPERTY:
4359             __ mov(Operand(esp, 2 * kPointerSize), eax);
4360             break;
4361         }
4362       }
4363     }
4364 
4365     if (expr->op() == Token::INC) {
4366       __ add(eax, Immediate(Smi::FromInt(1)));
4367     } else {
4368       __ sub(eax, Immediate(Smi::FromInt(1)));
4369     }
4370     __ j(no_overflow, &done, Label::kNear);
4371     // Call stub. Undo operation first.
4372     if (expr->op() == Token::INC) {
4373       __ sub(eax, Immediate(Smi::FromInt(1)));
4374     } else {
4375       __ add(eax, Immediate(Smi::FromInt(1)));
4376     }
4377     __ jmp(&stub_call, Label::kNear);
4378     __ bind(&slow);
4379   }
4380   ToNumberStub convert_stub(isolate());
4381   __ CallStub(&convert_stub);
4382 
4383   // Save result for postfix expressions.
4384   if (expr->is_postfix()) {
4385     if (!context()->IsEffect()) {
4386       // Save the result on the stack. If we have a named or keyed property
4387       // we store the result under the receiver that is currently on top
4388       // of the stack.
4389       switch (assign_type) {
4390         case VARIABLE:
4391           __ push(eax);
4392           break;
4393         case NAMED_PROPERTY:
4394           __ mov(Operand(esp, kPointerSize), eax);
4395           break;
4396         case KEYED_PROPERTY:
4397           __ mov(Operand(esp, 2 * kPointerSize), eax);
4398           break;
4399       }
4400     }
4401   }
4402 
4403   // Record position before stub call.
4404   SetSourcePosition(expr->position());
4405 
4406   // Call stub for +1/-1.
4407   __ bind(&stub_call);
4408   __ mov(edx, eax);
4409   __ mov(eax, Immediate(Smi::FromInt(1)));
4410   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op(),
4411                                               NO_OVERWRITE).code();
4412   CallIC(code, expr->CountBinOpFeedbackId());
4413   patch_site.EmitPatchInfo();
4414   __ bind(&done);
4415 
4416   // Store the value returned in eax.
4417   switch (assign_type) {
4418     case VARIABLE:
4419       if (expr->is_postfix()) {
4420         // Perform the assignment as if via '='.
4421         { EffectContext context(this);
4422           EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4423                                  Token::ASSIGN);
4424           PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4425           context.Plug(eax);
4426         }
4427         // For all contexts except EffectContext We have the result on
4428         // top of the stack.
4429         if (!context()->IsEffect()) {
4430           context()->PlugTOS();
4431         }
4432       } else {
4433         // Perform the assignment as if via '='.
4434         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4435                                Token::ASSIGN);
4436         PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4437         context()->Plug(eax);
4438       }
4439       break;
4440     case NAMED_PROPERTY: {
4441       __ mov(StoreDescriptor::NameRegister(),
4442              prop->key()->AsLiteral()->value());
4443       __ pop(StoreDescriptor::ReceiverRegister());
4444       CallStoreIC(expr->CountStoreFeedbackId());
4445       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4446       if (expr->is_postfix()) {
4447         if (!context()->IsEffect()) {
4448           context()->PlugTOS();
4449         }
4450       } else {
4451         context()->Plug(eax);
4452       }
4453       break;
4454     }
4455     case KEYED_PROPERTY: {
4456       __ pop(StoreDescriptor::NameRegister());
4457       __ pop(StoreDescriptor::ReceiverRegister());
4458       Handle<Code> ic =
4459           CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
4460       CallIC(ic, expr->CountStoreFeedbackId());
4461       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4462       if (expr->is_postfix()) {
4463         // Result is on the stack
4464         if (!context()->IsEffect()) {
4465           context()->PlugTOS();
4466         }
4467       } else {
4468         context()->Plug(eax);
4469       }
4470       break;
4471     }
4472   }
4473 }
4474 
4475 
VisitForTypeofValue(Expression * expr)4476 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4477   VariableProxy* proxy = expr->AsVariableProxy();
4478   DCHECK(!context()->IsEffect());
4479   DCHECK(!context()->IsTest());
4480 
4481   if (proxy != NULL && proxy->var()->IsUnallocated()) {
4482     Comment cmnt(masm_, "[ Global variable");
4483     __ mov(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
4484     __ mov(LoadDescriptor::NameRegister(), Immediate(proxy->name()));
4485     if (FLAG_vector_ics) {
4486       __ mov(VectorLoadICDescriptor::SlotRegister(),
4487              Immediate(Smi::FromInt(proxy->VariableFeedbackSlot())));
4488     }
4489     // Use a regular load, not a contextual load, to avoid a reference
4490     // error.
