• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_ARM64
8 
9 #include "src/codegen.h"
10 #include "src/ic/ic.h"
11 #include "src/ic/ic-compiler.h"
12 #include "src/ic/stub-cache.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 
18 #define __ ACCESS_MASM(masm)
19 
20 
21 // "type" holds an instance type on entry and is not clobbered.
22 // Generated code branch on "global_object" if type is any kind of global
23 // JS object.
GenerateGlobalInstanceTypeCheck(MacroAssembler * masm,Register type,Label * global_object)24 static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
25                                             Label* global_object) {
26   __ Cmp(type, JS_GLOBAL_OBJECT_TYPE);
27   __ Ccmp(type, JS_BUILTINS_OBJECT_TYPE, ZFlag, ne);
28   __ Ccmp(type, JS_GLOBAL_PROXY_TYPE, ZFlag, ne);
29   __ B(eq, global_object);
30 }
31 
32 
33 // Helper function used from LoadIC GenerateNormal.
34 //
35 // elements: Property dictionary. It is not clobbered if a jump to the miss
36 //           label is done.
37 // name:     Property name. It is not clobbered if a jump to the miss label is
38 //           done
39 // result:   Register for the result. It is only updated if a jump to the miss
40 //           label is not done.
41 // The scratch registers need to be different from elements, name and result.
42 // The generated code assumes that the receiver has slow properties,
43 // is not a global object and does not have interceptors.
GenerateDictionaryLoad(MacroAssembler * masm,Label * miss,Register elements,Register name,Register result,Register scratch1,Register scratch2)44 static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
45                                    Register elements, Register name,
46                                    Register result, Register scratch1,
47                                    Register scratch2) {
48   DCHECK(!AreAliased(elements, name, scratch1, scratch2));
49   DCHECK(!AreAliased(result, scratch1, scratch2));
50 
51   Label done;
52 
53   // Probe the dictionary.
54   NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
55                                                    name, scratch1, scratch2);
56 
57   // If probing finds an entry check that the value is a normal property.
58   __ Bind(&done);
59 
60   static const int kElementsStartOffset =
61       NameDictionary::kHeaderSize +
62       NameDictionary::kElementsStartIndex * kPointerSize;
63   static const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
64   __ Ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
65   __ Tst(scratch1, Smi::FromInt(PropertyDetails::TypeField::kMask));
66   __ B(ne, miss);
67 
68   // Get the value at the masked, scaled index and return.
69   __ Ldr(result,
70          FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
71 }
72 
73 
74 // Helper function used from StoreIC::GenerateNormal.
75 //
76 // elements: Property dictionary. It is not clobbered if a jump to the miss
77 //           label is done.
78 // name:     Property name. It is not clobbered if a jump to the miss label is
79 //           done
80 // value:    The value to store (never clobbered).
81 //
82 // The generated code assumes that the receiver has slow properties,
83 // is not a global object and does not have interceptors.
GenerateDictionaryStore(MacroAssembler * masm,Label * miss,Register elements,Register name,Register value,Register scratch1,Register scratch2)84 static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
85                                     Register elements, Register name,
86                                     Register value, Register scratch1,
87                                     Register scratch2) {
88   DCHECK(!AreAliased(elements, name, value, scratch1, scratch2));
89 
90   Label done;
91 
92   // Probe the dictionary.
93   NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
94                                                    name, scratch1, scratch2);
95 
96   // If probing finds an entry in the dictionary check that the value
97   // is a normal property that is not read only.
98   __ Bind(&done);
99 
100   static const int kElementsStartOffset =
101       NameDictionary::kHeaderSize +
102       NameDictionary::kElementsStartIndex * kPointerSize;
103   static const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
104   static const int kTypeAndReadOnlyMask =
105       PropertyDetails::TypeField::kMask |
106       PropertyDetails::AttributesField::encode(READ_ONLY);
107   __ Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
108   __ Tst(scratch1, kTypeAndReadOnlyMask);
109   __ B(ne, miss);
110 
111   // Store the value at the masked, scaled index and return.
112   static const int kValueOffset = kElementsStartOffset + kPointerSize;
113   __ Add(scratch2, scratch2, kValueOffset - kHeapObjectTag);
114   __ Str(value, MemOperand(scratch2));
115 
116   // Update the write barrier. Make sure not to clobber the value.
117   __ Mov(scratch1, value);
118   __ RecordWrite(elements, scratch2, scratch1, kLRHasNotBeenSaved,
119                  kDontSaveFPRegs);
120 }
121 
122 
123 // Checks the receiver for special cases (value type, slow case bits).
124 // Falls through for regular JS object and return the map of the
125 // receiver in 'map_scratch' if the receiver is not a SMI.
GenerateKeyedLoadReceiverCheck(MacroAssembler * masm,Register receiver,Register map_scratch,Register scratch,int interceptor_bit,Label * slow)126 static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
127                                            Register receiver,
128                                            Register map_scratch,
129                                            Register scratch,
130                                            int interceptor_bit, Label* slow) {
131   DCHECK(!AreAliased(map_scratch, scratch));
132 
133   // Check that the object isn't a smi.
134   __ JumpIfSmi(receiver, slow);
135   // Get the map of the receiver.
136   __ Ldr(map_scratch, FieldMemOperand(receiver, HeapObject::kMapOffset));
137   // Check bit field.
