• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_BICGSTAB_H
12 #define EIGEN_BICGSTAB_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /** \internal Low-level bi conjugate gradient stabilized algorithm
19   * \param mat The matrix A
20   * \param rhs The right hand side vector b
21   * \param x On input and initial solution, on output the computed solution.
22   * \param precond A preconditioner being able to efficiently solve for an
23   *                approximation of Ax=b (regardless of b)
24   * \param iters On input the max number of iteration, on output the number of performed iterations.
25   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
26   * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
27   */
28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bicgstab(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,int & iters,typename Dest::RealScalar & tol_error)29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
30               const Preconditioner& precond, int& iters,
31               typename Dest::RealScalar& tol_error)
32 {
33   using std::sqrt;
34   using std::abs;
35   typedef typename Dest::RealScalar RealScalar;
36   typedef typename Dest::Scalar Scalar;
37   typedef Matrix<Scalar,Dynamic,1> VectorType;
38   RealScalar tol = tol_error;
39   int maxIters = iters;
40 
41   int n = mat.cols();
42   x = precond.solve(x);
43   VectorType r  = rhs - mat * x;
44   VectorType r0 = r;
45 
46   RealScalar r0_sqnorm = r0.squaredNorm();
47   RealScalar rhs_sqnorm = rhs.squaredNorm();
48   if(rhs_sqnorm == 0)
49   {
50     x.setZero();
51     return true;
52   }
53   Scalar rho    = 1;
54   Scalar alpha  = 1;
55   Scalar w      = 1;
56 
57   VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
58   VectorType y(n),  z(n);
59   VectorType kt(n), ks(n);
60 
61   VectorType s(n), t(n);
62 
63   RealScalar tol2 = tol*tol;
64   RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
65   int i = 0;
66   int restarts = 0;
67 
68   while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
69   {
70     Scalar rho_old = rho;
71 
72     rho = r0.dot(r);
73     if (abs(rho) < eps2*r0_sqnorm)
74     {
75       // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
76       // Let's restart with a new r0:
77       r0 = r;
78       rho = r0_sqnorm = r.squaredNorm();
79       if(restarts++ == 0)
80         i = 0;
81     }
82     Scalar beta = (rho/rho_old) * (alpha / w);
83     p = r + beta * (p - w * v);
84 
85     y = precond.solve(p);
86 
87     v.noalias() = mat * y;
88 
89     alpha = rho / r0.dot(v);
90     s = r - alpha * v;
91 
92     z = precond.solve(s);
93     t.noalias() = mat * z;
94 
95     RealScalar tmp = t.squaredNorm();
96     if(tmp>RealScalar(0))
97       w = t.dot(s) / tmp;
98     else
99       w = Scalar(0);
100     x += alpha * y + w * z;
101     r = s - w * t;
102     ++i;
103   }
104   tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
105   iters = i;
106   return true;
107 }
108 
109 }
110 
111 template< typename _MatrixType,
112           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
113 class BiCGSTAB;
114 
115 namespace internal {
116 
117 template< typename _MatrixType, typename _Preconditioner>
118 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
119 {
120   typedef _MatrixType MatrixType;
121   typedef _Preconditioner Preconditioner;
122 };
123 
124 }
125 
126 /** \ingroup IterativeLinearSolvers_Module
127   * \brief A bi conjugate gradient stabilized solver for sparse square problems
128   *
129   * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
130   * stabilized algorithm. The vectors x and b can be either dense or sparse.
131   *
132   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
133   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
134   *
135   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
136   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
137   * and NumTraits<Scalar>::epsilon() for the tolerance.
138   *
139   * This class can be used as the direct solver classes. Here is a typical usage example:
140   * \code
141   * int n = 10000;
142   * VectorXd x(n), b(n);
143   * SparseMatrix<double> A(n,n);
144   * // fill A and b
145   * BiCGSTAB<SparseMatrix<double> > solver;
146   * solver(A);
147   * x = solver.solve(b);
148   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
149   * std::cout << "estimated error: " << solver.error()      << std::endl;
150   * // update b, and solve again
151   * x = solver.solve(b);
152   * \endcode
153   *
154   * By default the iterations start with x=0 as an initial guess of the solution.
155   * One can control the start using the solveWithGuess() method. Here is a step by
156   * step execution example starting with a random guess and printing the evolution
157   * of the estimated error:
158   * * \code
159   * x = VectorXd::Random(n);
160   * solver.setMaxIterations(1);
161   * int i = 0;
162   * do {
163   *   x = solver.solveWithGuess(b,x);
164   *   std::cout << i << " : " << solver.error() << std::endl;
165   *   ++i;
166   * } while (solver.info()!=Success && i<100);
167   * \endcode
168   * Note that such a step by step excution is slightly slower.
169   *
170   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
171   */
172 template< typename _MatrixType, typename _Preconditioner>
173 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
174 {
175   typedef IterativeSolverBase<BiCGSTAB> Base;
176   using Base::mp_matrix;
177   using Base::m_error;
178   using Base::m_iterations;
179   using Base::m_info;
180   using Base::m_isInitialized;
181 public:
182   typedef _MatrixType MatrixType;
183   typedef typename MatrixType::Scalar Scalar;
184   typedef typename MatrixType::Index Index;
185   typedef typename MatrixType::RealScalar RealScalar;
186   typedef _Preconditioner Preconditioner;
187 
188 public:
189 
190   /** Default constructor. */
191   BiCGSTAB() : Base() {}
192 
193   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
194     *
195     * This constructor is a shortcut for the default constructor followed
196     * by a call to compute().
197     *
198     * \warning this class stores a reference to the matrix A as well as some
199     * precomputed values that depend on it. Therefore, if \a A is changed
200     * this class becomes invalid. Call compute() to update it with the new
201     * matrix A, or modify a copy of A.
202     */
203   BiCGSTAB(const MatrixType& A) : Base(A) {}
204 
205   ~BiCGSTAB() {}
206 
207   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
208     * \a x0 as an initial solution.
209     *
210     * \sa compute()
211     */
212   template<typename Rhs,typename Guess>
213   inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
214   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
215   {
216     eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
217     eigen_assert(Base::rows()==b.rows()
218               && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
219     return internal::solve_retval_with_guess
220             <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
221   }
222 
223   /** \internal */
224   template<typename Rhs,typename Dest>
225   void _solveWithGuess(const Rhs& b, Dest& x) const
226   {
227     bool failed = false;
228     for(int j=0; j<b.cols(); ++j)
229     {
230       m_iterations = Base::maxIterations();
231       m_error = Base::m_tolerance;
232 
233       typename Dest::ColXpr xj(x,j);
234       if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
235         failed = true;
236     }
237     m_info = failed ? NumericalIssue
238            : m_error <= Base::m_tolerance ? Success
239            : NoConvergence;
240     m_isInitialized = true;
241   }
242 
243   /** \internal */
244   template<typename Rhs,typename Dest>
245   void _solve(const Rhs& b, Dest& x) const
246   {
247 //     x.setZero();
248   x = b;
249     _solveWithGuess(b,x);
250   }
251 
252 protected:
253 
254 };
255 
256 
257 namespace internal {
258 
259   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
260 struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
261   : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
262 {
263   typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
264   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
265 
266   template<typename Dest> void evalTo(Dest& dst) const
267   {
268     dec()._solve(rhs(),dst);
269   }
270 };
271 
272 } // end namespace internal
273 
274 } // end namespace Eigen
275 
276 #endif // EIGEN_BICGSTAB_H
277