4491     CallLoadIC(NOT_CONTEXTUAL);
4492     PrepareForBailout(expr, TOS_REG);
4493     context()->Plug(eax);
4494   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4495     Comment cmnt(masm_, "[ Lookup slot");
4496     Label done, slow;
4497 
4498     // Generate code for loading from variables potentially shadowed
4499     // by eval-introduced variables.
4500     EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
4501 
4502     __ bind(&slow);
4503     __ push(esi);
4504     __ push(Immediate(proxy->name()));
4505     __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
4506     PrepareForBailout(expr, TOS_REG);
4507     __ bind(&done);
4508 
4509     context()->Plug(eax);
4510   } else {
4511     // This expression cannot throw a reference error at the top level.
4512     VisitInDuplicateContext(expr);
4513   }
4514 }
4515 
4516 
EmitLiteralCompareTypeof(Expression * expr,Expression * sub_expr,Handle<String> check)4517 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4518                                                  Expression* sub_expr,
4519                                                  Handle<String> check) {
4520   Label materialize_true, materialize_false;
4521   Label* if_true = NULL;
4522   Label* if_false = NULL;
4523   Label* fall_through = NULL;
4524   context()->PrepareTest(&materialize_true, &materialize_false,
4525                          &if_true, &if_false, &fall_through);
4526 
4527   { AccumulatorValueContext context(this);
4528     VisitForTypeofValue(sub_expr);
4529   }
4530   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4531 
4532   Factory* factory = isolate()->factory();
4533   if (String::Equals(check, factory->number_string())) {
4534     __ JumpIfSmi(eax, if_true);
4535     __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
4536            isolate()->factory()->heap_number_map());
4537     Split(equal, if_true, if_false, fall_through);
4538   } else if (String::Equals(check, factory->string_string())) {
4539     __ JumpIfSmi(eax, if_false);
4540     __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx);
4541     __ j(above_equal, if_false);
4542     // Check for undetectable objects => false.
4543     __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
4544               1 << Map::kIsUndetectable);
4545     Split(zero, if_true, if_false, fall_through);
4546   } else if (String::Equals(check, factory->symbol_string())) {
4547     __ JumpIfSmi(eax, if_false);
4548     __ CmpObjectType(eax, SYMBOL_TYPE, edx);
4549     Split(equal, if_true, if_false, fall_through);
4550   } else if (String::Equals(check, factory->boolean_string())) {
4551     __ cmp(eax, isolate()->factory()->true_value());
4552     __ j(equal, if_true);
4553     __ cmp(eax, isolate()->factory()->false_value());
4554     Split(equal, if_true, if_false, fall_through);
4555   } else if (String::Equals(check, factory->undefined_string())) {
4556     __ cmp(eax, isolate()->factory()->undefined_value());
4557     __ j(equal, if_true);
4558     __ JumpIfSmi(eax, if_false);
4559     // Check for undetectable objects => true.
4560     __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
4561     __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset));
4562     __ test(ecx, Immediate(1 << Map::kIsUndetectable));
4563     Split(not_zero, if_true, if_false, fall_through);
4564   } else if (String::Equals(check, factory->function_string())) {
4565     __ JumpIfSmi(eax, if_false);
4566     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4567     __ CmpObjectType(eax, JS_FUNCTION_TYPE, edx);
4568     __ j(equal, if_true);
4569     __ CmpInstanceType(edx, JS_FUNCTION_PROXY_TYPE);
4570     Split(equal, if_true, if_false, fall_through);
4571   } else if (String::Equals(check, factory->object_string())) {
4572     __ JumpIfSmi(eax, if_false);
4573     __ cmp(eax, isolate()->factory()->null_value());
4574     __ j(equal, if_true);
4575     __ CmpObjectType(eax, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, edx);
4576     __ j(below, if_false);
4577     __ CmpInstanceType(edx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4578     __ j(above, if_false);
4579     // Check for undetectable objects => false.
