1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Builder implementation for CGRecordLayout objects.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGRecordLayout.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenTypes.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33 namespace {
34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
35 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we
36 /// detail some of the complexities and weirdnesses here.
37 /// * LLVM does not have unions - Unions can, in theory be represented by any
38 /// llvm::Type with correct size. We choose a field via a specific heuristic
39 /// and add padding if necessary.
40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
41 /// runs and allocated as a single storage type for the run. ASTRecordLayout
42 /// contains enough information to determine where the runs break. Microsoft
43 /// and Itanium follow different rules and use different codepaths.
44 /// * It is desired that, when possible, bitfields use the appropriate iN type
45 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to
46 /// i24. This isn't always possible because i24 has storage size of 32 bit
47 /// and if it is possible to use that extra byte of padding we must use
48 /// [i8 x 3] instead of i24. The function clipTailPadding does this.
49 /// C++ examples that require clipping:
50 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
51 /// struct A { int a : 24; }; // a must be clipped because a struct like B
52 // could exist: struct B : A { char b; }; // b goes at offset 3
53 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
54 /// fields. The existing asserts suggest that LLVM assumes that *every* field
55 /// has an underlying storage type. Therefore empty structures containing
56 /// zero sized subobjects such as empty records or zero sized arrays still get
57 /// a zero sized (empty struct) storage type.
58 /// * Clang reads the complete type rather than the base type when generating
59 /// code to access fields. Bitfields in tail position with tail padding may
60 /// be clipped in the base class but not the complete class (we may discover
61 /// that the tail padding is not used in the complete class.) However,
62 /// because LLVM reads from the complete type it can generate incorrect code
63 /// if we do not clip the tail padding off of the bitfield in the complete
64 /// layout. This introduces a somewhat awkward extra unnecessary clip stage.
65 /// The location of the clip is stored internally as a sentinal of type
66 /// SCISSOR. If LLVM were updated to read base types (which it probably
67 /// should because locations of things such as VBases are bogus in the llvm
68 /// type anyway) then we could eliminate the SCISSOR.
69 /// * Itanium allows nearly empty primary virtual bases. These bases don't get
70 /// get their own storage because they're laid out as part of another base
71 /// or at the beginning of the structure. Determining if a VBase actually
72 /// gets storage awkwardly involves a walk of all bases.
73 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
74 struct CGRecordLowering {
75 // MemberInfo is a helper structure that contains information about a record
76 // member. In additional to the standard member types, there exists a
77 // sentinal member type that ensures correct rounding.
78 struct MemberInfo {
79 CharUnits Offset;
80 enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
81 llvm::Type *Data;
82 union {
83 const FieldDecl *FD;
84 const CXXRecordDecl *RD;
85 };
MemberInfo__anona22169050111::CGRecordLowering::MemberInfo86 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
87 const FieldDecl *FD = nullptr)
88 : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
MemberInfo__anona22169050111::CGRecordLowering::MemberInfo89 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
90 const CXXRecordDecl *RD)
91 : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
92 // MemberInfos are sorted so we define a < operator.
operator <__anona22169050111::CGRecordLowering::MemberInfo93 bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
94 };
95 // The constructor.
96 CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D);
97 // Short helper routines.
98 /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *.
StorageInfo__anona22169050111::CGRecordLowering99 MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
100 return MemberInfo(Offset, MemberInfo::Field, Data);
101 }
useMSABI__anona22169050111::CGRecordLowering102 bool useMSABI() {
103 return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
104 D->isMsStruct(Context);
105 }
106 /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments.
getIntNType__anona22169050111::CGRecordLowering107 llvm::Type *getIntNType(uint64_t NumBits) {
108 return llvm::Type::getIntNTy(Types.getLLVMContext(),
109 (unsigned)llvm::RoundUpToAlignment(NumBits, 8));
110 }
111 /// \brief Gets an llvm type of size NumBytes and alignment 1.
getByteArrayType__anona22169050111::CGRecordLowering112 llvm::Type *getByteArrayType(CharUnits NumBytes) {
113 assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
114 llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
115 return NumBytes == CharUnits::One() ? Type :
116 (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
117 }
118 /// \brief Gets the storage type for a field decl and handles storage
119 /// for itanium bitfields that are smaller than their declared type.
