1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Random Shader Generator
3 * ----------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Program Executor.
22 *//*--------------------------------------------------------------------*/
23
24 #include "rsgProgramExecutor.hpp"
25 #include "rsgExecutionContext.hpp"
26 #include "rsgVariableValue.hpp"
27 #include "rsgUtils.hpp"
28 #include "tcuSurface.hpp"
29 #include "deMath.h"
30 #include "deString.h"
31
32 #include <set>
33 #include <string>
34 #include <map>
35
36 using std::set;
37 using std::string;
38 using std::vector;
39 using std::map;
40
41 namespace rsg
42 {
43
44 class VaryingStorage
45 {
46 public:
47 VaryingStorage (const VariableType& type, int numVertices);
~VaryingStorage(void)48 ~VaryingStorage (void) {}
49
50 ValueAccess getValue (const VariableType& type, int vtxNdx);
51 ConstValueAccess getValue (const VariableType& type, int vtxNdx) const;
52
53 private:
54 std::vector<Scalar> m_value;
55 };
56
VaryingStorage(const VariableType & type,int numVertices)57 VaryingStorage::VaryingStorage (const VariableType& type, int numVertices)
58 : m_value(type.getScalarSize()*numVertices)
59 {
60 }
61
getValue(const VariableType & type,int vtxNdx)62 ValueAccess VaryingStorage::getValue (const VariableType& type, int vtxNdx)
63 {
64 return ValueAccess(type, &m_value[type.getScalarSize()*vtxNdx]);
65 }
66
getValue(const VariableType & type,int vtxNdx) const67 ConstValueAccess VaryingStorage::getValue (const VariableType& type, int vtxNdx) const
68 {
69 return ConstValueAccess(type, &m_value[type.getScalarSize()*vtxNdx]);
70 }
71
72 class VaryingStore
73 {
74 public:
75 VaryingStore (int numVertices);
76 ~VaryingStore (void);
77
78 VaryingStorage* getStorage (const VariableType& type, const char* name);
79
80 private:
81 int m_numVertices;
82 std::map<std::string, VaryingStorage*> m_values;
83 };
84
VaryingStore(int numVertices)85 VaryingStore::VaryingStore (int numVertices)
86 : m_numVertices(numVertices)
87 {
88 }
89
~VaryingStore(void)90 VaryingStore::~VaryingStore (void)
91 {
92 for (map<string, VaryingStorage*>::iterator i = m_values.begin(); i != m_values.end(); i++)
93 delete i->second;
94 m_values.clear();
95 }
96
getStorage(const VariableType & type,const char * name)97 VaryingStorage* VaryingStore::getStorage (const VariableType& type, const char* name)
98 {
99 VaryingStorage* storage = m_values[name];
100
101 if (!storage)
102 {
103 storage = new VaryingStorage(type, m_numVertices);
104 m_values[name] = storage;
105 }
106
107 return storage;
108 }
109
interpolateVertexQuad(const tcu::Vec4 & quad,float x,float y)110 inline float interpolateVertexQuad (const tcu::Vec4& quad, float x, float y)
111 {
112 float w00 = (1.0f-x)*(1.0f-y);
113 float w01 = (1.0f-x)*y;
114 float w10 = x*(1.0f-y);
115 float w11 = x*y;
116 return quad.x()*w00 + quad.y()*w10 + quad.z()*w01 + quad.w()*w11;
117 }
118
interpolateVertex(float x0y0,float x1y1,float x,float y)119 inline float interpolateVertex (float x0y0, float x1y1, float x, float y)
120 {
121 return interpolateVertexQuad(tcu::Vec4(x0y0, (x0y0+x1y1)*0.5f, (x0y0+x1y1)*0.5f, x1y1), x, y);
122 }
123
interpolateTri(float v0,float v1,float v2,float x,float y)124 inline float interpolateTri (float v0, float v1, float v2, float x, float y)
125 {
126 return v0 + (v1-v0)*x + (v2-v0)*y;
127 }
128
interpolateFragment(const tcu::Vec4 & quad,float x,float y)129 inline float interpolateFragment (const tcu::Vec4& quad, float x, float y)
130 {
131 if (x + y < 1.0f)
132 return interpolateTri(quad.x(), quad.y(), quad.z(), x, y);
133 else