4580     __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
4581               1 << Map::kIsUndetectable);
4582     Split(zero, if_true, if_false, fall_through);
4583   } else {
4584     if (if_false != fall_through) __ jmp(if_false);
4585   }
4586   context()->Plug(if_true, if_false);
4587 }
4588 
4589 
VisitCompareOperation(CompareOperation * expr)4590 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4591   Comment cmnt(masm_, "[ CompareOperation");
4592   SetSourcePosition(expr->position());
4593 
4594   // First we try a fast inlined version of the compare when one of
4595   // the operands is a literal.
4596   if (TryLiteralCompare(expr)) return;
4597 
4598   // Always perform the comparison for its control flow.  Pack the result
4599   // into the expression's context after the comparison is performed.
4600   Label materialize_true, materialize_false;
4601   Label* if_true = NULL;
4602   Label* if_false = NULL;
4603   Label* fall_through = NULL;
4604   context()->PrepareTest(&materialize_true, &materialize_false,
4605                          &if_true, &if_false, &fall_through);
4606 
4607   Token::Value op = expr->op();
4608   VisitForStackValue(expr->left());
4609   switch (op) {
4610     case Token::IN:
4611       VisitForStackValue(expr->right());
4612       __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4613       PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4614       __ cmp(eax, isolate()->factory()->true_value());
4615       Split(equal, if_true, if_false, fall_through);
4616       break;
4617 
4618     case Token::INSTANCEOF: {
4619       VisitForStackValue(expr->right());
4620       InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
4621       __ CallStub(&stub);
4622       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4623       __ test(eax, eax);
4624       // The stub returns 0 for true.
4625       Split(zero, if_true, if_false, fall_through);
4626       break;
4627     }
4628 
4629     default: {
4630       VisitForAccumulatorValue(expr->right());
4631       Condition cc = CompareIC::ComputeCondition(op);
4632       __ pop(edx);
4633 
4634       bool inline_smi_code = ShouldInlineSmiCase(op);
4635       JumpPatchSite patch_site(masm_);
4636       if (inline_smi_code) {
4637         Label slow_case;
4638         __ mov(ecx, edx);
4639         __ or_(ecx, eax);
4640         patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
4641         __ cmp(edx, eax);
4642         Split(cc, if_true, if_false, NULL);
4643         __ bind(&slow_case);
4644       }
4645 
4646       // Record position and call the compare IC.
4647       SetSourcePosition(expr->position());
4648       Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
4649       CallIC(ic, expr->CompareOperationFeedbackId());
4650       patch_site.EmitPatchInfo();
4651 
4652       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4653       __ test(eax, eax);
4654       Split(cc, if_true, if_false, fall_through);
4655     }
4656   }
4657 
4658   // Convert the result of the comparison into one expected for this
4659   // expression's context.
