1namespace Eigen { 2 3/** \eigenManualPage QuickRefPage Quick reference guide 4 5\eigenAutoToc 6 7<hr> 8 9<a href="#" class="top">top</a> 10\section QuickRef_Headers Modules and Header files 11 12The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once. 13 14<table class="manual"> 15<tr><th>Module</th><th>Header file</th><th>Contents</th></tr> 16<tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> 17<tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> 18<tr><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> 19<tr><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> 20<tr class="alt"><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> 21<tr><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decomposition with least-squares solver (JacobiSVD)</td></tr> 22<tr class="alt"><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> 23<tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> 24<tr class="alt"><td>\link Sparse_modules Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr> 25<tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> 26<tr class="alt"><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> 27</table> 28 29<a href="#" class="top">top</a> 30\section QuickRef_Types Array, matrix and vector types 31 32 33\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: 34\code 35typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; 36typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; 37\endcode 38 39\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). 40\li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. 41\li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) 42 43All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: 44\code 45Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation) 46Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation) 47Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation) 48Matrix<double, 13, 3> // Fully fixed (usually allocated on stack) 49\endcode 50 51In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: 52<table class="example"> 53<tr><th>Matrices</th><th>Arrays</th></tr> 54<tr><td>\code 55Matrix<float,Dynamic,Dynamic> <=> MatrixXf 56Matrix<double,Dynamic,1> <=> VectorXd 57Matrix<int,1,Dynamic> <=> RowVectorXi 58Matrix<float,3,3> <=> Matrix3f 59Matrix<float,4,1> <=> Vector4f 60\endcode</td><td>\code 61Array<float,Dynamic,Dynamic> <=> ArrayXXf 62Array<double,Dynamic,1> <=> ArrayXd 63Array<int,1,Dynamic> <=> RowArrayXi 64Array<float,3,3> <=> Array33f 65Array<float,4,1> <=> Array4f 66\endcode</td></tr> 67</table> 68 69Conversion between the matrix and array worlds: 70\code 71Array44f a1, a1; 72Matrix4f m1, m2; 73m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix. 74a1 = m1 * m2; // matrix product, implicit conversion from matrix to array. 75a2 = a1 + m1.array(); // mixing array and matrix is forbidden 76m2 = a1.matrix() + m1; // and explicit conversion is required. 77ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients 78MatrixWrapper<Array44f> a1m(a1); 79\endcode 80 81In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: 82\li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only 83\li <a name="arrayonly"></a>\arrayworld array objects only 84 85\subsection QuickRef_Basics Basic matrix manipulation 86 87<table class="manual"> 88<tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> 89<tr><td>Constructors</td> 90<td>\code 91Vector4d v4; 92Vector2f v1(x, y); 93Array3i v2(x, y, z); 94Vector4d v3(x, y, z, w); 95 96VectorXf v5; // empty object 97ArrayXf v6(size); 98\endcode</td><td>\code 99Matrix4f m1; 100 101 102 103 104MatrixXf m5; // empty object 105MatrixXf m6(nb_rows, nb_columns); 106\endcode</td><td class="note"> 107By default, the coefficients \n are left uninitialized</td></tr> 108<tr class="alt"><td>Comma initializer</td> 109<td>\code 110Vector3f v1; v1 << x, y, z; 111ArrayXf v2(4); v2 << 1, 2, 3, 4; 112 113\endcode</td><td>\code 114Matrix3f m1; m1 << 1, 2, 3, 115 4, 5, 6, 116 7, 8, 9; 117\endcode</td><td></td></tr> 118 119<tr><td>Comma initializer (bis)</td> 120<td colspan="2"> 121\include Tutorial_commainit_02.cpp 122</td> 123<td> 124output: 125\verbinclude Tutorial_commainit_02.out 126</td> 127</tr> 128 129<tr class="alt"><td>Runtime info</td> 130<td>\code 131vector.size(); 132 133vector.innerStride(); 134vector.data(); 135\endcode</td><td>\code 136matrix.rows(); matrix.cols(); 137matrix.innerSize(); matrix.outerSize(); 138matrix.innerStride(); matrix.outerStride(); 139matrix.data(); 