1 //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
23 #include "clang/Analysis/AnalysisContext.h"
24 #include "clang/Analysis/CFG.h"
25 #include "clang/Basic/OperatorKinds.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31
32 #include <algorithm>
33 #include <climits>
34 #include <vector>
35
36
37 namespace clang {
38 namespace threadSafety {
39
40 // From ThreadSafetyUtil.h
getSourceLiteralString(const clang::Expr * CE)41 std::string getSourceLiteralString(const clang::Expr *CE) {
42 switch (CE->getStmtClass()) {
43 case Stmt::IntegerLiteralClass:
44 return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
45 case Stmt::StringLiteralClass: {
46 std::string ret("\"");
47 ret += cast<StringLiteral>(CE)->getString();
48 ret += "\"";
49 return ret;
50 }
51 case Stmt::CharacterLiteralClass:
52 case Stmt::CXXNullPtrLiteralExprClass:
53 case Stmt::GNUNullExprClass:
54 case Stmt::CXXBoolLiteralExprClass:
55 case Stmt::FloatingLiteralClass:
56 case Stmt::ImaginaryLiteralClass:
57 case Stmt::ObjCStringLiteralClass:
58 default:
59 return "#lit";
60 }
61 }
62
63 namespace til {
64
65 // Return true if E is a variable that points to an incomplete Phi node.
isIncompleteVar(const SExpr * E)66 static bool isIncompleteVar(const SExpr *E) {
67 if (const auto *V = dyn_cast<Variable>(E)) {
68 if (const auto *Ph = dyn_cast<Phi>(V->definition()))
69 return Ph->status() == Phi::PH_Incomplete;
70 }
71 return false;
72 }
73
74 } // end namespace til
75
76
77 typedef SExprBuilder::CallingContext CallingContext;
78
79
lookupStmt(const Stmt * S)80 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
81 auto It = SMap.find(S);
82 if (It != SMap.end())
83 return It->second;
84 return nullptr;
85 }
86
87
buildCFG(CFGWalker & Walker)88 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
89 Walker.walk(*this);
90 return Scfg;
91 }
92
93
94 // Translate a clang statement or expression to a TIL expression.
95 // Also performs substitution of variables; Ctx provides the context.
96 // Dispatches on the type of S.
translate(const Stmt * S,CallingContext * Ctx)97 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
98 if (!S)
99 return nullptr;
100
101 // Check if S has already been translated and cached.
102 // This handles the lookup of SSA names for DeclRefExprs here.
103 if (til::SExpr *E = lookupStmt(S))
104 return E;
105
106 switch (S->getStmtClass()) {
107 case Stmt::DeclRefExprClass:
108 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
109 case Stmt::CXXThisExprClass:
110 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
111 case Stmt::MemberExprClass:
112 return translateMemberExpr(cast<MemberExpr>(S), Ctx);
113 case Stmt::CallExprClass:
114 return translateCallExpr(cast<CallExpr>(S), Ctx);
115 case Stmt::CXXMemberCallExprClass:
116 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
117 case Stmt::CXXOperatorCallExprClass:
118 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
119 case Stmt::UnaryOperatorClass:
120 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
121 case Stmt::BinaryOperatorClass:
122 case Stmt::CompoundAssignOperatorClass:
123 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
124
125 case Stmt::ArraySubscriptExprClass:
126 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
127 case Stmt::ConditionalOperatorClass:
128 return translateConditionalOperator(cast<ConditionalOperator>(S), Ctx);
129 case Stmt::BinaryConditionalOperatorClass:
130 return translateBinaryConditionalOperator(
131 cast<BinaryConditionalOperator>(S), Ctx);
132
133 // We treat these as no-ops
134 case Stmt::ParenExprClass:
135 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
136 case Stmt::ExprWithCleanupsClass:
137 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
138 case Stmt::CXXBindTemporaryExprClass:
139 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
140
141 // Collect all literals
142 case Stmt::CharacterLiteralClass:
143 case Stmt::CXXNullPtrLiteralExprClass:
144 case Stmt::GNUNullExprClass:
145 case Stmt::CXXBoolLiteralExprClass:
146 case Stmt::FloatingLiteralClass:
147 case Stmt::ImaginaryLiteralClass:
148 case Stmt::IntegerLiteralClass:
149 case Stmt::StringLiteralClass:
150 case Stmt::ObjCStringLiteralClass:
151 return new (Arena) til::Literal(cast<Expr>(S));
152
153 case Stmt::DeclStmtClass:
154 return translateDeclStmt(cast<DeclStmt>(S), Ctx);
155 default:
156 break;
157 }
158 if (const CastExpr *CE = dyn_cast<CastExpr>(S))
159 return translateCastExpr(CE, Ctx);
160
161 return new (Arena) til::Undefined(S);
162 }
163
164
translateDeclRefExpr(const DeclRefExpr * DRE,CallingContext * Ctx)165 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
166 CallingContext *Ctx) {
167 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
168
169 // Function parameters require substitution and/or renaming.
