1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #define EIGEN_NO_STATIC_ASSERT
11
12 #include "main.h"
13
14 template<bool IsInteger> struct adjoint_specific;
15
16 template<> struct adjoint_specific<true> {
17 template<typename Vec, typename Mat, typename Scalar>
runadjoint_specific18 static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
19 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
20 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
21
22 // check compatibility of dot and adjoint
23 VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
24 }
25 };
26
27 template<> struct adjoint_specific<false> {
28 template<typename Vec, typename Mat, typename Scalar>
runadjoint_specific29 static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
30 typedef typename NumTraits<Scalar>::Real RealScalar;
31 using std::abs;
32
33 RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
34 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
35 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
36
37 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
38 // check normalized() and normalize()
39 VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
40 v3 = v1;
41 v3.normalize();
42 VERIFY_IS_APPROX(v1, v1.norm() * v3);
43 VERIFY_IS_APPROX(v3, v1.normalized());
44 VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
45
46 // check compatibility of dot and adjoint
47 ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
48 VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
49
50 // check that Random().normalized() works: tricky as the random xpr must be evaluated by
51 // normalized() in order to produce a consistent result.
52 VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
53 }
54 };
55
adjoint(const MatrixType & m)56 template<typename MatrixType> void adjoint(const MatrixType& m)
57 {
58 /* this test covers the following files:
59 Transpose.h Conjugate.h Dot.h
60 */
61 using std::abs;
62 typedef typename MatrixType::Index Index;
63 typedef typename MatrixType::Scalar Scalar;
64 typedef typename NumTraits<Scalar>::Real RealScalar;
65 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
66 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
67
68 Index rows = m.rows();
69 Index cols = m.cols();
70
71 MatrixType m1 = MatrixType::Random(rows, cols),
72 m2 = MatrixType::Random(rows, cols),
73 m3(rows, cols),
74 square = SquareMatrixType::Random(rows, rows);
75 VectorType v1 = VectorType::Random(rows),
76 v2 = VectorType::Random(rows),
77 v3 = VectorType::Random(rows),
78 vzero = VectorType::Zero(rows);
79
80 Scalar s1 = internal::random<Scalar>(),
81 s2 = internal::random<Scalar>();
82
83 // check basic compatibility of adjoint, transpose, conjugate
84 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
85 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
86
87 // check multiplicative behavior
88 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
89 VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
90
91 // check basic properties of dot, squaredNorm
92 VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
93 VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
94
95 adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
96
97 VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
98
99 // like in testBasicStuff, test operator() to check const-qualification
100 Index r = internal::random<Index>(0, rows-1),
101 c = internal::random<Index>(0, cols-1);
102 VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
103 VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
104
105 // check inplace transpose
106 m3 = m1;
107 m3.transposeInPlace();
108 VERIFY_IS_APPROX(m3,m1.transpose());
109 m3.transposeInPlace();
110 VERIFY_IS_APPROX(m3,m1);
111
112 // check inplace adjoint
113 m3 = m1;
114 m3.adjointInPlace();
115 VERIFY_IS_APPROX(m3,m1.adjoint());
116 m3.transposeInPlace();
117 VERIFY_IS_APPROX(m3,m1.conjugate());
118
119 // check mixed dot product
120 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
121 RealVectorType rv1 = RealVectorType::Random(rows);
122 VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
123 VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
124 }
125
test_adjoint()126 void test_adjoint()
127 {
128 for(int i = 0; i < g_repeat; i++) {
129 CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
130 CALL_SUBTEST_2( adjoint(Matrix3d()) );
131 CALL_SUBTEST_3( adjoint(Matrix4f()) );
132 CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
133 CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
134 CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
135 }
136 // test a large static matrix only once
137 CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
138
139 #ifdef EIGEN_TEST_PART_4
140 {
141 MatrixXcf a(10,10), b(10,10);
142 VERIFY_RAISES_ASSERT(a = a.transpose());
143 VERIFY_RAISES_ASSERT(a = a.transpose() + b);
144 VERIFY_RAISES_ASSERT(a = b + a.transpose());
145 VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
146 VERIFY_RAISES_ASSERT(a = a.adjoint());
147 VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
148 VERIFY_RAISES_ASSERT(a = b + a.adjoint());
149
150 // no assertion should be triggered for these cases:
151 a.transpose() = a.transpose();
152 a.transpose() += a.transpose();
153 a.transpose() += a.transpose() + b;
154 a.transpose() = a.adjoint();
155 a.transpose() += a.adjoint();
156 a.transpose() += a.adjoint() + b;
157 }
158 #endif
159 }
160
161