140\endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> 141<tr><td>Compile-time info</td> 142<td colspan="2">\code 143ObjectType::Scalar ObjectType::RowsAtCompileTime 144ObjectType::RealScalar ObjectType::ColsAtCompileTime 145ObjectType::Index ObjectType::SizeAtCompileTime 146\endcode</td><td></td></tr> 147<tr class="alt"><td>Resizing</td> 148<td>\code 149vector.resize(size); 150 151 152vector.resizeLike(other_vector); 153vector.conservativeResize(size); 154\endcode</td><td>\code 155matrix.resize(nb_rows, nb_cols); 156matrix.resize(Eigen::NoChange, nb_cols); 157matrix.resize(nb_rows, Eigen::NoChange); 158matrix.resizeLike(other_matrix); 159matrix.conservativeResize(nb_rows, nb_cols); 160\endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr> 161 162<tr><td>Coeff access with \n range checking</td> 163<td>\code 164vector(i) vector.x() 165vector[i] vector.y() 166 vector.z() 167 vector.w() 168\endcode</td><td>\code 169matrix(i,j) 170\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr> 171 172<tr class="alt"><td>Coeff access without \n range checking</td> 173<td>\code 174vector.coeff(i) 175vector.coeffRef(i) 176\endcode</td><td>\code 177matrix.coeff(i,j) 178matrix.coeffRef(i,j) 179\endcode</td><td></td></tr> 180 181<tr><td>Assignment/copy</td> 182<td colspan="2">\code 183object = expression; 184object_of_float = expression_of_double.cast<float>(); 185\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr> 186 187</table> 188 189\subsection QuickRef_PredefMat Predefined Matrices 190 191<table class="manual"> 192<tr> 193 <th>Fixed-size matrix or vector</th> 194 <th>Dynamic-size matrix</th> 195 <th>Dynamic-size vector</th> 196</tr> 197<tr style="border-bottom-style: none;"> 198 <td> 199\code 200typedef {Matrix3f|Array33f} FixedXD; 201FixedXD x; 202 203x = FixedXD::Zero(); 204x = FixedXD::Ones(); 205x = FixedXD::Constant(value); 206x = FixedXD::Random(); 207x = FixedXD::LinSpaced(size, low, high); 208 209x.setZero(); 210x.setOnes(); 211x.setConstant(value); 212x.setRandom(); 213x.setLinSpaced(size, low, high); 214\endcode 215 </td> 216 <td> 217\code 218typedef {MatrixXf|ArrayXXf} Dynamic2D; 219Dynamic2D x; 220 221x = Dynamic2D::Zero(rows, cols); 222x = Dynamic2D::Ones(rows, cols); 223x = Dynamic2D::Constant(rows, cols, value); 224x = Dynamic2D::Random(rows, cols); 225N/A 226 227x.setZero(rows, cols); 228x.setOnes(rows, cols); 229x.setConstant(rows, cols, value); 230x.setRandom(rows, cols); 231N/A 232\endcode 233 </td> 234 <td> 235\code 236typedef {VectorXf|ArrayXf} Dynamic1D; 237Dynamic1D x; 238 239x = Dynamic1D::Zero(size); 240x = Dynamic1D::Ones(size); 241x = Dynamic1D::Constant(size, value); 242x = Dynamic1D::Random(size); 243x = Dynamic1D::LinSpaced(size, low, high); 244 245x.setZero(size); 246x.setOnes(size); 247x.setConstant(size, value); 248x.setRandom(size); 249x.setLinSpaced(size, low, high); 250\endcode 251 </td> 252</tr> 253 254<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> 255<tr style="border-bottom-style: none;"> 256 <td> 257\code 258x = FixedXD::Identity(); 259x.setIdentity(); 260 261Vector3f::UnitX() // 1 0 0 262Vector3f::UnitY() // 0 1 0 263Vector3f::UnitZ() // 0 0 1 264\endcode 265 </td> 266 <td> 267\code 268x = Dynamic2D::Identity(rows, cols); 269x.setIdentity(rows, cols); 270 271 272 273N/A 274\endcode 275 </td> 276 <td>\code 277N/A 278 279 280VectorXf::Unit(size,i) 281VectorXf::Unit(4,1) == Vector4f(0,1,0,0) 282 == Vector4f::UnitY() 283\endcode 284 </td> 285</tr> 286</table> 287 288 289 290\subsection QuickRef_Map Mapping external arrays 291 292<table class="manual"> 293<tr> 294<td>Contiguous \n memory</td> 295<td>\code 296float data[] = {1,2,3,4}; 297Map<Vector3f> v1(data); // uses v1 as a Vector3f object 298Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object 299Map<Array22f> m1(data); // uses m1 as a Array22f object 300Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object 301\endcode</td> 302</tr> 303<tr> 304<td>Typical usage \n of strides</td> 305<td>\code 306float data[] = {1,2,3,4,5,6,7,8,9}; 307Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5] 308Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7] 309Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7| 310Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8| 311\endcode</td> 312</tr> 313</table> 314 315 316<a href="#" class="top">top</a> 317\section QuickRef_ArithmeticOperators Arithmetic Operators 318 319<table class="manual"> 320<tr><td> 321add \n subtract</td><td>\code 322mat3 = mat1 + mat2; mat3 += mat1; 323mat3 = mat1 - mat2; mat3 -= mat1;\endcode 324</td></tr> 325<tr class="alt"><td> 326scalar product</td><td>\code 327mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1; 328mat3 = mat1 / s1; mat3 /= s1;\endcode 329</td></tr> 330<tr><td> 331matrix/vector \n products \matrixworld</td><td>\code 332col2 = mat1 * col1; 333row2 = row1 * mat1; row1 *= mat1; 334mat3 = mat1 * mat2; mat3 *= mat1; \endcode 335</td></tr> 336<tr class="alt"><td> 337transposition \n adjoint \matrixworld</td><td>\code 338mat1 = mat2.transpose(); mat1.transposeInPlace(); 339mat1 = mat2.adjoint(); mat1.adjointInPlace(); 340\endcode 341</td></tr> 342<tr><td> 343\link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code 344scalar = vec1.dot(vec2); 345scalar = col1.adjoint() * col2; 346scalar = (col1.adjoint() * col2).value();\endcode 347</td></tr> 348<tr class="alt"><td> 349outer product \matrixworld</td><td>\code 350mat = col1 * col2.transpose();\endcode 351</td></tr> 352 353<tr><td> 354\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code 355scalar = vec1.norm(); scalar = vec1.squaredNorm() 356vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode 357</td></tr> 358 359<tr class="alt"><td> 360\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code 361#include <Eigen/Geometry> 362vec3 = vec1.cross(vec2);\endcode</td></tr> 363</table> 364 365<a href="#" class="top">top</a> 366\section QuickRef_Coeffwise Coefficient-wise \& Array operators 367Coefficient-wise operators for matrices and vectors: 368<table class="manual"> 369<tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> 370<tr><td>\code 371mat1.cwiseMin(mat2) 372mat1.cwiseMax(mat2) 373mat1.cwiseAbs2() 374mat1.cwiseAbs() 375mat1.cwiseSqrt() 376mat1.cwiseProduct(mat2) 377mat1.cwiseQuotient(mat2)\endcode 378</td><td>\code 379mat1.array().min(mat2.array()) 380mat1.array().max(mat2.array()) 381mat1.array().abs2() 382mat1.array().abs() 383mat1.array().sqrt() 384mat1.array() * mat2.array() 385mat1.array() / mat2.array() 386\endcode</td></tr> 387</table> 388 389It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with std::ptr_fun: 390\code mat1.unaryExpr(std::ptr_fun(foo))\endcode 391 392Array operators:\arrayworld 393 394<table class="manual"> 395<tr><td>Arithmetic operators</td><td>\code 396array1 * array2 array1 / array2 array1 *= array2 array1 /= array2 397array1 + scalar array1 - scalar array1 += scalar array1 -= scalar 398\endcode</td></tr> 399<tr><td>Comparisons</td><td>\code 400array1 < array2 array1 > array2 array1 < scalar array1 > scalar 401array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar 402array1 == array2 array1 != array2 array1 == scalar array1 != scalar 403\endcode</td></tr> 404<tr><td>Trigo, power, and \n misc functions \n and the STL variants</td><td>\code 405array1.min(array2) 406array1.max(array2) 407array1.abs2() 408array1.abs() abs(array1) 409array1.sqrt() sqrt(array1) 410array1.log() log(array1) 411array1.exp() exp(array1) 412array1.pow(exponent) pow(array1,exponent) 413array1.square() 414array1.cube() 415array1.inverse() 416array1.sin() sin(array1) 417array1.cos() cos(array1) 418array1.tan() tan(array1) 419array1.asin() asin(array1) 420array1.acos() acos(array1) 421\endcode 422</td></tr> 423</table> 424 425<a href="#" class="top">top</a> 426\section QuickRef_Reductions Reductions 427 428Eigen provides several reduction methods such as: 429\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, 430\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, 431\link MatrixBase::trace() trace() \endlink \matrixworld, 432\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, 433\link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. 434All reduction operations can be done matrix-wise, 435\link DenseBase::colwise() column-wise \endlink or 436\link DenseBase::rowwise() row-wise \endlink. Usage example: 437<table class="manual"> 438<tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code 439 5 3 1 440mat = 2 7 8 441 9 4 6 \endcode 442</td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> 443<tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> 444<tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code 4451 4462 4474 448\endcode</td></tr> 449</table> 450 451Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: 452\code 453int i, j; 454s = vector.minCoeff(&i); // s == vector[i] 455s = matrix.maxCoeff(&i, &j); // s == matrix(i,j) 456\endcode 457Typical use cases of all() and any(): 458\code 459if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ... 460if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... 