170 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
171 const FunctionDecl *FD =
172 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
173 unsigned I = PV->getFunctionScopeIndex();
174
175 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
176 // Substitute call arguments for references to function parameters
177 assert(I < Ctx->NumArgs);
178 return translate(Ctx->FunArgs[I], Ctx->Prev);
179 }
180 // Map the param back to the param of the original function declaration
181 // for consistent comparisons.
182 VD = FD->getParamDecl(I);
183 }
184
185 // For non-local variables, treat it as a referenced to a named object.
186 return new (Arena) til::LiteralPtr(VD);
187 }
188
189
translateCXXThisExpr(const CXXThisExpr * TE,CallingContext * Ctx)190 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
191 CallingContext *Ctx) {
192 // Substitute for 'this'
193 if (Ctx && Ctx->SelfArg)
194 return translate(Ctx->SelfArg, Ctx->Prev);
195 assert(SelfVar && "We have no variable for 'this'!");
196 return SelfVar;
197 }
198
199
translateMemberExpr(const MemberExpr * ME,CallingContext * Ctx)200 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
201 CallingContext *Ctx) {
202 til::SExpr *E = translate(ME->getBase(), Ctx);
203 E = new (Arena) til::SApply(E);
204 return new (Arena) til::Project(E, ME->getMemberDecl());
205 }
206
207
translateCallExpr(const CallExpr * CE,CallingContext * Ctx)208 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
209 CallingContext *Ctx) {
210 // TODO -- Lock returned
211 til::SExpr *E = translate(CE->getCallee(), Ctx);
212 for (const auto *Arg : CE->arguments()) {
213 til::SExpr *A = translate(Arg, Ctx);
214 E = new (Arena) til::Apply(E, A);
215 }
216 return new (Arena) til::Call(E, CE);
217 }
218
219
translateCXXMemberCallExpr(const CXXMemberCallExpr * ME,CallingContext * Ctx)220 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
221 const CXXMemberCallExpr *ME, CallingContext *Ctx) {
222 return translateCallExpr(cast<CallExpr>(ME), Ctx);
223 }
224
225
translateCXXOperatorCallExpr(const CXXOperatorCallExpr * OCE,CallingContext * Ctx)226 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
227 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
228 return translateCallExpr(cast<CallExpr>(OCE), Ctx);
229 }
230
231
translateUnaryOperator(const UnaryOperator * UO,CallingContext * Ctx)232 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
233 CallingContext *Ctx) {
234 switch (UO->getOpcode()) {
235 case UO_PostInc:
236 case UO_PostDec:
237 case UO_PreInc:
238 case UO_PreDec:
239 return new (Arena) til::Undefined(UO);
240
241 // We treat these as no-ops
242 case UO_AddrOf:
243 case UO_Deref:
244 case UO_Plus:
245 return translate(UO->getSubExpr(), Ctx);
246
247 case UO_Minus:
248 return new (Arena)
249 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
250 case UO_Not:
251 return new (Arena)
252 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
253 case UO_LNot:
254 return new (Arena)
255 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
256
257 // Currently unsupported
258 case UO_Real:
259 case UO_Imag:
260 case UO_Extension:
261 return new (Arena) til::Undefined(UO);
262 }
263 return new (Arena) til::Undefined(UO);
264 }
265
266
translateBinOp(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Reverse)267 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
268 const BinaryOperator *BO,
269 CallingContext *Ctx, bool Reverse) {
270 til::SExpr *E0 = translate(BO->getLHS(), Ctx);
271 til::SExpr *E1 = translate(BO->getRHS(), Ctx);
272 if (Reverse)
273 return new (Arena) til::BinaryOp(Op, E1, E0);
274 else
275 return new (Arena) til::BinaryOp(Op, E0, E1);
276 }
277
278
translateBinAssign(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Assign)279 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
280 const BinaryOperator *BO,
281 CallingContext *Ctx,
282 bool Assign) {
283 const Expr *LHS = BO->getLHS();
284 const Expr *RHS = BO->getRHS();
285 til::SExpr *E0 = translate(LHS, Ctx);
286 til::SExpr *E1 = translate(RHS, Ctx);
287
288 const ValueDecl *VD = nullptr;
289 til::SExpr *CV = nullptr;
290 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
291 VD = DRE->getDecl();
292 CV = lookupVarDecl(VD);
293 }
294
295 if (!Assign) {
296 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
297 E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
298 E1 = addStatement(E1, nullptr, VD);
299 }
300 if (VD && CV)
301 return updateVarDecl(VD, E1);
302 return new (Arena) til::Store(E0, E1);
303 }
304
305
translateBinaryOperator(const BinaryOperator * BO,CallingContext * Ctx)306 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