getStorageType__anona22169050111::CGRecordLowering120 llvm::Type *getStorageType(const FieldDecl *FD) {
121 llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
122 return useMSABI() || !FD->isBitField() ? Type :
123 getIntNType(std::min(FD->getBitWidthValue(Context),
124 (unsigned)Context.toBits(getSize(Type))));
125 }
126 /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl.
getStorageType__anona22169050111::CGRecordLowering127 llvm::Type *getStorageType(const CXXRecordDecl *RD) {
128 return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
129 }
bitsToCharUnits__anona22169050111::CGRecordLowering130 CharUnits bitsToCharUnits(uint64_t BitOffset) {
131 return Context.toCharUnitsFromBits(BitOffset);
132 }
getSize__anona22169050111::CGRecordLowering133 CharUnits getSize(llvm::Type *Type) {
134 return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
135 }
getAlignment__anona22169050111::CGRecordLowering136 CharUnits getAlignment(llvm::Type *Type) {
137 return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
138 }
isZeroInitializable__anona22169050111::CGRecordLowering139 bool isZeroInitializable(const FieldDecl *FD) {
140 const Type *Type = FD->getType()->getBaseElementTypeUnsafe();
141 if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>())
142 return Types.getCXXABI().isZeroInitializable(MPT);
143 if (const RecordType *RT = Type->getAs<RecordType>())
144 return isZeroInitializable(RT->getDecl());
145 return true;
146 }
isZeroInitializable__anona22169050111::CGRecordLowering147 bool isZeroInitializable(const RecordDecl *RD) {
148 return Types.getCGRecordLayout(RD).isZeroInitializable();
149 }
appendPaddingBytes__anona22169050111::CGRecordLowering150 void appendPaddingBytes(CharUnits Size) {
151 if (!Size.isZero())
152 FieldTypes.push_back(getByteArrayType(Size));
153 }
getFieldBitOffset__anona22169050111::CGRecordLowering154 uint64_t getFieldBitOffset(const FieldDecl *FD) {
155 return Layout.getFieldOffset(FD->getFieldIndex());
156 }
157 // Layout routines.
158 void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
159 llvm::Type *StorageType);
160 /// \brief Lowers an ASTRecordLayout to a llvm type.
161 void lower(bool NonVirtualBaseType);
162 void lowerUnion();
163 void accumulateFields();
164 void accumulateBitFields(RecordDecl::field_iterator Field,
165 RecordDecl::field_iterator FieldEnd);
166 void accumulateBases();
167 void accumulateVPtrs();
168 void accumulateVBases();
169 /// \brief Recursively searches all of the bases to find out if a vbase is
170 /// not the primary vbase of some base class.
171 bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
172 void calculateZeroInit();
173 /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail
174 /// padding that is or can potentially be used.
175 void clipTailPadding();
176 /// \brief Determines if we need a packed llvm struct.
177 void determinePacked();
178 /// \brief Inserts padding everwhere it's needed.
179 void insertPadding();
180 /// \brief Fills out the structures that are ultimately consumed.
181 void fillOutputFields();
182 // Input memoization fields.
183 CodeGenTypes &Types;
184 const ASTContext &Context;
185 const RecordDecl *D;
186 const CXXRecordDecl *RD;
187 const ASTRecordLayout &Layout;
188 const llvm::DataLayout &DataLayout;
189 // Helpful intermediate data-structures.
190 std::vector<MemberInfo> Members;
191 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
192 SmallVector<llvm::Type *, 16> FieldTypes;
193 llvm::DenseMap<const FieldDecl *, unsigned> Fields;
194 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
195 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
196 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
197 bool IsZeroInitializable : 1;
198 bool IsZeroInitializableAsBase : 1;
199 bool Packed : 1;
200 private:
201 CGRecordLowering(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
202 void operator =(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
203 };
204 } // namespace {
205
CGRecordLowering(CodeGenTypes & Types,const RecordDecl * D)206 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D)
207 : Types(Types), Context(Types.getContext()), D(D),
208 RD(dyn_cast<CXXRecordDecl>(D)),
209 Layout(Types.getContext().getASTRecordLayout(D)),
210 DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
211 IsZeroInitializableAsBase(true), Packed(false) {}
212
setBitFieldInfo(const FieldDecl * FD,CharUnits StartOffset,llvm::Type * StorageType)213 void CGRecordLowering::setBitFieldInfo(
214 const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
215 CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
216 Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
217 Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
218 Info.Size = FD->getBitWidthValue(Context);
219 Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
220 // Here we calculate the actual storage alignment of the bits. E.g if we've
221 // got an alignment >= 2 and the bitfield starts at offset 6 we've got an
222 // alignment of 2.