134 return interpolateTri(quad.w(), quad.z(), quad.y(), 1.0f-x, 1.0f-y);
135 }
136
137 template <int Stride>
interpolateVertexInput(StridedValueAccess<Stride> dst,int dstComp,const ConstValueRangeAccess valueRange,float x,float y)138 void interpolateVertexInput (StridedValueAccess<Stride> dst, int dstComp, const ConstValueRangeAccess valueRange, float x, float y)
139 {
140 TCU_CHECK(valueRange.getType().getBaseType() == VariableType::TYPE_FLOAT);
141 int numElements = valueRange.getType().getNumElements();
142 for (int elementNdx = 0; elementNdx < numElements; elementNdx++)
143 {
144 float xd, yd;
145 getVertexInterpolationCoords(xd, yd, x, y, elementNdx);
146 dst.component(elementNdx).asFloat(dstComp) = interpolateVertex(valueRange.getMin().component(elementNdx).asFloat(), valueRange.getMax().component(elementNdx).asFloat(), xd, yd);
147 }
148 }
149
150 template <int Stride>
interpolateFragmentInput(StridedValueAccess<Stride> dst,int dstComp,ConstValueAccess vtx0,ConstValueAccess vtx1,ConstValueAccess vtx2,ConstValueAccess vtx3,float x,float y)151 void interpolateFragmentInput (StridedValueAccess<Stride> dst, int dstComp, ConstValueAccess vtx0, ConstValueAccess vtx1, ConstValueAccess vtx2, ConstValueAccess vtx3, float x, float y)
152 {
153 TCU_CHECK(dst.getType().getBaseType() == VariableType::TYPE_FLOAT);
154 int numElements = dst.getType().getNumElements();
155 for (int ndx = 0; ndx < numElements; ndx++)
156 dst.component(ndx).asFloat(dstComp) = interpolateFragment(tcu::Vec4(vtx0.component(ndx).asFloat(), vtx1.component(ndx).asFloat(), vtx2.component(ndx).asFloat(), vtx3.component(ndx).asFloat()), x, y);
157 }
158
159 template <int Stride>
copyVarying(ValueAccess dst,ConstStridedValueAccess<Stride> src,int compNdx)160 void copyVarying (ValueAccess dst, ConstStridedValueAccess<Stride> src, int compNdx)
161 {
162 TCU_CHECK(dst.getType().getBaseType() == VariableType::TYPE_FLOAT);
163 for (int elemNdx = 0; elemNdx < dst.getType().getNumElements(); elemNdx++)
164 dst.component(elemNdx).asFloat() = src.component(elemNdx).asFloat(compNdx);
165 }
166
ProgramExecutor(const tcu::PixelBufferAccess & dst,int gridWidth,int gridHeight)167 ProgramExecutor::ProgramExecutor (const tcu::PixelBufferAccess& dst, int gridWidth, int gridHeight)
168 : m_dst (dst)
169 , m_gridWidth (gridWidth)
170 , m_gridHeight (gridHeight)
171 {
172 }
173
~ProgramExecutor(void)174 ProgramExecutor::~ProgramExecutor (void)
175 {
176 }
177
setTexture(int samplerNdx,const tcu::Texture2D * texture,const tcu::Sampler & sampler)178 void ProgramExecutor::setTexture (int samplerNdx, const tcu::Texture2D* texture, const tcu::Sampler& sampler)
179 {
180 m_samplers2D[samplerNdx] = Sampler2D(texture, sampler);
181 }
182
setTexture(int samplerNdx,const tcu::TextureCube * texture,const tcu::Sampler & sampler)183 void ProgramExecutor::setTexture (int samplerNdx, const tcu::TextureCube* texture, const tcu::Sampler& sampler)
184 {
185 m_samplersCube[samplerNdx] = SamplerCube(texture, sampler);
186 }
187
computeVertexIndices(float cellWidth,float cellHeight,int gridVtxWidth,int gridVtxHeight,int x,int y)188 inline tcu::IVec4 computeVertexIndices (float cellWidth, float cellHeight, int gridVtxWidth, int gridVtxHeight, int x, int y)
189 {
190 DE_UNREF(gridVtxHeight);
191 int x0 = (int)deFloatFloor((float)x / cellWidth);
192 int y0 = (int)deFloatFloor((float)y / cellHeight);
193 return tcu::IVec4(y0*gridVtxWidth + x0, y0*gridVtxWidth + x0 + 1, (y0+1)*gridVtxWidth + x0, (y0+1)*gridVtxWidth + x0 + 1);
194 }
195
computeGridCellWeights(float cellWidth,float cellHeight,int x,int y)196 inline tcu::Vec2 computeGridCellWeights (float cellWidth, float cellHeight, int x, int y)