138   __ Ldrb(scratch, FieldMemOperand(map_scratch, Map::kBitFieldOffset));
139   __ Tbnz(scratch, Map::kIsAccessCheckNeeded, slow);
140   __ Tbnz(scratch, interceptor_bit, slow);
141 
142   // Check that the object is some kind of JS object EXCEPT JS Value type.
143   // In the case that the object is a value-wrapper object, we enter the
144   // runtime system to make sure that indexing into string objects work
145   // as intended.
146   STATIC_ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
147   __ Ldrb(scratch, FieldMemOperand(map_scratch, Map::kInstanceTypeOffset));
148   __ Cmp(scratch, JS_OBJECT_TYPE);
149   __ B(lt, slow);
150 }
151 
152 
153 // Loads an indexed element from a fast case array.
154 // If not_fast_array is NULL, doesn't perform the elements map check.
155 //
156 // receiver     - holds the receiver on entry.
157 //                Unchanged unless 'result' is the same register.
158 //
159 // key          - holds the smi key on entry.
160 //                Unchanged unless 'result' is the same register.
161 //
162 // elements     - holds the elements of the receiver on exit.
163 //
164 // elements_map - holds the elements map on exit if the not_fast_array branch is
165 //                taken. Otherwise, this is used as a scratch register.
166 //
167 // result       - holds the result on exit if the load succeeded.
168 //                Allowed to be the the same as 'receiver' or 'key'.
169 //                Unchanged on bailout so 'receiver' and 'key' can be safely
170 //                used by further computation.
GenerateFastArrayLoad(MacroAssembler * masm,Register receiver,Register key,Register elements,Register elements_map,Register scratch2,Register result,Label * not_fast_array,Label * slow)171 static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
172                                   Register key, Register elements,
173                                   Register elements_map, Register scratch2,
174                                   Register result, Label* not_fast_array,
175                                   Label* slow) {
176   DCHECK(!AreAliased(receiver, key, elements, elements_map, scratch2));
177 
178   // Check for fast array.
179   __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
180   if (not_fast_array != NULL) {
181     // Check that the object is in fast mode and writable.
182     __ Ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
183     __ JumpIfNotRoot(elements_map, Heap::kFixedArrayMapRootIndex,
184                      not_fast_array);
185   } else {
186     __ AssertFastElements(elements);
187   }
188 
189   // The elements_map register is only used for the not_fast_array path, which
190   // was handled above. From this point onward it is a scratch register.
191   Register scratch1 = elements_map;
192 
193   // Check that the key (index) is within bounds.
194   __ Ldr(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
195   __ Cmp(key, scratch1);
196   __ B(hs, slow);
197 
198   // Fast case: Do the load.
199   __ Add(scratch1, elements, FixedArray::kHeaderSize - kHeapObjectTag);
200   __ SmiUntag(scratch2, key);
201   __ Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
202 
203   // In case the loaded value is the_hole we have to consult GetProperty
204   // to ensure the prototype chain is searched.
205   __ JumpIfRoot(scratch2, Heap::kTheHoleValueRootIndex, slow);
206 
207   // Move the value to the result register.
208   // 'result' can alias with 'receiver' or 'key' but these two must be
209   // preserved if we jump to 'slow'.
210   __ Mov(result, scratch2);
211 }
212 
213 
214 // Checks whether a key is an array index string or a unique name.
215 // Falls through if a key is a unique name.
216 // The map of the key is returned in 'map_scratch'.
217 // If the jump to 'index_string' is done the hash of the key is left
218 // in 'hash_scratch'.
GenerateKeyNameCheck(MacroAssembler * masm,Register key,Register map_scratch,Register hash_scratch,Label * index_string,Label * not_unique)219 static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
220                                  Register map_scratch, Register hash_scratch,
221                                  Label* index_string, Label* not_unique) {
222   DCHECK(!AreAliased(key, map_scratch, hash_scratch));
223 
224   // Is the key a name?
225   Label unique;
226   __ JumpIfObjectType(key, map_scratch, hash_scratch, LAST_UNIQUE_NAME_TYPE,
227                       not_unique, hi);
228   STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
229   __ B(eq, &unique);
230 
231   // Is the string an array index with cached numeric value?
232   __ Ldr(hash_scratch.W(), FieldMemOperand(key, Name::kHashFieldOffset));
233   __ TestAndBranchIfAllClear(hash_scratch, Name::kContainsCachedArrayIndexMask,
234                              index_string);
235 
236   // Is the string internalized? We know it's a string, so a single bit test is
237   // enough.
238   __ Ldrb(hash_scratch, FieldMemOperand(map_scratch, Map::kInstanceTypeOffset));
239   STATIC_ASSERT(kInternalizedTag == 0);
240   __ TestAndBranchIfAnySet(hash_scratch, kIsNotInternalizedMask, not_unique);
241 
242   __ Bind(&unique);
243   // Fall through if the key is a unique name.
244 }
245 
246 
247 // Neither 'object' nor 'key' are modified by this function.
248 //
249 // If the 'unmapped_case' or 'slow_case' exit is taken, the 'map' register is
250 // left with the object's elements map. Otherwise, it is used as a scratch
251 // register.
GenerateMappedArgumentsLookup(MacroAssembler * masm,Register object,Register key,Register map,Register scratch1,Register scratch2,Label * unmapped_case,Label * slow_case)252 static MemOperand GenerateMappedArgumentsLookup(MacroAssembler* masm,
253                                                 Register object, Register key,
254                                                 Register map, Register scratch1,
255                                                 Register scratch2,
256                                                 Label* unmapped_case,
257                                                 Label* slow_case) {
258   DCHECK(!AreAliased(object, key, map, scratch1, scratch2));
259 
260   Heap* heap = masm->isolate()->heap();
261 
262   // Check that the receiver is a JSObject. Because of the elements
263   // map check later, we do not need to check for interceptors or
264   // whether it requires access checks.