223 Info.StorageAlignment =
224 Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity();
225 if (Info.Size > Info.StorageSize)
226 Info.Size = Info.StorageSize;
227 // Reverse the bit offsets for big endian machines. Because we represent
228 // a bitfield as a single large integer load, we can imagine the bits
229 // counting from the most-significant-bit instead of the
230 // least-significant-bit.
231 if (DataLayout.isBigEndian())
232 Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
233 }
234
lower(bool NVBaseType)235 void CGRecordLowering::lower(bool NVBaseType) {
236 // The lowering process implemented in this function takes a variety of
237 // carefully ordered phases.
238 // 1) Store all members (fields and bases) in a list and sort them by offset.
239 // 2) Add a 1-byte capstone member at the Size of the structure.
240 // 3) Clip bitfield storages members if their tail padding is or might be
241 // used by another field or base. The clipping process uses the capstone
242 // by treating it as another object that occurs after the record.
243 // 4) Determine if the llvm-struct requires packing. It's important that this
244 // phase occur after clipping, because clipping changes the llvm type.
245 // This phase reads the offset of the capstone when determining packedness
246 // and updates the alignment of the capstone to be equal of the alignment
247 // of the record after doing so.
248 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to
249 // have been computed and needs to know the alignment of the record in
250 // order to understand if explicit tail padding is needed.
251 // 6) Remove the capstone, we don't need it anymore.
252 // 7) Determine if this record can be zero-initialized. This phase could have
253 // been placed anywhere after phase 1.
254 // 8) Format the complete list of members in a way that can be consumed by
255 // CodeGenTypes::ComputeRecordLayout.
256 CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
257 if (D->isUnion())
258 return lowerUnion();
259 accumulateFields();
260 // RD implies C++.
261 if (RD) {
262 accumulateVPtrs();
263 accumulateBases();
264 if (Members.empty())
265 return appendPaddingBytes(Size);
266 if (!NVBaseType)
267 accumulateVBases();
268 }
269 std::stable_sort(Members.begin(), Members.end());
270 Members.push_back(StorageInfo(Size, getIntNType(8)));
271 clipTailPadding();
272 determinePacked();
273 insertPadding();
274 Members.pop_back();
275 calculateZeroInit();
276 fillOutputFields();
277 }
278
lowerUnion()279 void CGRecordLowering::lowerUnion() {
280 CharUnits LayoutSize = Layout.getSize();
281 llvm::Type *StorageType = nullptr;
282 // Compute zero-initializable status.
283 if (!D->field_empty() && !isZeroInitializable(*D->field_begin()))
284 IsZeroInitializable = IsZeroInitializableAsBase = false;
285 // Iterate through the fields setting bitFieldInfo and the Fields array. Also
286 // locate the "most appropriate" storage type. The heuristic for finding the
287 // storage type isn't necessary, the first (non-0-length-bitfield) field's
288 // type would work fine and be simpler but would be differen than what we've
289 // been doing and cause lit tests to change.
290 for (const auto *Field : D->fields()) {
291 if (Field->isBitField()) {
292 // Skip 0 sized bitfields.
293 if (Field->getBitWidthValue(Context) == 0)
294 continue;
295 llvm::Type *FieldType = getStorageType(Field);
296 if (LayoutSize < getSize(FieldType))
297 FieldType = getByteArrayType(LayoutSize);
298 setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
299 }
300 Fields[Field->getCanonicalDecl()] = 0;
301 llvm::Type *FieldType = getStorageType(Field);
302 // Conditionally update our storage type if we've got a new "better" one.
303 if (!StorageType ||
304 getAlignment(FieldType) > getAlignment(StorageType) ||
305 (getAlignment(FieldType) == getAlignment(StorageType) &&
306 getSize(FieldType) > getSize(StorageType)))
307 StorageType = FieldType;
308 }
309 // If we have no storage type just pad to the appropriate size and return.
310 if (!StorageType)
311 return appendPaddingBytes(LayoutSize);
312 // If our storage size was bigger than our required size (can happen in the
313 // case of packed bitfields on Itanium) then just use an I8 array.
