• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_COMPLEX_NEON_H
11 #define EIGEN_COMPLEX_NEON_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
18 static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
19 
20 //---------- float ----------
21 struct Packet2cf
22 {
Packet2cfPacket2cf23   EIGEN_STRONG_INLINE Packet2cf() {}
Packet2cfPacket2cf24   EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
25   Packet4f  v;
26 };
27 
28 template<> struct packet_traits<std::complex<float> >  : default_packet_traits
29 {
30   typedef Packet2cf type;
31   enum {
32     Vectorizable = 1,
33     AlignedOnScalar = 1,
34     size = 2,
35 
36     HasAdd    = 1,
37     HasSub    = 1,
38     HasMul    = 1,
39     HasDiv    = 1,
40     HasNegate = 1,
41     HasAbs    = 0,
42     HasAbs2   = 0,
43     HasMin    = 0,
44     HasMax    = 0,
45     HasSetLinear = 0
46   };
47 };
48 
49 template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
50 
51 template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>&  from)
52 {
53   float32x2_t r64;
54   r64 = vld1_f32((float *)&from);
55 
56   return Packet2cf(vcombine_f32(r64, r64));
57 }
58 
59 template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
60 template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
61 template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
62 template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
63 {
64   Packet4ui b = vreinterpretq_u32_f32(a.v);
65   return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
66 }
67 
68 template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
69 {
70   Packet4f v1, v2;
71 
72   // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
73   v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
74   // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
75   v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
76   // Multiply the real a with b
77   v1 = vmulq_f32(v1, b.v);
78   // Multiply the imag a with b
79   v2 = vmulq_f32(v2, b.v);
80   // Conjugate v2
81   v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
82   // Swap real/imag elements in v2.
83   v2 = vrev64q_f32(v2);
84   // Add and return the result
85   return Packet2cf(vaddq_f32(v1, v2));
86 }
87 
88 template<> EIGEN_STRONG_INLINE Packet2cf pand   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
89 {
90   return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
91 }
92 template<> EIGEN_STRONG_INLINE Packet2cf por    <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
93 {
94   return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
95 }
96 template<> EIGEN_STRONG_INLINE Packet2cf pxor   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
97 {
98   return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
99 }
100 template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
101 {
102   return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
103 }
104 
105 template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
106 template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
107 
108 template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
109 
110 template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
111 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
112 
113 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> *   addr) { __pld((float *)addr); }
114 
115 template<> EIGEN_STRONG_INLINE std::complex<float>  pfirst<Packet2cf>(const Packet2cf& a)
116 {
117   std::complex<float> EIGEN_ALIGN16 x[2];
118   vst1q_f32((float *)x, a.v);
119   return x[0];
120 }
121 
122 template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
123 {
124   float32x2_t a_lo, a_hi;
125   Packet4f a_r128;
126 
127   a_lo = vget_low_f32(a.v);
128   a_hi = vget_high_f32(a.v);
129   a_r128 = vcombine_f32(a_hi, a_lo);
130 
131   return Packet2cf(a_r128);
132 }
133 
134 template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
135 {
136   return Packet2cf(vrev64q_f32(a.v));
137 }
138 
139 template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
140 {
141   float32x2_t a1, a2;
142   std::complex<float> s;
143 
144   a1 = vget_low_f32(a.v);
145   a2 = vget_high_f32(a.v);
146   a2 = vadd_f32(a1, a2);
147   vst1_f32((float *)&s, a2);
148 
149   return s;
150 }
151 
152 template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
153 {
154   Packet4f sum1, sum2, sum;
155 
156   // Add the first two 64-bit float32x2_t of vecs[0]
157   sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
158   sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
159   sum = vaddq_f32(sum1, sum2);
160 
161   return Packet2cf(sum);
162 }
163 
164 template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
165 {
166   float32x2_t a1, a2, v1, v2, prod;
167   std::complex<float> s;
168 
169   a1 = vget_low_f32(a.v);
170   a2 = vget_high_f32(a.v);
171    // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
172   v1 = vdup_lane_f32(a1, 0);
173   // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
174   v2 = vdup_lane_f32(a1, 1);
175   // Multiply the real a with b
176   v1 = vmul_f32(v1, a2);
177   // Multiply the imag a with b
178   v2 = vmul_f32(v2, a2);
179   // Conjugate v2
180   v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
181   // Swap real/imag elements in v2.
182   v2 = vrev64_f32(v2);
183   // Add v1, v2
184   prod = vadd_f32(v1, v2);
185 
186   vst1_f32((float *)&s, prod);
187 
188   return s;
189 }
190 
191 template<int Offset>
192 struct palign_impl<Offset,Packet2cf>
193 {
194   EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
195   {
196     if (Offset==1)
197     {
198       first.v = vextq_f32(first.v, second.v, 2);
199     }
200   }
201 };
202 
203 template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
204 {
205   EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
206   { return padd(pmul(x,y),c); }
207 
208   EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
209   {
210     return internal::pmul(a, pconj(b));
211   }
212 };
213 
214 template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
215 {
216   EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
217   { return padd(pmul(x,y),c); }
218 
219   EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
220   {
221     return internal::pmul(pconj(a), b);
222   }
223 };
224 
225 template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
226 {
227   EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
228   { return padd(pmul(x,y),c); }
229 
230   EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
231   {
232     return pconj(internal::pmul(a, b));
233   }
234 };
235 
236 template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
237 {
238   // TODO optimize it for AltiVec
239   Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
240   Packet4f s, rev_s;
241 
242   // this computes the norm
243   s = vmulq_f32(b.v, b.v);
244   rev_s = vrev64q_f32(s);
245 
246   return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
247 }
248 
249 } // end namespace internal
250 
251 } // end namespace Eigen
252 
253 #endif // EIGEN_COMPLEX_NEON_H
254