• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CONJUGATE_GRADIENT_H
11 #define EIGEN_CONJUGATE_GRADIENT_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 /** \internal Low-level conjugate gradient algorithm
18   * \param mat The matrix A
19   * \param rhs The right hand side vector b
20   * \param x On input and initial solution, on output the computed solution.
21   * \param precond A preconditioner being able to efficiently solve for an
22   *                approximation of Ax=b (regardless of b)
23   * \param iters On input the max number of iteration, on output the number of performed iterations.
24   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
25   */
26 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
27 EIGEN_DONT_INLINE
conjugate_gradient(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,int & iters,typename Dest::RealScalar & tol_error)28 void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
29                         const Preconditioner& precond, int& iters,
30                         typename Dest::RealScalar& tol_error)
31 {
32   using std::sqrt;
33   using std::abs;
34   typedef typename Dest::RealScalar RealScalar;
35   typedef typename Dest::Scalar Scalar;
36   typedef Matrix<Scalar,Dynamic,1> VectorType;
37 
38   RealScalar tol = tol_error;
39   int maxIters = iters;
40 
41   int n = mat.cols();
42 
43   VectorType residual = rhs - mat * x; //initial residual
44 
45   RealScalar rhsNorm2 = rhs.squaredNorm();
46   if(rhsNorm2 == 0)
47   {
48     x.setZero();
49     iters = 0;
50     tol_error = 0;
51     return;
52   }
53   RealScalar threshold = tol*tol*rhsNorm2;
54   RealScalar residualNorm2 = residual.squaredNorm();
55   if (residualNorm2 < threshold)
56   {
57     iters = 0;
58     tol_error = sqrt(residualNorm2 / rhsNorm2);
59     return;
60   }
61 
62   VectorType p(n);
63   p = precond.solve(residual);      //initial search direction
64 
65   VectorType z(n), tmp(n);
66   RealScalar absNew = numext::real(residual.dot(p));  // the square of the absolute value of r scaled by invM
67   int i = 0;
68   while(i < maxIters)
69   {
70     tmp.noalias() = mat * p;              // the bottleneck of the algorithm
71 
72     Scalar alpha = absNew / p.dot(tmp);   // the amount we travel on dir
73     x += alpha * p;                       // update solution
74     residual -= alpha * tmp;              // update residue
75 
76     residualNorm2 = residual.squaredNorm();
77     if(residualNorm2 < threshold)
78       break;
79 
80     z = precond.solve(residual);          // approximately solve for "A z = residual"
81 
82     RealScalar absOld = absNew;
83     absNew = numext::real(residual.dot(z));     // update the absolute value of r
84     RealScalar beta = absNew / absOld;            // calculate the Gram-Schmidt value used to create the new search direction
85     p = z + beta * p;                             // update search direction
86     i++;
87   }
88   tol_error = sqrt(residualNorm2 / rhsNorm2);
89   iters = i;
90 }
91 
92 }
93 
94 template< typename _MatrixType, int _UpLo=Lower,
95           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
96 class ConjugateGradient;
97 
98 namespace internal {
99 
100 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
101 struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
102 {
103   typedef _MatrixType MatrixType;
104   typedef _Preconditioner Preconditioner;
105 };
106 
107 }
108 
109 /** \ingroup IterativeLinearSolvers_Module
110   * \brief A conjugate gradient solver for sparse self-adjoint problems
111   *
112   * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
113   * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
114   *
115   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
116   * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
117   *               or Upper. Default is Lower.
118   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
119   *
120   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
121   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
122   * and NumTraits<Scalar>::epsilon() for the tolerance.
123   *
124   * This class can be used as the direct solver classes. Here is a typical usage example:
125   * \code
126   * int n = 10000;
127   * VectorXd x(n), b(n);
128   * SparseMatrix<double> A(n,n);
129   * // fill A and b
130   * ConjugateGradient<SparseMatrix<double> > cg;
131   * cg.compute(A);
132   * x = cg.solve(b);
133   * std::cout << "#iterations:     " << cg.iterations() << std::endl;
134   * std::cout << "estimated error: " << cg.error()      << std::endl;
135   * // update b, and solve again
136   * x = cg.solve(b);
137   * \endcode
138   *
139   * By default the iterations start with x=0 as an initial guess of the solution.
140   * One can control the start using the solveWithGuess() method. Here is a step by
141   * step execution example starting with a random guess and printing the evolution
142   * of the estimated error:
143   * * \code
144   * x = VectorXd::Random(n);
145   * cg.setMaxIterations(1);
146   * int i = 0;
147   * do {
148   *   x = cg.solveWithGuess(b,x);
149   *   std::cout << i << " : " << cg.error() << std::endl;
150   *   ++i;
151   * } while (cg.info()!=Success && i<100);
152   * \endcode
153   * Note that such a step by step excution is slightly slower.
154   *
155   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
156   */
157 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
158 class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
159 {
160   typedef IterativeSolverBase<ConjugateGradient> Base;
161   using Base::mp_matrix;
162   using Base::m_error;
163   using Base::m_iterations;
164   using Base::m_info;
165   using Base::m_isInitialized;
166 public:
167   typedef _MatrixType MatrixType;
168   typedef typename MatrixType::Scalar Scalar;
169   typedef typename MatrixType::Index Index;
170   typedef typename MatrixType::RealScalar RealScalar;
171   typedef _Preconditioner Preconditioner;
172 
173   enum {
174     UpLo = _UpLo
175   };
176 
177 public:
178 
179   /** Default constructor. */
180   ConjugateGradient() : Base() {}
181 
182   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
183     *
184     * This constructor is a shortcut for the default constructor followed
185     * by a call to compute().
186     *
187     * \warning this class stores a reference to the matrix A as well as some
188     * precomputed values that depend on it. Therefore, if \a A is changed
189     * this class becomes invalid. Call compute() to update it with the new
190     * matrix A, or modify a copy of A.
191     */
192   ConjugateGradient(const MatrixType& A) : Base(A) {}
193 
194   ~ConjugateGradient() {}
195 
196   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
197     * \a x0 as an initial solution.
198     *
199     * \sa compute()
200     */
201   template<typename Rhs,typename Guess>
202   inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
203   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
204   {
205     eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
206     eigen_assert(Base::rows()==b.rows()
207               && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
208     return internal::solve_retval_with_guess
209             <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
210   }
211 
212   /** \internal */
213   template<typename Rhs,typename Dest>
214   void _solveWithGuess(const Rhs& b, Dest& x) const
215   {
216     m_iterations = Base::maxIterations();
217     m_error = Base::m_tolerance;
218 
219     for(int j=0; j<b.cols(); ++j)
220     {
221       m_iterations = Base::maxIterations();
222       m_error = Base::m_tolerance;
223 
224       typename Dest::ColXpr xj(x,j);
225       internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
226                                    Base::m_preconditioner, m_iterations, m_error);
227     }
228 
229     m_isInitialized = true;
230     m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
231   }
232 
233   /** \internal */
234   template<typename Rhs,typename Dest>
235   void _solve(const Rhs& b, Dest& x) const
236   {
237     x.setOnes();
238     _solveWithGuess(b,x);
239   }
240 
241 protected:
242 
243 };
244 
245 
246 namespace internal {
247 
248 template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
249 struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
250   : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
251 {
252   typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
253   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
254 
255   template<typename Dest> void evalTo(Dest& dst) const
256   {
257     dec()._solve(rhs(),dst);
258   }
259 };
260 
261 } // end namespace internal
262 
263 } // end namespace Eigen
264 
265 #endif // EIGEN_CONJUGATE_GRADIENT_H
266