314 if (LayoutSize < getSize(StorageType))
315 StorageType = getByteArrayType(LayoutSize);
316 FieldTypes.push_back(StorageType);
317 appendPaddingBytes(LayoutSize - getSize(StorageType));
318 // Set packed if we need it.
319 if (LayoutSize % getAlignment(StorageType))
320 Packed = true;
321 }
322
accumulateFields()323 void CGRecordLowering::accumulateFields() {
324 for (RecordDecl::field_iterator Field = D->field_begin(),
325 FieldEnd = D->field_end();
326 Field != FieldEnd;)
327 if (Field->isBitField()) {
328 RecordDecl::field_iterator Start = Field;
329 // Iterate to gather the list of bitfields.
330 for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
331 accumulateBitFields(Start, Field);
332 } else {
333 Members.push_back(MemberInfo(
334 bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
335 getStorageType(*Field), *Field));
336 ++Field;
337 }
338 }
339
340 void
accumulateBitFields(RecordDecl::field_iterator Field,RecordDecl::field_iterator FieldEnd)341 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
342 RecordDecl::field_iterator FieldEnd) {
343 // Run stores the first element of the current run of bitfields. FieldEnd is
344 // used as a special value to note that we don't have a current run. A
345 // bitfield run is a contiguous collection of bitfields that can be stored in
346 // the same storage block. Zero-sized bitfields and bitfields that would
347 // cross an alignment boundary break a run and start a new one.
348 RecordDecl::field_iterator Run = FieldEnd;
349 // Tail is the offset of the first bit off the end of the current run. It's
350 // used to determine if the ASTRecordLayout is treating these two bitfields as
351 // contiguous. StartBitOffset is offset of the beginning of the Run.
352 uint64_t StartBitOffset, Tail = 0;
353 if (useMSABI()) {
354 for (; Field != FieldEnd; ++Field) {
355 uint64_t BitOffset = getFieldBitOffset(*Field);
356 // Zero-width bitfields end runs.
357 if (Field->getBitWidthValue(Context) == 0) {
358 Run = FieldEnd;
359 continue;
360 }
361 llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
362 // If we don't have a run yet, or don't live within the previous run's
363 // allocated storage then we allocate some storage and start a new run.
364 if (Run == FieldEnd || BitOffset >= Tail) {
365 Run = Field;
366 StartBitOffset = BitOffset;
367 Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
368 // Add the storage member to the record. This must be added to the
369 // record before the bitfield members so that it gets laid out before
370 // the bitfields it contains get laid out.
371 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
372 }
373 // Bitfields get the offset of their storage but come afterward and remain
374 // there after a stable sort.
375 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
376 MemberInfo::Field, nullptr, *Field));
377 }
378 return;
379 }
380 for (;;) {
381 // Check to see if we need to start a new run.
382 if (Run == FieldEnd) {
383 // If we're out of fields, return.
384 if (Field == FieldEnd)
385 break;
386 // Any non-zero-length bitfield can start a new run.
387 if (Field->getBitWidthValue(Context) != 0) {
388 Run = Field;
389 StartBitOffset = getFieldBitOffset(*Field);
390 Tail = StartBitOffset + Field->getBitWidthValue(Context);
391 }
392 ++Field;
393 continue;
394 }
395 // Add bitfields to the run as long as they qualify.
396 if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 &&
397 Tail == getFieldBitOffset(*Field)) {
398 Tail += Field->getBitWidthValue(Context);
399 ++Field;
400 continue;
401 }
402 // We've hit a break-point in the run and need to emit a storage field.
403 llvm::Type *Type = getIntNType(Tail - StartBitOffset);
404 // Add the storage member to the record and set the bitfield info for all of
405 // the bitfields in the run. Bitfields get the offset of their storage but
406 // come afterward and remain there after a stable sort.
407 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
408 for (; Run != Field; ++Run)
409 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
410 MemberInfo::Field, nullptr, *Run));
411 Run = FieldEnd;
412 }
413 }
414
accumulateBases()415 void CGRecordLowering::accumulateBases() {
416 // If we've got a primary virtual base, we need to add it with the bases.
417 if (Layout.isPrimaryBaseVirtual()) {
418 const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
419 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
420 getStorageType(BaseDecl), BaseDecl));
421 }
422 // Accumulate the non-virtual bases.