265   __ JumpIfSmi(object, slow_case);
266   // Check that the object is some kind of JSObject.
267   __ JumpIfObjectType(object, map, scratch1, FIRST_JS_RECEIVER_TYPE, slow_case,
268                       lt);
269 
270   // Check that the key is a positive smi.
271   __ JumpIfNotSmi(key, slow_case);
272   __ Tbnz(key, kXSignBit, slow_case);
273 
274   // Load the elements object and check its map.
275   Handle<Map> arguments_map(heap->sloppy_arguments_elements_map());
276   __ Ldr(map, FieldMemOperand(object, JSObject::kElementsOffset));
277   __ CheckMap(map, scratch1, arguments_map, slow_case, DONT_DO_SMI_CHECK);
278 
279   // Check if element is in the range of mapped arguments. If not, jump
280   // to the unmapped lookup.
281   __ Ldr(scratch1, FieldMemOperand(map, FixedArray::kLengthOffset));
282   __ Sub(scratch1, scratch1, Smi::FromInt(2));
283   __ Cmp(key, scratch1);
284   __ B(hs, unmapped_case);
285 
286   // Load element index and check whether it is the hole.
287   static const int offset =
288       FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag;
289 
290   __ Add(scratch1, map, offset);
291   __ SmiUntag(scratch2, key);
292   __ Ldr(scratch1, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
293   __ JumpIfRoot(scratch1, Heap::kTheHoleValueRootIndex, unmapped_case);
294 
295   // Load value from context and return it.
296   __ Ldr(scratch2, FieldMemOperand(map, FixedArray::kHeaderSize));
297   __ SmiUntag(scratch1);
298   __ Lsl(scratch1, scratch1, kPointerSizeLog2);
299   __ Add(scratch1, scratch1, Context::kHeaderSize - kHeapObjectTag);
300   // The base of the result (scratch2) is passed to RecordWrite in
301   // KeyedStoreIC::GenerateSloppyArguments and it must be a HeapObject.
302   return MemOperand(scratch2, scratch1);
303 }
304 
305 
306 // The 'parameter_map' register must be loaded with the parameter map of the
307 // arguments object and is overwritten.
GenerateUnmappedArgumentsLookup(MacroAssembler * masm,Register key,Register parameter_map,Register scratch,Label * slow_case)308 static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
309                                                   Register key,
310                                                   Register parameter_map,
311                                                   Register scratch,
312                                                   Label* slow_case) {
313   DCHECK(!AreAliased(key, parameter_map, scratch));
314 
315   // Element is in arguments backing store, which is referenced by the
316   // second element of the parameter_map.
317   const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
318   Register backing_store = parameter_map;
319   __ Ldr(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset));
320   Handle<Map> fixed_array_map(masm->isolate()->heap()->fixed_array_map());
321   __ CheckMap(backing_store, scratch, fixed_array_map, slow_case,
322               DONT_DO_SMI_CHECK);
323   __ Ldr(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset));
324   __ Cmp(key, scratch);
325   __ B(hs, slow_case);
326 
327   __ Add(backing_store, backing_store,
328          FixedArray::kHeaderSize - kHeapObjectTag);
329   __ SmiUntag(scratch, key);
330   return MemOperand(backing_store, scratch, LSL, kPointerSizeLog2);
331 }
332 
333 
GenerateNormal(MacroAssembler * masm)334 void LoadIC::GenerateNormal(MacroAssembler* masm) {
335   Register dictionary = x0;
336   DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
337   DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
338   Label slow;
339 
340   __ Ldr(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
341                                      JSObject::kPropertiesOffset));
342   GenerateDictionaryLoad(masm, &slow, dictionary,
343                          LoadDescriptor::NameRegister(), x0, x3, x4);
344   __ Ret();
345 
346   // Dictionary load failed, go slow (but don't miss).
347   __ Bind(&slow);
348   GenerateRuntimeGetProperty(masm);
349 }
350 
351 
GenerateMiss(MacroAssembler * masm)352 void LoadIC::GenerateMiss(MacroAssembler* masm) {
353   // The return address is in lr.
354   Isolate* isolate = masm->isolate();
355   ASM_LOCATION("LoadIC::GenerateMiss");
356 
357   __ IncrementCounter(isolate->counters()->load_miss(), 1, x3, x4);
358 
359   // Perform tail call to the entry.
360   __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
361   ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate);
362   __ TailCallExternalReference(ref, 2, 1);
363 }
364 
365 
GenerateRuntimeGetProperty(MacroAssembler * masm)366 void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
367   // The return address is in lr.
368   __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
369   __ TailCallRuntime(Runtime::kGetProperty, 2, 1);
370 }
371 
372 
GenerateSloppyArguments(MacroAssembler * masm)373 void KeyedStoreIC::GenerateSloppyArguments(MacroAssembler* masm) {
374   ASM_LOCATION("KeyedStoreIC::GenerateSloppyArguments");
375   Label slow, notin;
376   Register value = StoreDescriptor::ValueRegister();
377   Register key = StoreDescriptor::NameRegister();
378   Register receiver = StoreDescriptor::ReceiverRegister();
379   DCHECK(receiver.is(x1));
380   DCHECK(key.is(x2));
381   DCHECK(value.is(x0));
382 
383   Register map = x3;
384 
385   // These registers are used by GenerateMappedArgumentsLookup to build a
386   // MemOperand. They are live for as long as the MemOperand is live.