4660   context()->Plug(if_true, if_false);
4661 }
4662 
4663 
EmitLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)4664 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4665                                               Expression* sub_expr,
4666                                               NilValue nil) {
4667   Label materialize_true, materialize_false;
4668   Label* if_true = NULL;
4669   Label* if_false = NULL;
4670   Label* fall_through = NULL;
4671   context()->PrepareTest(&materialize_true, &materialize_false,
4672                          &if_true, &if_false, &fall_through);
4673 
4674   VisitForAccumulatorValue(sub_expr);
4675   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4676 
4677   Handle<Object> nil_value = nil == kNullValue
4678       ? isolate()->factory()->null_value()
4679       : isolate()->factory()->undefined_value();
4680   if (expr->op() == Token::EQ_STRICT) {
4681     __ cmp(eax, nil_value);
4682     Split(equal, if_true, if_false, fall_through);
4683   } else {
4684     Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4685     CallIC(ic, expr->CompareOperationFeedbackId());
4686     __ test(eax, eax);
4687     Split(not_zero, if_true, if_false, fall_through);
4688   }
4689   context()->Plug(if_true, if_false);
4690 }
4691 
4692 
VisitThisFunction(ThisFunction * expr)4693 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4694   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4695   context()->Plug(eax);
4696 }
4697 
4698 
result_register()4699 Register FullCodeGenerator::result_register() {
4700   return eax;
4701 }
4702 
4703 
context_register()4704 Register FullCodeGenerator::context_register() {
4705   return esi;
4706 }
4707 
4708 
StoreToFrameField(int frame_offset,Register value)4709 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4710   DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
4711   __ mov(Operand(ebp, frame_offset), value);
4712 }
4713 
4714 
LoadContextField(Register dst,int context_index)4715 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4716   __ mov(dst, ContextOperand(esi, context_index));
4717 }
4718 
4719 
PushFunctionArgumentForContextAllocation()4720 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4721   Scope* declaration_scope = scope()->DeclarationScope();
4722   if (declaration_scope->is_global_scope() ||
4723       declaration_scope->is_module_scope()) {
4724     // Contexts nested in the native context have a canonical empty function
4725     // as their closure, not the anonymous closure containing the global
4726     // code.  Pass a smi sentinel and let the runtime look up the empty
4727     // function.
4728     __ push(Immediate(Smi::FromInt(0)));
4729   } else if (declaration_scope->is_eval_scope()) {
4730     // Contexts nested inside eval code have the same closure as the context
4731     // calling eval, not the anonymous closure containing the eval code.
4732     // Fetch it from the context.
4733     __ push(ContextOperand(esi, Context::CLOSURE_INDEX));
4734   } else {
4735     DCHECK(declaration_scope->is_function_scope());
4736     __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4737   }
4738 }
4739 
4740 
4741 // ----------------------------------------------------------------------------
4742 // Non-local control flow support.
4743 
EnterFinallyBlock()4744 void FullCodeGenerator::EnterFinallyBlock() {
4745   // Cook return address on top of stack (smi encoded Code* delta)
4746   DCHECK(!result_register().is(edx));
4747   __ pop(edx);
4748   __ sub(edx, Immediate(masm_->CodeObject()));
4749   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4750   STATIC_ASSERT(kSmiTag == 0);
4751   __ SmiTag(edx);
4752   __ push(edx);
4753 
4754   // Store result register while executing finally block.
4755   __ push(result_register());
4756 
4757   // Store pending message while executing finally block.
4758   ExternalReference pending_message_obj =
4759       ExternalReference::address_of_pending_message_obj(isolate());
4760   __ mov(edx, Operand::StaticVariable(pending_message_obj));
4761   __ push(edx);
4762 
4763   ExternalReference has_pending_message =
4764       ExternalReference::address_of_has_pending_message(isolate());
4765   __ mov(edx, Operand::StaticVariable(has_pending_message));
4766   __ SmiTag(edx);
4767   __ push(edx);
4768 
4769   ExternalReference pending_message_script =
4770       ExternalReference::address_of_pending_message_script(isolate());
4771   __ mov(edx, Operand::StaticVariable(pending_message_script));
4772   __ push(edx);
4773 }
4774 
4775 
ExitFinallyBlock()4776 void FullCodeGenerator::ExitFinallyBlock() {
4777   DCHECK(!result_register().is(edx));
4778   // Restore pending message from stack.
4779   __ pop(edx);
4780   ExternalReference pending_message_script =
4781       ExternalReference::address_of_pending_message_script(isolate());
4782   __ mov(Operand::StaticVariable(pending_message_script), edx);
4783 
4784   __ pop(edx);
4785   __ SmiUntag(edx);
4786   ExternalReference has_pending_message =
4787       ExternalReference::address_of_has_pending_message(isolate());
4788   __ mov(Operand::StaticVariable(has_pending_message), edx);
4789 
4790   __ pop(edx);
4791   ExternalReference pending_message_obj =
4792       ExternalReference::address_of_pending_message_obj(isolate());
4793   __ mov(Operand::StaticVariable(pending_message_obj), edx);
4794 
4795   // Restore result register from stack.
4796   __ pop(result_register());
4797 
4798   // Uncook return address.