423 for (const auto &Base : RD->bases()) {
424 if (Base.isVirtual())
425 continue;
426 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
427 if (!BaseDecl->isEmpty())
428 Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
429 MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
430 }
431 }
432
accumulateVPtrs()433 void CGRecordLowering::accumulateVPtrs() {
434 if (Layout.hasOwnVFPtr())
435 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
436 llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
437 getPointerTo()->getPointerTo()));
438 if (Layout.hasOwnVBPtr())
439 Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
440 llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
441 }
442
accumulateVBases()443 void CGRecordLowering::accumulateVBases() {
444 CharUnits ScissorOffset = Layout.getNonVirtualSize();
445 // In the itanium ABI, it's possible to place a vbase at a dsize that is
446 // smaller than the nvsize. Here we check to see if such a base is placed
447 // before the nvsize and set the scissor offset to that, instead of the
448 // nvsize.
449 if (!useMSABI())
450 for (const auto &Base : RD->vbases()) {
451 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
452 if (BaseDecl->isEmpty())
453 continue;
454 // If the vbase is a primary virtual base of some base, then it doesn't
455 // get its own storage location but instead lives inside of that base.
456 if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
457 continue;
458 ScissorOffset = std::min(ScissorOffset,
459 Layout.getVBaseClassOffset(BaseDecl));
460 }
461 Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
462 RD));
463 for (const auto &Base : RD->vbases()) {
464 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
465 if (BaseDecl->isEmpty())
466 continue;
467 CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
468 // If the vbase is a primary virtual base of some base, then it doesn't
469 // get its own storage location but instead lives inside of that base.
470 if (!useMSABI() && Context.isNearlyEmpty(BaseDecl) &&
471 !hasOwnStorage(RD, BaseDecl)) {
472 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
473 BaseDecl));
474 continue;
475 }
476 // If we've got a vtordisp, add it as a storage type.
477 if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
478 Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
479 getIntNType(32)));
480 Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
481 getStorageType(BaseDecl), BaseDecl));
482 }
483 }
484
hasOwnStorage(const CXXRecordDecl * Decl,const CXXRecordDecl * Query)485 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
486 const CXXRecordDecl *Query) {
487 const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
488 if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
489 return false;
490 for (const auto &Base : Decl->bases())
491 if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
492 return false;
493 return true;
494 }
495
calculateZeroInit()496 void CGRecordLowering::calculateZeroInit() {
497 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
498 MemberEnd = Members.end();
499 IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
500 if (Member->Kind == MemberInfo::Field) {
501 if (!Member->FD || isZeroInitializable(Member->FD))
502 continue;
503 IsZeroInitializable = IsZeroInitializableAsBase = false;
504 } else if (Member->Kind == MemberInfo::Base ||
505 Member->Kind == MemberInfo::VBase) {
506 if (isZeroInitializable(Member->RD))
507 continue;
508 IsZeroInitializable = false;
509 if (Member->Kind == MemberInfo::Base)
510 IsZeroInitializableAsBase = false;
511 }
512 }
513 }
514
clipTailPadding()515 void CGRecordLowering::clipTailPadding() {
516 std::vector<MemberInfo>::iterator Prior = Members.begin();
517 CharUnits Tail = getSize(Prior->Data);
518 for (std::vector<MemberInfo>::iterator Member = Prior + 1,
519 MemberEnd = Members.end();
520 Member != MemberEnd; ++Member) {
521 // Only members with data and the scissor can cut into tail padding.
522 if (!Member->Data && Member->Kind != MemberInfo::Scissor)
523 continue;
524 if (Member->Offset < Tail) {
525 assert(Prior->Kind == MemberInfo::Field && !Prior->FD &&
526 "Only storage fields have tail padding!");
527 Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment(
528 cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
529 }
530 if (Member->Data)
531 Prior = Member;
532 Tail = Prior->Offset + getSize(Prior->Data);
533 }
534 }
535
determinePacked()536 void CGRecordLowering::determinePacked() {
537 CharUnits Alignment = CharUnits::One();
538 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
539 MemberEnd = Members.end();
540 Member != MemberEnd; ++Member) {
541 if (!Member->Data)
542 continue;
543 // If any member falls at an offset that it not a multiple of its alignment,
544 // then the entire record must be packed.
545 if (Member->Offset % getAlignment(Member->Data))
546 Packed = true;
547 Alignment = std::max(Alignment, getAlignment(Member->Data));
548 }
549 // If the size of the record (the capstone's offset) is not a multiple of the
550 // record's alignment, it must be packed.