387   Register mapped1 = x4;
388   Register mapped2 = x5;
389 
390   MemOperand mapped = GenerateMappedArgumentsLookup(
391       masm, receiver, key, map, mapped1, mapped2, &notin, &slow);
392   Operand mapped_offset = mapped.OffsetAsOperand();
393   __ Str(value, mapped);
394   __ Add(x10, mapped.base(), mapped_offset);
395   __ Mov(x11, value);
396   __ RecordWrite(mapped.base(), x10, x11, kLRHasNotBeenSaved, kDontSaveFPRegs);
397   __ Ret();
398 
399   __ Bind(&notin);
400 
401   // These registers are used by GenerateMappedArgumentsLookup to build a
402   // MemOperand. They are live for as long as the MemOperand is live.
403   Register unmapped1 = map;  // This is assumed to alias 'map'.
404   Register unmapped2 = x4;
405   MemOperand unmapped =
406       GenerateUnmappedArgumentsLookup(masm, key, unmapped1, unmapped2, &slow);
407   Operand unmapped_offset = unmapped.OffsetAsOperand();
408   __ Str(value, unmapped);
409   __ Add(x10, unmapped.base(), unmapped_offset);
410   __ Mov(x11, value);
411   __ RecordWrite(unmapped.base(), x10, x11, kLRHasNotBeenSaved,
412                  kDontSaveFPRegs);
413   __ Ret();
414   __ Bind(&slow);
415   GenerateMiss(masm);
416 }
417 
418 
GenerateMiss(MacroAssembler * masm)419 void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
420   // The return address is in lr.
421   Isolate* isolate = masm->isolate();
422 
423   __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, x10, x11);
424 
425   __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
426 
427   // Perform tail call to the entry.
428   ExternalReference ref =
429       ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate);
430 
431   __ TailCallExternalReference(ref, 2, 1);
432 }
433 
434 
GenerateRuntimeGetProperty(MacroAssembler * masm)435 void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
436   // The return address is in lr.
437   __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
438   __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
439 }
440 
441 
GenerateKeyedLoadWithSmiKey(MacroAssembler * masm,Register key,Register receiver,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,Label * slow)442 static void GenerateKeyedLoadWithSmiKey(MacroAssembler* masm, Register key,
443                                         Register receiver, Register scratch1,
444                                         Register scratch2, Register scratch3,
445                                         Register scratch4, Register scratch5,
446                                         Label* slow) {
447   DCHECK(!AreAliased(key, receiver, scratch1, scratch2, scratch3, scratch4,
448                      scratch5));
449 
450   Isolate* isolate = masm->isolate();
451   Label check_number_dictionary;
452   // If we can load the value, it should be returned in x0.
453   Register result = x0;
454 
455   GenerateKeyedLoadReceiverCheck(masm, receiver, scratch1, scratch2,
456                                  Map::kHasIndexedInterceptor, slow);
457 
458   // Check the receiver's map to see if it has fast elements.
459   __ CheckFastElements(scratch1, scratch2, &check_number_dictionary);
460 
461   GenerateFastArrayLoad(masm, receiver, key, scratch3, scratch2, scratch1,
462                         result, NULL, slow);
463   __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1,
464                       scratch1, scratch2);
465   __ Ret();
466 
467   __ Bind(&check_number_dictionary);
468   __ Ldr(scratch3, FieldMemOperand(receiver, JSObject::kElementsOffset));
469   __ Ldr(scratch2, FieldMemOperand(scratch3, JSObject::kMapOffset));
470 
471   // Check whether we have a number dictionary.
472   __ JumpIfNotRoot(scratch2, Heap::kHashTableMapRootIndex, slow);
473 
474   __ LoadFromNumberDictionary(slow, scratch3, key, result, scratch1, scratch2,
475                               scratch4, scratch5);
476   __ Ret();
477 }
478 
GenerateKeyedLoadWithNameKey(MacroAssembler * masm,Register key,Register receiver,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,Label * slow)479 static void GenerateKeyedLoadWithNameKey(MacroAssembler* masm, Register key,
480                                          Register receiver, Register scratch1,
481                                          Register scratch2, Register scratch3,
482                                          Register scratch4, Register scratch5,
483                                          Label* slow) {
484   DCHECK(!AreAliased(key, receiver, scratch1, scratch2, scratch3, scratch4,
485                      scratch5));
486 
487   Isolate* isolate = masm->isolate();
488   Label probe_dictionary, property_array_property;
489   // If we can load the value, it should be returned in x0.
490   Register result = x0;
491 
492   GenerateKeyedLoadReceiverCheck(masm, receiver, scratch1, scratch2,
493                                  Map::kHasNamedInterceptor, slow);
494 
495   // If the receiver is a fast-case object, check the keyed lookup cache.
496   // Otherwise probe the dictionary.
497   __ Ldr(scratch2, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
498   __ Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
499   __ JumpIfRoot(scratch3, Heap::kHashTableMapRootIndex, &probe_dictionary);
500 
501   // We keep the map of the receiver in scratch1.
502   Register receiver_map = scratch1;
503 
504   // Load the map of the receiver, compute the keyed lookup cache hash
505   // based on 32 bits of the map pointer and the name hash.