4799   __ pop(edx);
4800   __ SmiUntag(edx);
4801   __ add(edx, Immediate(masm_->CodeObject()));
4802   __ jmp(edx);
4803 }
4804 
4805 
4806 #undef __
4807 
4808 #define __ ACCESS_MASM(masm())
4809 
Exit(int * stack_depth,int * context_length)4810 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4811     int* stack_depth,
4812     int* context_length) {
4813   // The macros used here must preserve the result register.
4814 
4815   // Because the handler block contains the context of the finally
4816   // code, we can restore it directly from there for the finally code
4817   // rather than iteratively unwinding contexts via their previous
4818   // links.
4819   __ Drop(*stack_depth);  // Down to the handler block.
4820   if (*context_length > 0) {
4821     // Restore the context to its dedicated register and the stack.
4822     __ mov(esi, Operand(esp, StackHandlerConstants::kContextOffset));
4823     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
4824   }
4825   __ PopTryHandler();
4826   __ call(finally_entry_);
4827 
4828   *stack_depth = 0;
4829   *context_length = 0;
4830   return previous_;
4831 }
4832 
4833 #undef __
4834 
4835 
4836 static const byte kJnsInstruction = 0x79;
4837 static const byte kJnsOffset = 0x11;
4838 static const byte kNopByteOne = 0x66;
4839 static const byte kNopByteTwo = 0x90;
4840 #ifdef DEBUG
4841 static const byte kCallInstruction = 0xe8;
4842 #endif
4843 
4844 
PatchAt(Code * unoptimized_code,Address pc,BackEdgeState target_state,Code * replacement_code)4845 void BackEdgeTable::PatchAt(Code* unoptimized_code,
4846                             Address pc,
4847                             BackEdgeState target_state,
4848                             Code* replacement_code) {
4849   Address call_target_address = pc - kIntSize;
4850   Address jns_instr_address = call_target_address - 3;
4851   Address jns_offset_address = call_target_address - 2;
4852 
4853   switch (target_state) {
4854     case INTERRUPT:
4855       //     sub <profiling_counter>, <delta>  ;; Not changed
4856       //     jns ok
4857       //     call <interrupt stub>
4858       //   ok:
4859       *jns_instr_address = kJnsInstruction;
4860       *jns_offset_address = kJnsOffset;
4861       break;
4862     case ON_STACK_REPLACEMENT:
4863     case OSR_AFTER_STACK_CHECK:
4864       //     sub <profiling_counter>, <delta>  ;; Not changed
4865       //     nop
4866       //     nop
4867       //     call <on-stack replacment>
4868       //   ok:
4869       *jns_instr_address = kNopByteOne;
4870       *jns_offset_address = kNopByteTwo;
4871       break;
4872   }
4873 
4874   Assembler::set_target_address_at(call_target_address,
4875                                    unoptimized_code,
4876                                    replacement_code->entry());
4877   unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4878       unoptimized_code, call_target_address, replacement_code);
4879 }
4880 
4881 
GetBackEdgeState(Isolate * isolate,Code * unoptimized_code,Address pc)4882 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4883     Isolate* isolate,
4884     Code* unoptimized_code,
4885     Address pc) {
4886   Address call_target_address = pc - kIntSize;
4887   Address jns_instr_address = call_target_address - 3;
4888   DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
4889 
4890   if (*jns_instr_address == kJnsInstruction) {
4891     DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
4892     DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
4893               Assembler::target_address_at(call_target_address,
4894                                            unoptimized_code));
4895     return INTERRUPT;
4896   }
4897 
4898   DCHECK_EQ(kNopByteOne, *jns_instr_address);
4899   DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
4900 
4901   if (Assembler::target_address_at(call_target_address, unoptimized_code) ==
4902       isolate->builtins()->OnStackReplacement()->entry()) {
4903     return ON_STACK_REPLACEMENT;
4904   }
4905 
4906   DCHECK_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
4907             Assembler::target_address_at(call_target_address,
4908                                          unoptimized_code));
4909   return OSR_AFTER_STACK_CHECK;
4910 }
4911 
4912 
4913 } }  // namespace v8::internal
4914 
4915 #endif  // V8_TARGET_ARCH_IA32
4916