551 if (Members.back().Offset % Alignment)
552 Packed = true;
553 // Update the alignment of the sentinal.
554 if (!Packed)
555 Members.back().Data = getIntNType(Context.toBits(Alignment));
556 }
557
insertPadding()558 void CGRecordLowering::insertPadding() {
559 std::vector<std::pair<CharUnits, CharUnits> > Padding;
560 CharUnits Size = CharUnits::Zero();
561 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
562 MemberEnd = Members.end();
563 Member != MemberEnd; ++Member) {
564 if (!Member->Data)
565 continue;
566 CharUnits Offset = Member->Offset;
567 assert(Offset >= Size);
568 // Insert padding if we need to.
569 if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() :
570 getAlignment(Member->Data)))
571 Padding.push_back(std::make_pair(Size, Offset - Size));
572 Size = Offset + getSize(Member->Data);
573 }
574 if (Padding.empty())
575 return;
576 // Add the padding to the Members list and sort it.
577 for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
578 Pad = Padding.begin(), PadEnd = Padding.end();
579 Pad != PadEnd; ++Pad)
580 Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
581 std::stable_sort(Members.begin(), Members.end());
582 }
583
fillOutputFields()584 void CGRecordLowering::fillOutputFields() {
585 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
586 MemberEnd = Members.end();
587 Member != MemberEnd; ++Member) {
588 if (Member->Data)
589 FieldTypes.push_back(Member->Data);
590 if (Member->Kind == MemberInfo::Field) {
591 if (Member->FD)
592 Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
593 // A field without storage must be a bitfield.
594 if (!Member->Data)
595 setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
596 } else if (Member->Kind == MemberInfo::Base)
597 NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
598 else if (Member->Kind == MemberInfo::VBase)
599 VirtualBases[Member->RD] = FieldTypes.size() - 1;
600 }
601 }
602
MakeInfo(CodeGenTypes & Types,const FieldDecl * FD,uint64_t Offset,uint64_t Size,uint64_t StorageSize,uint64_t StorageAlignment)603 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
604 const FieldDecl *FD,
605 uint64_t Offset, uint64_t Size,
606 uint64_t StorageSize,
607 uint64_t StorageAlignment) {
608 // This function is vestigial from CGRecordLayoutBuilder days but is still
609 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
610 // when addressed will allow for the removal of this function.
611 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
612 CharUnits TypeSizeInBytes =
613 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
614 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
615
616 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
617
618 if (Size > TypeSizeInBits) {
619 // We have a wide bit-field. The extra bits are only used for padding, so
620 // if we have a bitfield of type T, with size N:
621 //
622 // T t : N;
623 //
624 // We can just assume that it's:
625 //
626 // T t : sizeof(T);
627 //
628 Size = TypeSizeInBits;
629 }
630
631 // Reverse the bit offsets for big endian machines. Because we represent
632 // a bitfield as a single large integer load, we can imagine the bits
633 // counting from the most-significant-bit instead of the
634 // least-significant-bit.
635 if (Types.getDataLayout().isBigEndian()) {
636 Offset = StorageSize - (Offset + Size);
637 }
638
639 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
640 }
641
ComputeRecordLayout(const RecordDecl * D,llvm::StructType * Ty)642 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
643 llvm::StructType *Ty) {
644 CGRecordLowering Builder(*this, D);
645
646 Builder.lower(false);
647
648 // If we're in C++, compute the base subobject type.
649 llvm::StructType *BaseTy = nullptr;
650 if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
651 BaseTy = Ty;
652 if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
653 CGRecordLowering BaseBuilder(*this, D);
654 BaseBuilder.lower(true);
655 BaseTy = llvm::StructType::create(
656 getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
657 addRecordTypeName(D, BaseTy, ".base");
658 }
659 }
660
661 // Fill in the struct *after* computing the base type. Filling in the body
662 // signifies that the type is no longer opaque and record layout is complete,
663 // but we may need to recursively layout D while laying D out as a base type.
664 Ty->setBody(Builder.FieldTypes, Builder.Packed);
665
666 CGRecordLayout *RL =
667 new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
668 Builder.IsZeroInitializableAsBase);
669
670 RL->NonVirtualBases.swap(Builder.NonVirtualBases);
671 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
672
673 // Add all the field numbers.
674 RL->FieldInfo.swap(Builder.Fields);
675
676 // Add bitfield info.
677 RL->BitFields.swap(Builder.BitFields);
678
679 // Dump the layout, if requested.