307 CallingContext *Ctx) {
308 switch (BO->getOpcode()) {
309 case BO_PtrMemD:
310 case BO_PtrMemI:
311 return new (Arena) til::Undefined(BO);
312
313 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
314 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
315 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
316 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
317 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
318 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
319 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
320 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
321 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
322 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
323 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
324 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
325 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
326 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
327 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
328 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
329 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
330 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
331
332 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
333 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
334 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
335 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
336 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
337 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
338 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
339 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
340 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
341 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
342 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
343
344 case BO_Comma:
345 // The clang CFG should have already processed both sides.
346 return translate(BO->getRHS(), Ctx);
347 }
348 return new (Arena) til::Undefined(BO);
349 }
350
351
translateCastExpr(const CastExpr * CE,CallingContext * Ctx)352 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
353 CallingContext *Ctx) {
354 clang::CastKind K = CE->getCastKind();
355 switch (K) {
356 case CK_LValueToRValue: {
357 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
358 til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
359 if (E0)
360 return E0;
361 }
362 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
363 return new (Arena) til::Load(E0);
364 }
365 case CK_NoOp:
366 case CK_DerivedToBase:
367 case CK_UncheckedDerivedToBase:
368 case CK_ArrayToPointerDecay:
369 case CK_FunctionToPointerDecay: {
370 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
371 return E0;
372 }
373 default: {
374 // FIXME: handle different kinds of casts.
375 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
376 return new (Arena) til::Cast(til::CAST_none, E0);
377 }
378 }
379 }
380
381
382 til::SExpr *
translateArraySubscriptExpr(const ArraySubscriptExpr * E,CallingContext * Ctx)383 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
384 CallingContext *Ctx) {
385 til::SExpr *E0 = translate(E->getBase(), Ctx);
386 til::SExpr *E1 = translate(E->getIdx(), Ctx);
387 return new (Arena) til::ArrayIndex(E0, E1);
388 }
389
390
391 til::SExpr *
translateConditionalOperator(const ConditionalOperator * C,CallingContext * Ctx)392 SExprBuilder::translateConditionalOperator(const ConditionalOperator *C,
393 CallingContext *Ctx) {
394 return new (Arena) til::Undefined(C);
395 }
396
397
translateBinaryConditionalOperator(const BinaryConditionalOperator * C,CallingContext * Ctx)398 til::SExpr *SExprBuilder::translateBinaryConditionalOperator(
399 const BinaryConditionalOperator *C, CallingContext *Ctx) {
400 return new (Arena) til::Undefined(C);
401 }
402
403
404 til::SExpr *
translateDeclStmt(const DeclStmt * S,CallingContext * Ctx)405 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
406 DeclGroupRef DGrp = S->getDeclGroup();
407 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
408 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
409 Expr *E = VD->getInit();
410 til::SExpr* SE = translate(E, Ctx);
411
412 // Add local variables with trivial type to the variable map
413 QualType T = VD->getType();
414 if (T.isTrivialType(VD->getASTContext())) {
415 return addVarDecl(VD, SE);
416 }
417 else {
418 // TODO: add alloca
419 }
420 }
421 }
422 return nullptr;
423 }
424
425
426
427 // If (E) is non-trivial, then add it to the current basic block, and
428 // update the statement map so that S refers to E. Returns a new variable
429 // that refers to E.