461\endcode 462 463 464<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices 465 466Read-write access to a \link DenseBase::col(Index) column \endlink 467or a \link DenseBase::row(Index) row \endlink of a matrix (or array): 468\code 469mat1.row(i) = mat2.col(j); 470mat1.col(j1).swap(mat1.col(j2)); 471\endcode 472 473Read-write access to sub-vectors: 474<table class="manual"> 475<tr> 476<th>Default versions</th> 477<th>Optimized versions when the size \n is known at compile time</th></tr> 478<th></th> 479 480<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> 481<tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> 482<tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> 483 <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> 484<tr class="alt"><td colspan="3"> 485 486Read-write access to sub-matrices:</td></tr> 487<tr> 488 <td>\code mat1.block(i,j,rows,cols)\endcode 489 \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> 490 <td>\code mat1.block<rows,cols>(i,j)\endcode 491 \link DenseBase::block(Index,Index) (more) \endlink</td> 492 <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> 493<tr><td>\code 494 mat1.topLeftCorner(rows,cols) 495 mat1.topRightCorner(rows,cols) 496 mat1.bottomLeftCorner(rows,cols) 497 mat1.bottomRightCorner(rows,cols)\endcode 498 <td>\code 499 mat1.topLeftCorner<rows,cols>() 500 mat1.topRightCorner<rows,cols>() 501 mat1.bottomLeftCorner<rows,cols>() 502 mat1.bottomRightCorner<rows,cols>()\endcode 503 <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> 504 <tr><td>\code 505 mat1.topRows(rows) 506 mat1.bottomRows(rows) 507 mat1.leftCols(cols) 508 mat1.rightCols(cols)\endcode 509 <td>\code 510 mat1.topRows<rows>() 511 mat1.bottomRows<rows>() 512 mat1.leftCols<cols>() 513 mat1.rightCols<cols>()\endcode 514 <td>specialized versions of block() \n when the block fit two corners</td></tr> 515</table> 516 517 518 519<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations 520 521\subsection QuickRef_Reverse Reverse 522Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). 523\code 524vec.reverse() mat.colwise().reverse() mat.rowwise().reverse() 525vec.reverseInPlace() 526\endcode 527 528\subsection QuickRef_Replicate Replicate 529Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) 530\code 531vec.replicate(times) vec.replicate<Times> 532mat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>() 533mat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>() 534mat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() 535\endcode 536 537 538<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices 539(matrix world \matrixworld) 540 541\subsection QuickRef_Diagonal Diagonal matrices 542 543<table class="example"> 544<tr><th>Operation</th><th>Code</th></tr> 545<tr><td> 546view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code 547mat1 = vec1.asDiagonal();\endcode 548</td></tr> 549<tr><td> 550Declare a diagonal matrix</td><td>\code 551DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); 552diag1.diagonal() = vector;\endcode 553</td></tr> 554<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> 555 <td>\code 556vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal 557vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal 558vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal 559vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal 560vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal 561\endcode</td> 562</tr> 563 564<tr><td>Optimized products and inverse</td> 565 <td>\code 566mat3 = scalar * diag1 * mat1; 567mat3 += scalar * mat1 * vec1.asDiagonal(); 568mat3 = vec1.asDiagonal().inverse() * mat1 569mat3 = mat1 * diag1.inverse() 570\endcode</td> 571</tr> 572 573</table> 574 575\subsection QuickRef_TriangularView Triangular views 576 577TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information. 578 579\note The .triangularView() template member function requires the \c template keyword if it is used on an 580object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. 