506   __ Ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
507   __ Mov(scratch2, Operand(receiver_map, ASR, KeyedLookupCache::kMapHashShift));
508   __ Ldr(scratch3.W(), FieldMemOperand(key, Name::kHashFieldOffset));
509   __ Eor(scratch2, scratch2, Operand(scratch3, ASR, Name::kHashShift));
510   int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask;
511   __ And(scratch2, scratch2, mask);
512 
513   // Load the key (consisting of map and unique name) from the cache and
514   // check for match.
515   Label load_in_object_property;
516   static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
517   Label hit_on_nth_entry[kEntriesPerBucket];
518   ExternalReference cache_keys =
519       ExternalReference::keyed_lookup_cache_keys(isolate);
520 
521   __ Mov(scratch3, cache_keys);
522   __ Add(scratch3, scratch3, Operand(scratch2, LSL, kPointerSizeLog2 + 1));
523 
524   for (int i = 0; i < kEntriesPerBucket - 1; i++) {
525     Label try_next_entry;
526     // Load map and make scratch3 pointing to the next entry.
527     __ Ldr(scratch4, MemOperand(scratch3, kPointerSize * 2, PostIndex));
528     __ Cmp(receiver_map, scratch4);
529     __ B(ne, &try_next_entry);
530     __ Ldr(scratch4, MemOperand(scratch3, -kPointerSize));  // Load name
531     __ Cmp(key, scratch4);
532     __ B(eq, &hit_on_nth_entry[i]);
533     __ Bind(&try_next_entry);
534   }
535 
536   // Last entry.
537   __ Ldr(scratch4, MemOperand(scratch3, kPointerSize, PostIndex));
538   __ Cmp(receiver_map, scratch4);
539   __ B(ne, slow);
540   __ Ldr(scratch4, MemOperand(scratch3));
541   __ Cmp(key, scratch4);
542   __ B(ne, slow);
543 
544   // Get field offset.
545   ExternalReference cache_field_offsets =
546       ExternalReference::keyed_lookup_cache_field_offsets(isolate);
547 
548   // Hit on nth entry.
549   for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
550     __ Bind(&hit_on_nth_entry[i]);
551     __ Mov(scratch3, cache_field_offsets);
552     if (i != 0) {
553       __ Add(scratch2, scratch2, i);
554     }
555     __ Ldr(scratch4.W(), MemOperand(scratch3, scratch2, LSL, 2));
556     __ Ldrb(scratch5,
557             FieldMemOperand(receiver_map, Map::kInObjectPropertiesOffset));
558     __ Subs(scratch4, scratch4, scratch5);
559     __ B(ge, &property_array_property);
560     if (i != 0) {
561       __ B(&load_in_object_property);
562     }
563   }
564 
565   // Load in-object property.
566   __ Bind(&load_in_object_property);
567   __ Ldrb(scratch5, FieldMemOperand(receiver_map, Map::kInstanceSizeOffset));
568   __ Add(scratch5, scratch5, scratch4);        // Index from start of object.
569   __ Sub(receiver, receiver, kHeapObjectTag);  // Remove the heap tag.
570   __ Ldr(result, MemOperand(receiver, scratch5, LSL, kPointerSizeLog2));
571   __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
572                       scratch1, scratch2);
573   __ Ret();
574 
575   // Load property array property.
576   __ Bind(&property_array_property);
577   __ Ldr(scratch1, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
578   __ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
579   __ Ldr(result, MemOperand(scratch1, scratch4, LSL, kPointerSizeLog2));
580   __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
581                       scratch1, scratch2);
582   __ Ret();
583 
584   // Do a quick inline probe of the receiver's dictionary, if it exists.
585   __ Bind(&probe_dictionary);
586   __ Ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));
587   __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
588   GenerateGlobalInstanceTypeCheck(masm, scratch1, slow);
589   // Load the property.
590   GenerateDictionaryLoad(masm, slow, scratch2, key, result, scratch1, scratch3);
591   __ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1,
592                       scratch1, scratch2);
593   __ Ret();
594 }
595 
596 
GenerateGeneric(MacroAssembler * masm)597 void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
598   // The return address is in lr.
599   Label slow, check_name, index_smi, index_name;
600 
601   Register key = LoadDescriptor::NameRegister();
602   Register receiver = LoadDescriptor::ReceiverRegister();
603   DCHECK(key.is(x2));
604   DCHECK(receiver.is(x1));
605 
606   __ JumpIfNotSmi(key, &check_name);
607   __ Bind(&index_smi);
608   // Now the key is known to be a smi. This place is also jumped to from below
609   // where a numeric string is converted to a smi.
610   GenerateKeyedLoadWithSmiKey(masm, key, receiver, x7, x3, x4, x5, x6, &slow);
611 
612   // Slow case.
613   __ Bind(&slow);
614   __ IncrementCounter(masm->isolate()->counters()->keyed_load_generic_slow(), 1,
615                       x4, x3);
616   GenerateRuntimeGetProperty(masm);
617 
618   __ Bind(&check_name);
619   GenerateKeyNameCheck(masm, key, x0, x3, &index_name, &slow);
620 
621   GenerateKeyedLoadWithNameKey(masm, key, receiver, x7, x3, x4, x5, x6, &slow);
622 
623   __ Bind(&index_name);
624   __ IndexFromHash(x3, key);
625   // Now jump to the place where smi keys are handled.
626   __ B(&index_smi);
627 }
628 
629 
GenerateString(MacroAssembler * masm)630 void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
631   // Return address is in lr.