430 // If E is trivial returns E.
addStatement(til::SExpr * E,const Stmt * S,const ValueDecl * VD)431 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
432 const ValueDecl *VD) {
433 if (!E)
434 return nullptr;
435 if (til::ThreadSafetyTIL::isTrivial(E))
436 return E;
437
438 til::Variable *V = new (Arena) til::Variable(E, VD);
439 CurrentInstructions.push_back(V);
440 if (S)
441 insertStmt(S, V);
442 return V;
443 }
444
445
446 // Returns the current value of VD, if known, and nullptr otherwise.
lookupVarDecl(const ValueDecl * VD)447 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
448 auto It = LVarIdxMap.find(VD);
449 if (It != LVarIdxMap.end()) {
450 assert(CurrentLVarMap[It->second].first == VD);
451 return CurrentLVarMap[It->second].second;
452 }
453 return nullptr;
454 }
455
456
457 // if E is a til::Variable, update its clangDecl.
maybeUpdateVD(til::SExpr * E,const ValueDecl * VD)458 inline void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
459 if (!E)
460 return;
461 if (til::Variable *V = dyn_cast<til::Variable>(E)) {
462 if (!V->clangDecl())
463 V->setClangDecl(VD);
464 }
465 }
466
467 // Adds a new variable declaration.
addVarDecl(const ValueDecl * VD,til::SExpr * E)468 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
469 maybeUpdateVD(E, VD);
470 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
471 CurrentLVarMap.makeWritable();
472 CurrentLVarMap.push_back(std::make_pair(VD, E));
473 return E;
474 }
475
476
477 // Updates a current variable declaration. (E.g. by assignment)
updateVarDecl(const ValueDecl * VD,til::SExpr * E)478 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
479 maybeUpdateVD(E, VD);
480 auto It = LVarIdxMap.find(VD);
481 if (It == LVarIdxMap.end()) {
482 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
483 til::SExpr *St = new (Arena) til::Store(Ptr, E);
484 return St;
485 }
486 CurrentLVarMap.makeWritable();
487 CurrentLVarMap.elem(It->second).second = E;
488 return E;
489 }
490
491
492 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
493 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
494 // If E == null, this is a backedge and will be set later.
makePhiNodeVar(unsigned i,unsigned NPreds,til::SExpr * E)495 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
496 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
497 assert(ArgIndex > 0 && ArgIndex < NPreds);
498
499 til::Variable *V = dyn_cast<til::Variable>(CurrentLVarMap[i].second);
500 if (V && V->getBlockID() == CurrentBB->blockID()) {
501 // We already have a Phi node in the current block,
502 // so just add the new variable to the Phi node.
503 til::Phi *Ph = dyn_cast<til::Phi>(V->definition());
504 assert(Ph && "Expecting Phi node.");
505 if (E)
506 Ph->values()[ArgIndex] = E;
507 return;
508 }
509
510 // Make a new phi node: phi(..., E)
511 // All phi args up to the current index are set to the current value.
512 til::SExpr *CurrE = CurrentLVarMap[i].second;
513 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
514 Ph->values().setValues(NPreds, nullptr);
515 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
516 Ph->values()[PIdx] = CurrE;
517 if (E)
518 Ph->values()[ArgIndex] = E;
519 // If E is from a back-edge, or either E or CurrE are incomplete, then
520 // mark this node as incomplete; we may need to remove it later.
521 if (!E || isIncompleteVar(E) || isIncompleteVar(CurrE)) {
522 Ph->setStatus(til::Phi::PH_Incomplete);
523 }
524
525 // Add Phi node to current block, and update CurrentLVarMap[i]
526 auto *Var = new (Arena) til::Variable(Ph, CurrentLVarMap[i].first);
527 CurrentArguments.push_back(Var);
528 if (Ph->status() == til::Phi::PH_Incomplete)
529 IncompleteArgs.push_back(Var);
530
531 CurrentLVarMap.makeWritable();
532 CurrentLVarMap.elem(i).second = Var;
533 }
534
535
536 // Merge values from Map into the current variable map.
537 // This will construct Phi nodes in the current basic block as necessary.
mergeEntryMap(LVarDefinitionMap Map)538 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
539 assert(CurrentBlockInfo && "Not processing a block!");
540
541 if (!CurrentLVarMap.valid()) {
542 // Steal Map, using copy-on-write.
543 CurrentLVarMap = std::move(Map);
544 return;
545 }
546 if (CurrentLVarMap.sameAs(Map))
547 return; // Easy merge: maps from different predecessors are unchanged.