197 {
198 float gx = (x + 0.5f) / cellWidth;
199 float gy = (y + 0.5f) / cellHeight;
200 return tcu::Vec2(deFloatFrac(gx), deFloatFrac(gy));
201 }
202
toColor(tcu::Vec4 rgba)203 inline tcu::RGBA toColor (tcu::Vec4 rgba)
204 {
205 return tcu::RGBA(deClamp32(deRoundFloatToInt32(rgba.x()*255), 0, 255),
206 deClamp32(deRoundFloatToInt32(rgba.y()*255), 0, 255),
207 deClamp32(deRoundFloatToInt32(rgba.z()*255), 0, 255),
208 deClamp32(deRoundFloatToInt32(rgba.w()*255), 0, 255));
209 }
210
execute(const Shader & vertexShader,const Shader & fragmentShader,const vector<VariableValue> & uniformValues)211 void ProgramExecutor::execute (const Shader& vertexShader, const Shader& fragmentShader, const vector<VariableValue>& uniformValues)
212 {
213 int gridVtxWidth = m_gridWidth+1;
214 int gridVtxHeight = m_gridHeight+1;
215 int numVertices = gridVtxWidth*gridVtxHeight;
216
217 VaryingStore varyingStore(numVertices);
218
219 // Execute vertex shader
220 {
221 ExecutionContext execCtx(m_samplers2D, m_samplersCube);
222 int numPackets = numVertices + ((numVertices%EXEC_VEC_WIDTH) ? 1 : 0);
223
224 const vector<ShaderInput*>& inputs = vertexShader.getInputs();
225 vector<const Variable*> outputs;
226 vertexShader.getOutputs(outputs);
227
228 // Set uniform values
229 for (vector<VariableValue>::const_iterator uniformIter = uniformValues.begin(); uniformIter != uniformValues.end(); uniformIter++)
230 execCtx.getValue(uniformIter->getVariable()) = uniformIter->getValue().value();
231
232 for (int packetNdx = 0; packetNdx < numPackets; packetNdx++)
233 {
234 int packetStart = packetNdx*EXEC_VEC_WIDTH;
235 int packetEnd = deMin32((packetNdx+1)*EXEC_VEC_WIDTH, numVertices);
236
237 // Compute values for vertex shader inputs
238 for (vector<ShaderInput*>::const_iterator i = inputs.begin(); i != inputs.end(); i++)
239 {
240 const ShaderInput* input = *i;
241 ExecValueAccess access = execCtx.getValue(input->getVariable());
242
243 for (int vtxNdx = packetStart; vtxNdx < packetEnd; vtxNdx++)
244 {
245 int y = (vtxNdx/gridVtxWidth);
246 int x = vtxNdx - y*gridVtxWidth;
247 float xf = (float)x / (float)(gridVtxWidth-1);
248 float yf = (float)y / (float)(gridVtxHeight-1);
249
250 interpolateVertexInput(access, vtxNdx-packetStart, input->getValueRange(), xf, yf);
251 }
252 }
253
254 // Execute vertex shader for packet
255 vertexShader.execute(execCtx);
256
257 // Store output values
258 for (vector<const Variable*>::const_iterator i = outputs.begin(); i != outputs.end(); i++)
259 {
260 const Variable* output = *i;
261
262 if (deStringEqual(output->getName(), "gl_Position"))
263 continue; // Do not store position
264
265 ExecConstValueAccess access = execCtx.getValue(output);
266 VaryingStorage* dst = varyingStore.getStorage(output->getType(), output->getName());
267
268 for (int vtxNdx = packetStart; vtxNdx < packetEnd; vtxNdx++)
269 {
270 ValueAccess varyingAccess = dst->getValue(output->getType(), vtxNdx);
271 copyVarying(varyingAccess, access, vtxNdx-packetStart);
272 }
273 }
274 }
275 }
276
277 // Execute fragment shader
278 {
279 ExecutionContext execCtx(m_samplers2D, m_samplersCube);
280
281 // Assign uniform values
282 for (vector<VariableValue>::const_iterator i = uniformValues.begin(); i != uniformValues.end(); i++)
283 execCtx.getValue(i->getVariable()) = i->getValue().value();
284
285 const vector<ShaderInput*>& inputs = fragmentShader.getInputs();
286 const Variable* fragColorVar = DE_NULL;
287 vector<const Variable*> outputs;
288
289 // Find fragment shader output assigned to location 0. This is fragment color.
