1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_COMPLEX_NEON_H 11 #define EIGEN_COMPLEX_NEON_H 12 13 namespace Eigen { 14 15 namespace internal { 16 17 static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000); 18 static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000); 19 20 //---------- float ---------- 21 struct Packet2cf 22 { Packet2cfPacket2cf23 EIGEN_STRONG_INLINE Packet2cf() {} Packet2cfPacket2cf24 EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} 25 Packet4f v; 26 }; 27 28 template<> struct packet_traits<std::complex<float> > : default_packet_traits 29 { 30 typedef Packet2cf type; 31 enum { 32 Vectorizable = 1, 33 AlignedOnScalar = 1, 34 size = 2, 35 36 HasAdd = 1, 37 HasSub = 1, 38 HasMul = 1, 39 HasDiv = 1, 40 HasNegate = 1, 41 HasAbs = 0, 42 HasAbs2 = 0, 43 HasMin = 0, 44 HasMax = 0, 45 HasSetLinear = 0 46 }; 47 }; 48 49 template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; }; 50 51 template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from) 52 { 53 float32x2_t r64; 54 r64 = vld1_f32((float *)&from); 55 56 return Packet2cf(vcombine_f32(r64, r64)); 57 } 58 59 template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); } 60 template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); } 61 template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); } 62 template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) 63 { 64 Packet4ui b = vreinterpretq_u32_f32(a.v); 65 return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR))); 66 } 67 68 template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b) 69 { 70 Packet4f v1, v2; 71 72 // Get the real values of a | a1_re | a1_re | a2_re | a2_re | 73 v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0)); 74 // Get the real values of a | a1_im | a1_im | a2_im | a2_im | 75 v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1)); 76 // Multiply the real a with b 77 v1 = vmulq_f32(v1, b.v); 78 // Multiply the imag a with b 79 v2 = vmulq_f32(v2, b.v); 80 // Conjugate v2 81 v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR)); 82 // Swap real/imag elements in v2. 83 v2 = vrev64q_f32(v2); 84 // Add and return the result 85 return Packet2cf(vaddq_f32(v1, v2)); 86 } 87 88 template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) 89 { 90 return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 91 } 92 template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) 93 { 94 return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 95 } 96 template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) 97 { 98 return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 99 } 100 template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) 101 { 102 return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 103 } 104 105 template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); } 106 template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); } 107 108 template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); } 109 110 template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); } 111 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); } 112 113 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { __pld((float *)addr); } 114 115 template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a) 116 { 117 std::complex<float> EIGEN_ALIGN16 x[2]; 118 vst1q_f32((float *)x, a.v); 119 return x[0]; 120 } 121 122 template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) 123 { 124 float32x2_t a_lo, a_hi; 125 Packet4f a_r128; 126 127 a_lo = vget_low_f32(a.v); 128 a_hi = vget_high_f32(a.v); 129 a_r128 = vcombine_f32(a_hi, a_lo); 130 131 return Packet2cf(a_r128); 132 } 133 134 template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a) 135 { 136 return Packet2cf(vrev64q_f32(a.v)); 137 } 138 139 template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a) 140 { 141 float32x2_t a1, a2; 142 std::complex<float> s; 143 144 a1 = vget_low_f32(a.v); 145 a2 = vget_high_f32(a.v); 146 a2 = vadd_f32(a1, a2); 147 vst1_f32((float *)&s, a2); 148 149 return s; 150 } 151 152 template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs) 153 { 154 Packet4f sum1, sum2, sum; 155 156 // Add the first two 64-bit float32x2_t of vecs[0] 157 sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v)); 158 sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v)); 159 sum = vaddq_f32(sum1, sum2); 160 161 return Packet2cf(sum); 162 } 163 164 template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a) 165 { 166 float32x2_t a1, a2, v1, v2, prod; 167 std::complex<float> s; 168 169 a1 = vget_low_f32(a.v); 170 a2 = vget_high_f32(a.v); 171 // Get the real values of a | a1_re | a1_re | a2_re | a2_re | 172 v1 = vdup_lane_f32(a1, 0); 173 // Get the real values of a | a1_im | a1_im | a2_im | a2_im | 174 v2 = vdup_lane_f32(a1, 1); 175 // Multiply the real a with b 176 v1 = vmul_f32(v1, a2); 177 // Multiply the imag a with b 178 v2 = vmul_f32(v2, a2); 179 // Conjugate v2 180 v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR)); 181 // Swap real/imag elements in v2. 182 v2 = vrev64_f32(v2); 183 // Add v1, v2 184 prod = vadd_f32(v1, v2); 185 186 vst1_f32((float *)&s, prod); 187 188 return s; 189 } 190 191 template<int Offset> 192 struct palign_impl<Offset,Packet2cf> 193 { 194 EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second) 195 { 196 if (Offset==1) 197 { 198 first.v = vextq_f32(first.v, second.v, 2); 199 } 200 } 201 }; 202 203 template<> struct conj_helper<Packet2cf, Packet2cf, false,true> 204 { 205 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const 206 { return padd(pmul(x,y),c); } 207 208 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const 209 { 210 return internal::pmul(a, pconj(b)); 211 } 212 }; 213 214 template<> struct conj_helper<Packet2cf, Packet2cf, true,false> 215 { 216 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const 217 { return padd(pmul(x,y),c); } 218 219 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const 220 { 221 return internal::pmul(pconj(a), b); 222 } 223 }; 224 225 template<> struct conj_helper<Packet2cf, Packet2cf, true,true> 226 { 227 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const 228 { return padd(pmul(x,y),c); } 229 230 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const 231 { 232 return pconj(internal::pmul(a, b)); 233 } 234 }; 235 236 template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b) 237 { 238 // TODO optimize it for AltiVec 239 Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b); 240 Packet4f s, rev_s; 241 242 // this computes the norm 243 s = vmulq_f32(b.v, b.v); 244 rev_s = vrev64q_f32(s); 245 246 return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s))); 247 } 248 249 } // end namespace internal 250 251 } // end namespace Eigen 252 253 #endif // EIGEN_COMPLEX_NEON_H 254