• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips64/assembler-mips64.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
52 
53 // -----------------------------------------------------------------------------
54 // Operand and MemOperand.
55 
Operand(int64_t immediate,RelocInfo::Mode rmode)56 Operand::Operand(int64_t immediate, RelocInfo::Mode rmode)  {
57   rm_ = no_reg;
58   imm64_ = immediate;
59   rmode_ = rmode;
60 }
61 
62 
Operand(const ExternalReference & f)63 Operand::Operand(const ExternalReference& f)  {
64   rm_ = no_reg;
65   imm64_ = reinterpret_cast<int64_t>(f.address());
66   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67 }
68 
69 
Operand(Smi * value)70 Operand::Operand(Smi* value) {
71   rm_ = no_reg;
72   imm64_ =  reinterpret_cast<intptr_t>(value);
73   rmode_ = RelocInfo::NONE32;
74 }
75 
76 
Operand(Register rm)77 Operand::Operand(Register rm) {
78   rm_ = rm;
79 }
80 
81 
is_reg()82 bool Operand::is_reg() const {
83   return rm_.is_valid();
84 }
85 
86 
NumAllocatableRegisters()87 int Register::NumAllocatableRegisters() {
88     return kMaxNumAllocatableRegisters;
89 }
90 
91 
NumRegisters()92 int DoubleRegister::NumRegisters() {
93     return FPURegister::kMaxNumRegisters;
94 }
95 
96 
NumAllocatableRegisters()97 int DoubleRegister::NumAllocatableRegisters() {
98     return FPURegister::kMaxNumAllocatableRegisters;
99 }
100 
101 
ToAllocationIndex(FPURegister reg)102 int FPURegister::ToAllocationIndex(FPURegister reg) {
103   DCHECK(reg.code() % 2 == 0);
104   DCHECK(reg.code() / 2 < kMaxNumAllocatableRegisters);
105   DCHECK(reg.is_valid());
106   DCHECK(!reg.is(kDoubleRegZero));
107   DCHECK(!reg.is(kLithiumScratchDouble));
108   return (reg.code() / 2);
109 }
110 
111 
112 // -----------------------------------------------------------------------------
113 // RelocInfo.
114 
apply(intptr_t delta,ICacheFlushMode icache_flush_mode)115 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
116   if (IsInternalReference(rmode_)) {
117     // Absolute code pointer inside code object moves with the code object.
118     byte* p = reinterpret_cast<byte*>(pc_);
119     int count = Assembler::RelocateInternalReference(p, delta);
120     CpuFeatures::FlushICache(p, count * sizeof(uint32_t));
121   }
122 }
123 
124 
target_address()125 Address RelocInfo::target_address() {
126   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
127   return Assembler::target_address_at(pc_, host_);
128 }
129 
130 
target_address_address()131 Address RelocInfo::target_address_address() {
132   DCHECK(IsCodeTarget(rmode_) ||
133          IsRuntimeEntry(rmode_) ||
134          rmode_ == EMBEDDED_OBJECT ||
135          rmode_ == EXTERNAL_REFERENCE);
136   // Read the address of the word containing the target_address in an
137   // instruction stream.
138   // The only architecture-independent user of this function is the serializer.
139   // The serializer uses it to find out how many raw bytes of instruction to
140   // output before the next target.
141   // For an instruction like LUI/ORI where the target bits are mixed into the
142   // instruction bits, the size of the target will be zero, indicating that the
143   // serializer should not step forward in memory after a target is resolved
144   // and written. In this case the target_address_address function should
145   // return the end of the instructions to be patched, allowing the
146   // deserializer to deserialize the instructions as raw bytes and put them in
147   // place, ready to be patched with the target. After jump optimization,
148   // that is the address of the instruction that follows J/JAL/JR/JALR
149   // instruction.