680 if (getContext().getLangOpts().DumpRecordLayouts) {
681 llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
682 llvm::outs() << "Record: ";
683 D->dump(llvm::outs());
684 llvm::outs() << "\nLayout: ";
685 RL->print(llvm::outs());
686 }
687
688 #ifndef NDEBUG
689 // Verify that the computed LLVM struct size matches the AST layout size.
690 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
691
692 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
693 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
694 "Type size mismatch!");
695
696 if (BaseTy) {
697 CharUnits NonVirtualSize = Layout.getNonVirtualSize();
698
699 uint64_t AlignedNonVirtualTypeSizeInBits =
700 getContext().toBits(NonVirtualSize);
701
702 assert(AlignedNonVirtualTypeSizeInBits ==
703 getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
704 "Type size mismatch!");
705 }
706
707 // Verify that the LLVM and AST field offsets agree.
708 llvm::StructType *ST =
709 dyn_cast<llvm::StructType>(RL->getLLVMType());
710 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
711
712 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
713 RecordDecl::field_iterator it = D->field_begin();
714 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
715 const FieldDecl *FD = *it;
716
717 // For non-bit-fields, just check that the LLVM struct offset matches the
718 // AST offset.
719 if (!FD->isBitField()) {
720 unsigned FieldNo = RL->getLLVMFieldNo(FD);
721 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
722 "Invalid field offset!");
723 continue;
724 }
725
726 // Ignore unnamed bit-fields.
727 if (!FD->getDeclName())
728 continue;
729
730 // Don't inspect zero-length bitfields.
731 if (FD->getBitWidthValue(getContext()) == 0)
732 continue;
733
734 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
735 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
736
737 // Unions have overlapping elements dictating their layout, but for
738 // non-unions we can verify that this section of the layout is the exact
739 // expected size.
740 if (D->isUnion()) {
741 // For unions we verify that the start is zero and the size
742 // is in-bounds. However, on BE systems, the offset may be non-zero, but
743 // the size + offset should match the storage size in that case as it
744 // "starts" at the back.
745 if (getDataLayout().isBigEndian())
746 assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
747 Info.StorageSize &&
748 "Big endian union bitfield does not end at the back");
749 else
750 assert(Info.Offset == 0 &&
751 "Little endian union bitfield with a non-zero offset");
752 assert(Info.StorageSize <= SL->getSizeInBits() &&
753 "Union not large enough for bitfield storage");
754 } else {
755 assert(Info.StorageSize ==
756 getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
757 "Storage size does not match the element type size");
758 }
759 assert(Info.Size > 0 && "Empty bitfield!");
760 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
761 "Bitfield outside of its allocated storage");
762 }
763 #endif
764
765 return RL;
766 }
767
print(raw_ostream & OS) const768 void CGRecordLayout::print(raw_ostream &OS) const {
769 OS << "<CGRecordLayout\n";
770 OS << " LLVMType:" << *CompleteObjectType << "\n";
771 if (BaseSubobjectType)
772 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
773 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
774 OS << " BitFields:[\n";
775
776 // Print bit-field infos in declaration order.
777 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
778 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
779 it = BitFields.begin(), ie = BitFields.end();
780 it != ie; ++it) {
781 const RecordDecl *RD = it->first->getParent();
782 unsigned Index = 0;
783 for (RecordDecl::field_iterator
784 it2 = RD->field_begin(); *it2 != it->first; ++it2)
785 ++Index;
786 BFIs.push_back(std::make_pair(Index, &it->second));
787 }
788 llvm::array_pod_sort(BFIs.begin(), BFIs.end());
789 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
790 OS.indent(4);
791 BFIs[i].second->print(OS);
792 OS << "\n";
793 }
794
795 OS << "]>\n";
796 }
797
dump() const798 void CGRecordLayout::dump() const {
799 print(llvm::errs());
800 }
801
print(raw_ostream & OS) const802 void CGBitFieldInfo::print(raw_ostream &OS) const {
803 OS << "<CGBitFieldInfo"
804 << " Offset:" << Offset
805 << " Size:" << Size
806 << " IsSigned:" << IsSigned
807 << " StorageSize:" << StorageSize
808 << " StorageAlignment:" << StorageAlignment << ">";
809 }
810
dump() const811 void CGBitFieldInfo::dump() const {
812 print(llvm::errs());
813 }
814