632   Label miss;
633 
634   Register receiver = LoadDescriptor::ReceiverRegister();
635   Register index = LoadDescriptor::NameRegister();
636   Register result = x0;
637   Register scratch = x3;
638   DCHECK(!scratch.is(receiver) && !scratch.is(index));
639 
640   StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
641                                           &miss,  // When not a string.
642                                           &miss,  // When not a number.
643                                           &miss,  // When index out of range.
644                                           STRING_INDEX_IS_ARRAY_INDEX);
645   char_at_generator.GenerateFast(masm);
646   __ Ret();
647 
648   StubRuntimeCallHelper call_helper;
649   char_at_generator.GenerateSlow(masm, call_helper);
650 
651   __ Bind(&miss);
652   GenerateMiss(masm);
653 }
654 
655 
GenerateMiss(MacroAssembler * masm)656 void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
657   ASM_LOCATION("KeyedStoreIC::GenerateMiss");
658 
659   // Push receiver, key and value for runtime call.
660   __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
661           StoreDescriptor::ValueRegister());
662 
663   ExternalReference ref =
664       ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
665   __ TailCallExternalReference(ref, 3, 1);
666 }
667 
668 
KeyedStoreGenerateGenericHelper(MacroAssembler * masm,Label * fast_object,Label * fast_double,Label * slow,KeyedStoreCheckMap check_map,KeyedStoreIncrementLength increment_length,Register value,Register key,Register receiver,Register receiver_map,Register elements_map,Register elements)669 static void KeyedStoreGenerateGenericHelper(
670     MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
671     KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
672     Register value, Register key, Register receiver, Register receiver_map,
673     Register elements_map, Register elements) {
674   DCHECK(!AreAliased(value, key, receiver, receiver_map, elements_map, elements,
675                      x10, x11));
676 
677   Label transition_smi_elements;
678   Label transition_double_elements;
679   Label fast_double_without_map_check;
680   Label non_double_value;
681   Label finish_store;
682 
683   __ Bind(fast_object);
684   if (check_map == kCheckMap) {
685     __ Ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
686     __ Cmp(elements_map,
687            Operand(masm->isolate()->factory()->fixed_array_map()));
688     __ B(ne, fast_double);
689   }
690 
691   // HOLECHECK: guards "A[i] = V"
692   // We have to go to the runtime if the current value is the hole because there
693   // may be a callback on the element.
694   Label holecheck_passed;
695   __ Add(x10, elements, FixedArray::kHeaderSize - kHeapObjectTag);
696   __ Add(x10, x10, Operand::UntagSmiAndScale(key, kPointerSizeLog2));
697   __ Ldr(x11, MemOperand(x10));
698   __ JumpIfNotRoot(x11, Heap::kTheHoleValueRootIndex, &holecheck_passed);
699   __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, x10, slow);
700   __ bind(&holecheck_passed);
701 
702   // Smi stores don't require further checks.
703   __ JumpIfSmi(value, &finish_store);
704 
705   // Escape to elements kind transition case.
706   __ CheckFastObjectElements(receiver_map, x10, &transition_smi_elements);
707 
708   __ Bind(&finish_store);
709   if (increment_length == kIncrementLength) {
710     // Add 1 to receiver->length.
711     __ Add(x10, key, Smi::FromInt(1));
712     __ Str(x10, FieldMemOperand(receiver, JSArray::kLengthOffset));
713   }
714 
715   Register address = x11;
716   __ Add(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
717   __ Add(address, address, Operand::UntagSmiAndScale(key, kPointerSizeLog2));
718   __ Str(value, MemOperand(address));
719 
720   Label dont_record_write;
721   __ JumpIfSmi(value, &dont_record_write);
722 
723   // Update write barrier for the elements array address.
724   __ Mov(x10, value);  // Preserve the value which is returned.
725   __ RecordWrite(elements, address, x10, kLRHasNotBeenSaved, kDontSaveFPRegs,
726                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
727 
728   __ Bind(&dont_record_write);
729   __ Ret();
730 
731 
732   __ Bind(fast_double);
733   if (check_map == kCheckMap) {
734     // Check for fast double array case. If this fails, call through to the
735     // runtime.
736     __ JumpIfNotRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex, slow);
737   }
738 
739   // HOLECHECK: guards "A[i] double hole?"
740   // We have to see if the double version of the hole is present. If so go to
741   // the runtime.
742   __ Add(x10, elements, FixedDoubleArray::kHeaderSize - kHeapObjectTag);
743   __ Add(x10, x10, Operand::UntagSmiAndScale(key, kPointerSizeLog2));
744   __ Ldr(x11, MemOperand(x10));
745   __ CompareAndBranch(x11, kHoleNanInt64, ne, &fast_double_without_map_check);
746   __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, x10, slow);
747 
748   __ Bind(&fast_double_without_map_check);
749   __ StoreNumberToDoubleElements(value, key, elements, x10, d0,
750                                  &transition_double_elements);
751   if (increment_length == kIncrementLength) {
752     // Add 1 to receiver->length.
753     __ Add(x10, key, Smi::FromInt(1));
754     __ Str(x10, FieldMemOperand(receiver, JSArray::kLengthOffset));
755   }
756   __ Ret();
757 
758 
759   __ Bind(&transition_smi_elements);
760   // Transition the array appropriately depending on the value type.