150   // return reinterpret_cast<Address>(
151   //  pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
152   return reinterpret_cast<Address>(
153     pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
154 }
155 
156 
constant_pool_entry_address()157 Address RelocInfo::constant_pool_entry_address() {
158   UNREACHABLE();
159   return NULL;
160 }
161 
162 
target_address_size()163 int RelocInfo::target_address_size() {
164   return Assembler::kSpecialTargetSize;
165 }
166 
167 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)168 void RelocInfo::set_target_address(Address target,
169                                    WriteBarrierMode write_barrier_mode,
170                                    ICacheFlushMode icache_flush_mode) {
171   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
172   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
173   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
174       host() != NULL && IsCodeTarget(rmode_)) {
175     Object* target_code = Code::GetCodeFromTargetAddress(target);
176     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
177         host(), this, HeapObject::cast(target_code));
178   }
179 }
180 
181 
target_address_from_return_address(Address pc)182 Address Assembler::target_address_from_return_address(Address pc) {
183   return pc - kCallTargetAddressOffset;
184 }
185 
186 
break_address_from_return_address(Address pc)187 Address Assembler::break_address_from_return_address(Address pc) {
188   return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
189 }
190 
191 
target_object()192 Object* RelocInfo::target_object() {
193   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
194   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
195 }
196 
197 
target_object_handle(Assembler * origin)198 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
199   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
200   return Handle<Object>(reinterpret_cast<Object**>(
201       Assembler::target_address_at(pc_, host_)));
202 }
203 
204 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)205 void RelocInfo::set_target_object(Object* target,
206                                   WriteBarrierMode write_barrier_mode,
207                                   ICacheFlushMode icache_flush_mode) {
208   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
209   Assembler::set_target_address_at(pc_, host_,
210                                    reinterpret_cast<Address>(target),
211                                    icache_flush_mode);
212   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
213       host() != NULL &&
214       target->IsHeapObject()) {
215     host()->GetHeap()->incremental_marking()->RecordWrite(
216         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
217   }
218 }
219 
220 
target_reference()221 Address RelocInfo::target_reference() {
222   DCHECK(rmode_ == EXTERNAL_REFERENCE);
223   return Assembler::target_address_at(pc_, host_);
224 }
225 
226 
target_runtime_entry(Assembler * origin)227 Address RelocInfo::target_runtime_entry(Assembler* origin) {
228   DCHECK(IsRuntimeEntry(rmode_));
229   return target_address();
230 }
231 
232 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)233 void RelocInfo::set_target_runtime_entry(Address target,
234                                          WriteBarrierMode write_barrier_mode,
235                                          ICacheFlushMode icache_flush_mode) {
236   DCHECK(IsRuntimeEntry(rmode_));
237   if (target_address() != target)
238     set_target_address(target, write_barrier_mode, icache_flush_mode);
239 }
240 
241 
target_cell_handle()242 Handle<Cell> RelocInfo::target_cell_handle() {
243   DCHECK(rmode_ == RelocInfo::CELL);
244   Address address = Memory::Address_at(pc_);
245   return Handle<Cell>(reinterpret_cast<Cell**>(address));
246 }
247 
248 
target_cell()249 Cell* RelocInfo::target_cell() {
250   DCHECK(rmode_ == RelocInfo::CELL);
251   return Cell::FromValueAddress(Memory::Address_at(pc_));
252 }
253 
254 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)255 void RelocInfo::set_target_cell(Cell* cell,
256                                 WriteBarrierMode write_barrier_mode,
257                                 ICacheFlushMode icache_flush_mode) {
258   DCHECK(rmode_ == RelocInfo::CELL);
259   Address address = cell->address() + Cell::kValueOffset;
260   Memory::Address_at(pc_) = address;
261   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
262     // TODO(1550) We are passing NULL as a slot because cell can never be on
263     // evacuation candidate.
264     host()->GetHeap()->incremental_marking()->RecordWrite(
265         host(), NULL, cell);
266   }
267 }
268 
269 
270 static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
271 
272 
code_age_stub_handle(Assembler * origin)273 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
274   UNREACHABLE();  // This should never be reached on Arm.
275   return Handle<Object>();
276 }
277 
278 
code_age_stub()279 Code* RelocInfo::code_age_stub() {
280   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
281   return Code::GetCodeFromTargetAddress(
282       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
283 }
284 
285 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)286 void RelocInfo::set_code_age_stub(Code* stub,
287                                   ICacheFlushMode icache_flush_mode) {
288   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
289   Assembler::set_target_address_at(pc_ + Assembler::kInstrSize,
290                                    host_,
291                                    stub->instruction_start());
292 }
293 
294 
call_address()295 Address RelocInfo::call_address() {
296   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
297          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
298   // The pc_ offset of 0 assumes mips patched return sequence per
299   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
300   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
301   return Assembler::target_address_at(pc_, host_);
302 }
303 
304 
set_call_address(Address target)305 void RelocInfo::set_call_address(Address target) {
306   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
307          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
308   // The pc_ offset of 0 assumes mips patched return sequence per
309   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
310   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
311   Assembler::set_target_address_at(pc_, host_, target);
312   if (host() != NULL) {
313     Object* target_code = Code::GetCodeFromTargetAddress(target);
314     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
315         host(), this, HeapObject::cast(target_code));
316   }
317 }
318 
319 
call_object()320 Object* RelocInfo::call_object() {
321   return *call_object_address();
322 }
323 
324 
call_object_address()325 Object** RelocInfo::call_object_address() {
326   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
327          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
328   return reinterpret_cast<Object**>(pc_ + 6 * Assembler::kInstrSize);
329 }
330 
331 
set_call_object(Object * target)332 void RelocInfo::set_call_object(Object* target) {
333   *call_object_address() = target;
334 }
335 
336 
WipeOut()337 void RelocInfo::WipeOut() {
338   DCHECK(IsEmbeddedObject(rmode_) ||
339          IsCodeTarget(rmode_) ||
340          IsRuntimeEntry(rmode_) ||
341          IsExternalReference(rmode_));
342   Assembler::set_target_address_at(pc_, host_, NULL);
343 }
344 
345 
IsPatchedReturnSequence()346 bool RelocInfo::IsPatchedReturnSequence() {
347   Instr instr0 = Assembler::instr_at(pc_);  // lui.
348   Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);  // ori.