581 582<table class="example"> 583<tr><th>Operation</th><th>Code</th></tr> 584<tr><td> 585Reference to a triangular with optional \n 586unit or null diagonal (read/write): 587</td><td>\code 588m.triangularView<Xxx>() 589\endcode \n 590\c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower 591</td></tr> 592<tr><td> 593Writing to a specific triangular part:\n (only the referenced triangular part is evaluated) 594</td><td>\code 595m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode 596</td></tr> 597<tr><td> 598Conversion to a dense matrix setting the opposite triangular part to zero: 599</td><td>\code 600m2 = m1.triangularView<Eigen::UnitUpper>()\endcode 601</td></tr> 602<tr><td> 603Products: 604</td><td>\code 605m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 606m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode 607</td></tr> 608<tr><td> 609Solving linear equations:\n 610\f$ M_2 := L_1^{-1} M_2 \f$ \n 611\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n 612\f$ M_4 := M_4 U_1^{-1} \f$ 613</td><td>\n \code 614L1.triangularView<Eigen::UnitLower>().solveInPlace(M2) 615L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) 616U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode 617</td></tr> 618</table> 619 620\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views 621 622Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint 623matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be 624used to store other information. 625 626\note The .selfadjointView() template member function requires the \c template keyword if it is used on an 627object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. 628 629<table class="example"> 630<tr><th>Operation</th><th>Code</th></tr> 631<tr><td> 632Conversion to a dense matrix: 633</td><td>\code 634m2 = m.selfadjointView<Eigen::Lower>();\endcode 635</td></tr> 636<tr><td> 637Product with another general matrix or vector: 638</td><td>\code 639m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; 640m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode 641</td></tr> 642<tr><td> 643Rank 1 and rank K update: \n 644\f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n 645\f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ 646</td><td>\n \code 647M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); 648M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode 649</td></tr> 650<tr><td> 651Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) 652</td><td>\code 653M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); 654\endcode 655</td></tr> 656<tr><td> 657Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) 658</td><td>\code 659// via a standard Cholesky factorization 660m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); 661// via a Cholesky factorization with pivoting 662m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); 663\endcode 664</td></tr> 665</table> 666 667*/ 668 669/* 670<table class="tutorial_code"> 671<tr><td> 672\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code 673mat1 = vec1.asDiagonal();\endcode 674</td></tr> 675<tr><td> 676Declare a diagonal matrix</td><td>\code 677DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); 678diag1.diagonal() = vector;\endcode 679</td></tr> 680<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> 681 <td>\code 682vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal 683vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal 684vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal 685vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal 686vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal 687\endcode</td> 688</tr> 689 690<tr><td>View on a triangular part of a matrix (read/write)</td> 691 <td>\code 692mat2 = mat1.triangularView<Xxx>(); 693// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower 694mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced 695\endcode</td></tr> 696 697<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> 698 <td>\code 699mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower 700mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only 701\endcode</td></tr> 702 703</table> 704 705Optimized products: 706\code 707mat3 += scalar * vec1.asDiagonal() * mat1 708mat3 += scalar * mat1 * vec1.asDiagonal() 709mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 710mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() 711mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 712mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() 713mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); 714mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); 715\endcode 716 717Inverse products: (all are optimized) 718\code 719mat3 = vec1.asDiagonal().inverse() * mat1 720mat3 = mat1 * diag1.inverse() 721mat1.triangularView<Xxx>().solveInPlace(mat2) 722mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) 723mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) 724\endcode 725 726*/ 727} 728