761   __ Ldr(x10, FieldMemOperand(value, HeapObject::kMapOffset));
762   __ JumpIfNotRoot(x10, Heap::kHeapNumberMapRootIndex, &non_double_value);
763 
764   // Value is a double. Transition FAST_SMI_ELEMENTS ->
765   // FAST_DOUBLE_ELEMENTS and complete the store.
766   __ LoadTransitionedArrayMapConditional(
767       FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, x10, x11, slow);
768   AllocationSiteMode mode =
769       AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
770   ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
771                                                    receiver_map, mode, slow);
772   __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
773   __ B(&fast_double_without_map_check);
774 
775   __ Bind(&non_double_value);
776   // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS.
777   __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
778                                          receiver_map, x10, x11, slow);
779 
780   mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
781   ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
782       masm, receiver, key, value, receiver_map, mode, slow);
783 
784   __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
785   __ B(&finish_store);
786 
787   __ Bind(&transition_double_elements);
788   // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
789   // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
790   // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
791   __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
792                                          receiver_map, x10, x11, slow);
793   mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
794   ElementsTransitionGenerator::GenerateDoubleToObject(
795       masm, receiver, key, value, receiver_map, mode, slow);
796   __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
797   __ B(&finish_store);
798 }
799 
800 
GenerateGeneric(MacroAssembler * masm,StrictMode strict_mode)801 void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
802                                    StrictMode strict_mode) {
803   ASM_LOCATION("KeyedStoreIC::GenerateGeneric");
804   Label slow;
805   Label array;
806   Label fast_object;
807   Label extra;
808   Label fast_object_grow;
809   Label fast_double_grow;
810   Label fast_double;
811 
812   Register value = StoreDescriptor::ValueRegister();
813   Register key = StoreDescriptor::NameRegister();
814   Register receiver = StoreDescriptor::ReceiverRegister();
815   DCHECK(receiver.is(x1));
816   DCHECK(key.is(x2));
817   DCHECK(value.is(x0));
818 
819   Register receiver_map = x3;
820   Register elements = x4;
821   Register elements_map = x5;
822 
823   __ JumpIfNotSmi(key, &slow);
824   __ JumpIfSmi(receiver, &slow);
825   __ Ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
826 
827   // Check that the receiver does not require access checks and is not observed.
828   // The generic stub does not perform map checks or handle observed objects.
829   __ Ldrb(x10, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
830   __ TestAndBranchIfAnySet(
831       x10, (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kIsObserved), &slow);
832 
833   // Check if the object is a JS array or not.
834   Register instance_type = x10;
835   __ CompareInstanceType(receiver_map, instance_type, JS_ARRAY_TYPE);
836   __ B(eq, &array);
837   // Check that the object is some kind of JSObject.
838   __ Cmp(instance_type, FIRST_JS_OBJECT_TYPE);
839   __ B(lt, &slow);
840 
841   // Object case: Check key against length in the elements array.
842   __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
843   // Check array bounds. Both the key and the length of FixedArray are smis.
844   __ Ldrsw(x10, UntagSmiFieldMemOperand(elements, FixedArray::kLengthOffset));
845   __ Cmp(x10, Operand::UntagSmi(key));
846   __ B(hi, &fast_object);
847 
848 
849   __ Bind(&slow);
850   // Slow case, handle jump to runtime.
851   // Live values:
852   //  x0: value
853   //  x1: key
854   //  x2: receiver
855   PropertyICCompiler::GenerateRuntimeSetProperty(masm, strict_mode);
856 
857 
858   __ Bind(&extra);
859   // Extra capacity case: Check if there is extra capacity to
860   // perform the store and update the length. Used for adding one
861   // element to the array by writing to array[array.length].
862 
863   // Check for room in the elements backing store.
864   // Both the key and the length of FixedArray are smis.
865   __ Ldrsw(x10, UntagSmiFieldMemOperand(elements, FixedArray::kLengthOffset));
866   __ Cmp(x10, Operand::UntagSmi(key));
867   __ B(ls, &slow);
868 
869   __ Ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
870   __ Cmp(elements_map, Operand(masm->isolate()->factory()->fixed_array_map()));
871   __ B(eq, &fast_object_grow);
872   __ Cmp(elements_map,
873          Operand(masm->isolate()->factory()->fixed_double_array_map()));
874   __ B(eq, &fast_double_grow);
875   __ B(&slow);
876 
877 
878   __ Bind(&array);
879   // Array case: Get the length and the elements array from the JS
880   // array. Check that the array is in fast mode (and writable); if it
881   // is the length is always a smi.
882 
883   __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
884 
885   // Check the key against the length in the array.
886   __ Ldrsw(x10, UntagSmiFieldMemOperand(receiver, JSArray::kLengthOffset));
887   __ Cmp(x10, Operand::UntagSmi(key));
888   __ B(eq, &extra);  // We can handle the case where we are appending 1 element.
889   __ B(lo, &slow);
890 
891   KeyedStoreGenerateGenericHelper(
892       masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
893       value, key, receiver, receiver_map, elements_map, elements);
894   KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow,
895                                   &slow, kDontCheckMap, kIncrementLength, value,
896                                   key, receiver, receiver_map, elements_map,
897                                   elements);
898 }
899 
900 
GenerateMegamorphic(MacroAssembler * masm)901 void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
902   Register receiver = StoreDescriptor::ReceiverRegister();
903   Register name = StoreDescriptor::NameRegister();
904   DCHECK(!AreAliased(receiver, name, StoreDescriptor::ValueRegister(), x3, x4,
905                      x5, x6));
906 
907   // Probe the stub cache.