349   Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);  // dsll.
350   Instr instr3 = Assembler::instr_at(pc_ + 3 * Assembler::kInstrSize);  // ori.
351   Instr instr4 = Assembler::instr_at(pc_ + 4 * Assembler::kInstrSize);  // jalr.
352 
353   bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
354                          (instr1 & kOpcodeMask) == ORI &&
355                          (instr2 & kFunctionFieldMask) == DSLL &&
356                          (instr3 & kOpcodeMask) == ORI &&
357                          (instr4 & kFunctionFieldMask) == JALR);
358   return patched_return;
359 }
360 
361 
IsPatchedDebugBreakSlotSequence()362 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
363   Instr current_instr = Assembler::instr_at(pc_);
364   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
365 }
366 
367 
Visit(Isolate * isolate,ObjectVisitor * visitor)368 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
369   RelocInfo::Mode mode = rmode();
370   if (mode == RelocInfo::EMBEDDED_OBJECT) {
371     visitor->VisitEmbeddedPointer(this);
372   } else if (RelocInfo::IsCodeTarget(mode)) {
373     visitor->VisitCodeTarget(this);
374   } else if (mode == RelocInfo::CELL) {
375     visitor->VisitCell(this);
376   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
377     visitor->VisitExternalReference(this);
378   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
379     visitor->VisitCodeAgeSequence(this);
380   } else if (((RelocInfo::IsJSReturn(mode) &&
381               IsPatchedReturnSequence()) ||
382              (RelocInfo::IsDebugBreakSlot(mode) &&
383              IsPatchedDebugBreakSlotSequence())) &&
384              isolate->debug()->has_break_points()) {
385     visitor->VisitDebugTarget(this);
386   } else if (RelocInfo::IsRuntimeEntry(mode)) {
387     visitor->VisitRuntimeEntry(this);
388   }
389 }
390 
391 
392 template<typename StaticVisitor>
Visit(Heap * heap)393 void RelocInfo::Visit(Heap* heap) {
394   RelocInfo::Mode mode = rmode();
395   if (mode == RelocInfo::EMBEDDED_OBJECT) {
396     StaticVisitor::VisitEmbeddedPointer(heap, this);
397   } else if (RelocInfo::IsCodeTarget(mode)) {
398     StaticVisitor::VisitCodeTarget(heap, this);
399   } else if (mode == RelocInfo::CELL) {
400     StaticVisitor::VisitCell(heap, this);
401   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
402     StaticVisitor::VisitExternalReference(this);
403   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
404     StaticVisitor::VisitCodeAgeSequence(heap, this);
405   } else if (heap->isolate()->debug()->has_break_points() &&
406              ((RelocInfo::IsJSReturn(mode) &&
407               IsPatchedReturnSequence()) ||
408              (RelocInfo::IsDebugBreakSlot(mode) &&
409               IsPatchedDebugBreakSlotSequence()))) {
410     StaticVisitor::VisitDebugTarget(heap, this);
411   } else if (RelocInfo::IsRuntimeEntry(mode)) {
412     StaticVisitor::VisitRuntimeEntry(this);
413   }
414 }
415 
416 
417 // -----------------------------------------------------------------------------
418 // Assembler.
419 
420 
CheckBuffer()421 void Assembler::CheckBuffer() {
422   if (buffer_space() <= kGap) {
423     GrowBuffer();
424   }
425 }
426 
427 
CheckTrampolinePoolQuick()428 void Assembler::CheckTrampolinePoolQuick() {
429   if (pc_offset() >= next_buffer_check_) {
430     CheckTrampolinePool();
431   }
432 }
433 
434 
emit(Instr x)435 void Assembler::emit(Instr x) {
436   if (!is_buffer_growth_blocked()) {
437     CheckBuffer();
438   }
439   *reinterpret_cast<Instr*>(pc_) = x;
440   pc_ += kInstrSize;
441   CheckTrampolinePoolQuick();
442 }
443 
444 
emit(uint64_t x)445 void Assembler::emit(uint64_t x) {
446   if (!is_buffer_growth_blocked()) {
447     CheckBuffer();
448   }
449   *reinterpret_cast<uint64_t*>(pc_) = x;
450   pc_ += kInstrSize * 2;
451   CheckTrampolinePoolQuick();
452 }
453 
454 
455 } }  // namespace v8::internal
456 
457 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
458