548
549 unsigned NPreds = CurrentBB->numPredecessors();
550 unsigned ESz = CurrentLVarMap.size();
551 unsigned MSz = Map.size();
552 unsigned Sz = std::min(ESz, MSz);
553
554 for (unsigned i=0; i<Sz; ++i) {
555 if (CurrentLVarMap[i].first != Map[i].first) {
556 // We've reached the end of variables in common.
557 CurrentLVarMap.makeWritable();
558 CurrentLVarMap.downsize(i);
559 break;
560 }
561 if (CurrentLVarMap[i].second != Map[i].second)
562 makePhiNodeVar(i, NPreds, Map[i].second);
563 }
564 if (ESz > MSz) {
565 CurrentLVarMap.makeWritable();
566 CurrentLVarMap.downsize(Map.size());
567 }
568 }
569
570
571 // Merge a back edge into the current variable map.
572 // This will create phi nodes for all variables in the variable map.
mergeEntryMapBackEdge()573 void SExprBuilder::mergeEntryMapBackEdge() {
574 // We don't have definitions for variables on the backedge, because we
575 // haven't gotten that far in the CFG. Thus, when encountering a back edge,
576 // we conservatively create Phi nodes for all variables. Unnecessary Phi
577 // nodes will be marked as incomplete, and stripped out at the end.
578 //
579 // An Phi node is unnecessary if it only refers to itself and one other
580 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
581
582 assert(CurrentBlockInfo && "Not processing a block!");
583
584 if (CurrentBlockInfo->HasBackEdges)
585 return;
586 CurrentBlockInfo->HasBackEdges = true;
587
588 CurrentLVarMap.makeWritable();
589 unsigned Sz = CurrentLVarMap.size();
590 unsigned NPreds = CurrentBB->numPredecessors();
591
592 for (unsigned i=0; i < Sz; ++i) {
593 makePhiNodeVar(i, NPreds, nullptr);
594 }
595 }
596
597
598 // Update the phi nodes that were initially created for a back edge
599 // once the variable definitions have been computed.
600 // I.e., merge the current variable map into the phi nodes for Blk.
mergePhiNodesBackEdge(const CFGBlock * Blk)601 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
602 til::BasicBlock *BB = lookupBlock(Blk);
603 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
604 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
605
606 for (til::Variable *V : BB->arguments()) {
607 til::Phi *Ph = dyn_cast_or_null<til::Phi>(V->definition());
608 assert(Ph && "Expecting Phi Node.");
609 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
610 assert(V->clangDecl() && "No local variable for Phi node.");
611
612 til::SExpr *E = lookupVarDecl(V->clangDecl());
613 assert(E && "Couldn't find local variable for Phi node.");
614
615 Ph->values()[ArgIndex] = E;
616 }
617 }
618
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)619 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
620 const CFGBlock *First) {
621 // Perform initial setup operations.
622 unsigned NBlocks = Cfg->getNumBlockIDs();
623 Scfg = new (Arena) til::SCFG(Arena, NBlocks);
624
625 // allocate all basic blocks immediately, to handle forward references.
626 BBInfo.resize(NBlocks);
627 BlockMap.resize(NBlocks, nullptr);
628 // create map from clang blockID to til::BasicBlocks
629 for (auto *B : *Cfg) {
630 auto *BB = new (Arena) til::BasicBlock(Arena);
631 BB->reserveInstructions(B->size());
632 BlockMap[B->getBlockID()] = BB;
633 }
634 CallCtx.reset(new SExprBuilder::CallingContext(D));
635
636 CurrentBB = lookupBlock(&Cfg->getEntry());
637 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
638 : cast<FunctionDecl>(D)->parameters();
639 for (auto *Pm : Parms) {
640 QualType T = Pm->getType();
641 if (!T.isTrivialType(Pm->getASTContext()))
642 continue;
643
644 // Add parameters to local variable map.
645 // FIXME: right now we emulate params with loads; that should be fixed.
646 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
647 til::SExpr *Ld = new (Arena) til::Load(Lp);
648 til::SExpr *V = addStatement(Ld, nullptr, Pm);
649 addVarDecl(Pm, V);
650 }
651 }
652
653
enterCFGBlock(const CFGBlock * B)654 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
655 // Intialize TIL basic block and add it to the CFG.
656 CurrentBB = lookupBlock(B);
657 CurrentBB->reservePredecessors(B->pred_size());
658 Scfg->add(CurrentBB);
659
660 CurrentBlockInfo = &BBInfo[B->getBlockID()];
661
662 // CurrentLVarMap is moved to ExitMap on block exit.