290 fragmentShader.getOutputs(outputs);
291 for (vector<const Variable*>::const_iterator i = outputs.begin(); i != outputs.end(); i++)
292 {
293 if ((*i)->getLayoutLocation() == 0)
294 {
295 fragColorVar = *i;
296 break;
297 }
298 }
299 TCU_CHECK(fragColorVar);
300
301 int width = m_dst.getWidth();
302 int height = m_dst.getHeight();
303 int numPackets = (width*height)/EXEC_VEC_WIDTH + (((width*height)%EXEC_VEC_WIDTH) ? 1 : 0);
304
305 float cellWidth = (float)width / (float)m_gridWidth;
306 float cellHeight = (float)height / (float)m_gridHeight;
307
308 for (int packetNdx = 0; packetNdx < numPackets; packetNdx++)
309 {
310 int packetStart = packetNdx*EXEC_VEC_WIDTH;
311 int packetEnd = deMin32((packetNdx+1)*EXEC_VEC_WIDTH, width*height);
312
313 // Interpolate varyings
314 for (vector<ShaderInput*>::const_iterator i = inputs.begin(); i != inputs.end(); i++)
315 {
316 const ShaderInput* input = *i;
317 ExecValueAccess access = execCtx.getValue(input->getVariable());
318 const VariableType& type = input->getVariable()->getType();
319 const VaryingStorage* src = varyingStore.getStorage(type, input->getVariable()->getName());
320
321 // \todo [2011-03-08 pyry] Part of this could be pre-computed...
322 for (int fragNdx = packetStart; fragNdx < packetEnd; fragNdx++)
323 {
324 int y = fragNdx/width;
325 int x = fragNdx - y*width;
326 tcu::IVec4 vtxIndices = computeVertexIndices(cellWidth, cellHeight, gridVtxWidth, gridVtxHeight, x, y);
327 tcu::Vec2 weights = computeGridCellWeights(cellWidth, cellHeight, x, y);
328
329 interpolateFragmentInput(access, fragNdx-packetStart,
330 src->getValue(type, vtxIndices.x()),
331 src->getValue(type, vtxIndices.y()),
332 src->getValue(type, vtxIndices.z()),
333 src->getValue(type, vtxIndices.w()),
334 weights.x(), weights.y());
335 }
336 }
337
338 // Execute fragment shader
339 fragmentShader.execute(execCtx);
340
341 // Write resulting color
342 ExecConstValueAccess colorValue = execCtx.getValue(fragColorVar);
343 for (int fragNdx = packetStart; fragNdx < packetEnd; fragNdx++)
344 {
345 int y = fragNdx/width;
346 int x = fragNdx - y*width;
347 int cNdx = fragNdx-packetStart;
348 tcu::Vec4 c = tcu::Vec4(colorValue.component(0).asFloat(cNdx),
349 colorValue.component(1).asFloat(cNdx),
350 colorValue.component(2).asFloat(cNdx),
351 colorValue.component(3).asFloat(cNdx));
352
353 // \todo [2012-11-13 pyry] Reverse order.
354 m_dst.setPixel(c, x, m_dst.getHeight()-y-1);
355 }
356 }
357 }
358 }
359
360 } // rsg
361