908   Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
909       Code::ComputeHandlerFlags(Code::STORE_IC));
910   masm->isolate()->stub_cache()->GenerateProbe(masm, flags, false, receiver,
911                                                name, x3, x4, x5, x6);
912 
913   // Cache miss: Jump to runtime.
914   GenerateMiss(masm);
915 }
916 
917 
GenerateMiss(MacroAssembler * masm)918 void StoreIC::GenerateMiss(MacroAssembler* masm) {
919   __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
920           StoreDescriptor::ValueRegister());
921 
922   // Tail call to the entry.
923   ExternalReference ref =
924       ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
925   __ TailCallExternalReference(ref, 3, 1);
926 }
927 
928 
GenerateNormal(MacroAssembler * masm)929 void StoreIC::GenerateNormal(MacroAssembler* masm) {
930   Label miss;
931   Register value = StoreDescriptor::ValueRegister();
932   Register receiver = StoreDescriptor::ReceiverRegister();
933   Register name = StoreDescriptor::NameRegister();
934   Register dictionary = x3;
935   DCHECK(!AreAliased(value, receiver, name, x3, x4, x5));
936 
937   __ Ldr(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
938 
939   GenerateDictionaryStore(masm, &miss, dictionary, name, value, x4, x5);
940   Counters* counters = masm->isolate()->counters();
941   __ IncrementCounter(counters->store_normal_hit(), 1, x4, x5);
942   __ Ret();
943 
944   // Cache miss: Jump to runtime.
945   __ Bind(&miss);
946   __ IncrementCounter(counters->store_normal_miss(), 1, x4, x5);
947   GenerateMiss(masm);
948 }
949 
950 
ComputeCondition(Token::Value op)951 Condition CompareIC::ComputeCondition(Token::Value op) {
952   switch (op) {
953     case Token::EQ_STRICT:
954     case Token::EQ:
955       return eq;
956     case Token::LT:
957       return lt;
958     case Token::GT:
959       return gt;
960     case Token::LTE:
961       return le;
962     case Token::GTE:
963       return ge;
964     default:
965       UNREACHABLE();
966       return al;
967   }
968 }
969 
970 
HasInlinedSmiCode(Address address)971 bool CompareIC::HasInlinedSmiCode(Address address) {
972   // The address of the instruction following the call.
973   Address info_address = Assembler::return_address_from_call_start(address);
974 
975   InstructionSequence* patch_info = InstructionSequence::At(info_address);
976   return patch_info->IsInlineData();
977 }
978 
979 
980 // Activate a SMI fast-path by patching the instructions generated by
981 // JumpPatchSite::EmitJumpIf(Not)Smi(), using the information encoded by
982 // JumpPatchSite::EmitPatchInfo().
PatchInlinedSmiCode(Address address,InlinedSmiCheck check)983 void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
984   // The patch information is encoded in the instruction stream using
985   // instructions which have no side effects, so we can safely execute them.
986   // The patch information is encoded directly after the call to the helper
987   // function which is requesting this patch operation.
988   Address info_address = Assembler::return_address_from_call_start(address);
989   InlineSmiCheckInfo info(info_address);
990 
991   // Check and decode the patch information instruction.
992   if (!info.HasSmiCheck()) {
993     return;
994   }
995 
996   if (FLAG_trace_ic) {
997     PrintF("[  Patching ic at %p, marker=%p, SMI check=%p\n", address,
998            info_address, reinterpret_cast<void*>(info.SmiCheck()));
999   }
1000 
1001   // Patch and activate code generated by JumpPatchSite::EmitJumpIfNotSmi()
1002   // and JumpPatchSite::EmitJumpIfSmi().
1003   // Changing
1004   //   tb(n)z xzr, #0, <target>
1005   // to
1006   //   tb(!n)z test_reg, #0, <target>
1007   Instruction* to_patch = info.SmiCheck();
1008   PatchingAssembler patcher(to_patch, 1);
1009   DCHECK(to_patch->IsTestBranch());
1010   DCHECK(to_patch->ImmTestBranchBit5() == 0);
1011   DCHECK(to_patch->ImmTestBranchBit40() == 0);
1012 
1013   STATIC_ASSERT(kSmiTag == 0);
1014   STATIC_ASSERT(kSmiTagMask == 1);
1015 
1016   int branch_imm = to_patch->ImmTestBranch();
1017   Register smi_reg;
1018   if (check == ENABLE_INLINED_SMI_CHECK) {
1019     DCHECK(to_patch->Rt() == xzr.code());
1020     smi_reg = info.SmiRegister();
1021   } else {
1022     DCHECK(check == DISABLE_INLINED_SMI_CHECK);
1023     DCHECK(to_patch->Rt() != xzr.code());
1024     smi_reg = xzr;
1025   }
1026 
1027   if (to_patch->Mask(TestBranchMask) == TBZ) {
1028     // This is JumpIfNotSmi(smi_reg, branch_imm).
1029     patcher.tbnz(smi_reg, 0, branch_imm);
1030   } else {
1031     DCHECK(to_patch->Mask(TestBranchMask) == TBNZ);
1032     // This is JumpIfSmi(smi_reg, branch_imm).
1033     patcher.tbz(smi_reg, 0, branch_imm);
1034   }
1035 }
1036 }
1037 }  // namespace v8::internal
1038 
1039 #endif  // V8_TARGET_ARCH_ARM64
1040