663 // FIXME: the entry block will hold function parameters.
664 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
665 }
666
667
handlePredecessor(const CFGBlock * Pred)668 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
669 // Compute CurrentLVarMap on entry from ExitMaps of predecessors
670
671 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
672 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
673 assert(PredInfo->UnprocessedSuccessors > 0);
674
675 if (--PredInfo->UnprocessedSuccessors == 0)
676 mergeEntryMap(std::move(PredInfo->ExitMap));
677 else
678 mergeEntryMap(PredInfo->ExitMap.clone());
679
680 ++CurrentBlockInfo->ProcessedPredecessors;
681 }
682
683
handlePredecessorBackEdge(const CFGBlock * Pred)684 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
685 mergeEntryMapBackEdge();
686 }
687
688
enterCFGBlockBody(const CFGBlock * B)689 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
690 // The merge*() methods have created arguments.
691 // Push those arguments onto the basic block.
692 CurrentBB->arguments().reserve(
693 static_cast<unsigned>(CurrentArguments.size()), Arena);
694 for (auto *V : CurrentArguments)
695 CurrentBB->addArgument(V);
696 }
697
698
handleStatement(const Stmt * S)699 void SExprBuilder::handleStatement(const Stmt *S) {
700 til::SExpr *E = translate(S, CallCtx.get());
701 addStatement(E, S);
702 }
703
704
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)705 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
706 const CXXDestructorDecl *DD) {
707 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
708 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
709 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
710 til::SExpr *E = new (Arena) til::Call(Ap);
711 addStatement(E, nullptr);
712 }
713
714
715
exitCFGBlockBody(const CFGBlock * B)716 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
717 CurrentBB->instructions().reserve(
718 static_cast<unsigned>(CurrentInstructions.size()), Arena);
719 for (auto *V : CurrentInstructions)
720 CurrentBB->addInstruction(V);
721
722 // Create an appropriate terminator
723 unsigned N = B->succ_size();
724 auto It = B->succ_begin();
725 if (N == 1) {
726 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
727 // TODO: set index
728 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
729 til::SExpr *Tm = new (Arena) til::Goto(BB, Idx);
730 CurrentBB->setTerminator(Tm);
731 }
732 else if (N == 2) {
733 til::SExpr *C = translate(B->getTerminatorCondition(true), CallCtx.get());
734 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
735 ++It;
736 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
737 unsigned Idx1 = BB1 ? BB1->findPredecessorIndex(CurrentBB) : 0;
738 unsigned Idx2 = BB2 ? BB2->findPredecessorIndex(CurrentBB) : 0;
739 til::SExpr *Tm = new (Arena) til::Branch(C, BB1, BB2, Idx1, Idx2);
740 CurrentBB->setTerminator(Tm);
741 }
742 }
743
744
handleSuccessor(const CFGBlock * Succ)745 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
746 ++CurrentBlockInfo->UnprocessedSuccessors;
747 }
748
749
handleSuccessorBackEdge(const CFGBlock * Succ)750 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
751 mergePhiNodesBackEdge(Succ);
752 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
753 }
754
755
exitCFGBlock(const CFGBlock * B)756 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
757 CurrentArguments.clear();
758 CurrentInstructions.clear();
759 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
760 CurrentBB = nullptr;
761 CurrentBlockInfo = nullptr;
762 }
763
764
exitCFG(const CFGBlock * Last)765 void SExprBuilder::exitCFG(const CFGBlock *Last) {
766 for (auto *V : IncompleteArgs) {
767 til::Phi *Ph = dyn_cast<til::Phi>(V->definition());
768 if (Ph && Ph->status() == til::Phi::PH_Incomplete)
769 simplifyIncompleteArg(V, Ph);
770 }
771
772 CurrentArguments.clear();
773 CurrentInstructions.clear();
774 IncompleteArgs.clear();
775 }
776
777
778
779 class TILPrinter : public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
780
781
printSCFG(CFGWalker & Walker)782 void printSCFG(CFGWalker &Walker) {
783 llvm::BumpPtrAllocator Bpa;
784 til::MemRegionRef Arena(&Bpa);
785 SExprBuilder builder(Arena);
786 til::SCFG *Cfg = builder.buildCFG(Walker);
787 TILPrinter::print(Cfg, llvm::errs());
788 }
789
790
791
792 } // end namespace threadSafety
793
794 } // end namespace clang
795