• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT
11 
12 #include "main.h"
13 
14 template<bool IsInteger> struct adjoint_specific;
15 
16 template<> struct adjoint_specific<true> {
17   template<typename Vec, typename Mat, typename Scalar>
runadjoint_specific18   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
19     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
20     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), 0));
21 
22     // check compatibility of dot and adjoint
23     VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
24   }
25 };
26 
27 template<> struct adjoint_specific<false> {
28   template<typename Vec, typename Mat, typename Scalar>
runadjoint_specific29   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
30     typedef typename NumTraits<Scalar>::Real RealScalar;
31     using std::abs;
32 
33     RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
34     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
35     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref));
36 
37     VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm());
38     // check normalized() and normalize()
39     VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
40     v3 = v1;
41     v3.normalize();
42     VERIFY_IS_APPROX(v1, v1.norm() * v3);
43     VERIFY_IS_APPROX(v3, v1.normalized());
44     VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
45 
46     // check compatibility of dot and adjoint
47     ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
48     VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
49 
50     // check that Random().normalized() works: tricky as the random xpr must be evaluated by
51     // normalized() in order to produce a consistent result.
52     VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
53   }
54 };
55 
adjoint(const MatrixType & m)56 template<typename MatrixType> void adjoint(const MatrixType& m)
57 {
58   /* this test covers the following files:
59      Transpose.h Conjugate.h Dot.h
60   */
61   using std::abs;
62   typedef typename MatrixType::Index Index;
63   typedef typename MatrixType::Scalar Scalar;
64   typedef typename NumTraits<Scalar>::Real RealScalar;
65   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
66   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
67 
68   Index rows = m.rows();
69   Index cols = m.cols();
70 
71   MatrixType m1 = MatrixType::Random(rows, cols),
72              m2 = MatrixType::Random(rows, cols),
73              m3(rows, cols),
74              square = SquareMatrixType::Random(rows, rows);
75   VectorType v1 = VectorType::Random(rows),
76              v2 = VectorType::Random(rows),
77              v3 = VectorType::Random(rows),
78              vzero = VectorType::Zero(rows);
79 
80   Scalar s1 = internal::random<Scalar>(),
81          s2 = internal::random<Scalar>();
82 
83   // check basic compatibility of adjoint, transpose, conjugate
84   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
85   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
86 
87   // check multiplicative behavior
88   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
89   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     numext::conj(s1) * m1.adjoint());
90 
91   // check basic properties of dot, squaredNorm
92   VERIFY_IS_APPROX(numext::conj(v1.dot(v2)),               v2.dot(v1));
93   VERIFY_IS_APPROX(numext::real(v1.dot(v1)),               v1.squaredNorm());
94 
95   adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
96 
97   VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)),  static_cast<RealScalar>(1));
98 
99   // like in testBasicStuff, test operator() to check const-qualification
100   Index r = internal::random<Index>(0, rows-1),
101       c = internal::random<Index>(0, cols-1);
102   VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
103   VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
104 
105   // check inplace transpose
106   m3 = m1;
107   m3.transposeInPlace();
108   VERIFY_IS_APPROX(m3,m1.transpose());
109   m3.transposeInPlace();
110   VERIFY_IS_APPROX(m3,m1);
111 
112   // check inplace adjoint
113   m3 = m1;
114   m3.adjointInPlace();
115   VERIFY_IS_APPROX(m3,m1.adjoint());
116   m3.transposeInPlace();
117   VERIFY_IS_APPROX(m3,m1.conjugate());
118 
119   // check mixed dot product
120   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
121   RealVectorType rv1 = RealVectorType::Random(rows);
122   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
123   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
124 }
125 
test_adjoint()126 void test_adjoint()
127 {
128   for(int i = 0; i < g_repeat; i++) {
129     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
130     CALL_SUBTEST_2( adjoint(Matrix3d()) );
131     CALL_SUBTEST_3( adjoint(Matrix4f()) );
132     CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
133     CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
134     CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
135   }
136   // test a large static matrix only once
137   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
138 
139 #ifdef EIGEN_TEST_PART_4
140   {
141     MatrixXcf a(10,10), b(10,10);
142     VERIFY_RAISES_ASSERT(a = a.transpose());
143     VERIFY_RAISES_ASSERT(a = a.transpose() + b);
144     VERIFY_RAISES_ASSERT(a = b + a.transpose());
145     VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
146     VERIFY_RAISES_ASSERT(a = a.adjoint());
147     VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
148     VERIFY_RAISES_ASSERT(a = b + a.adjoint());
149 
150     // no assertion should be triggered for these cases:
151     a.transpose() = a.transpose();
152     a.transpose() += a.transpose();
153     a.transpose() += a.transpose() + b;
154     a.transpose() = a.adjoint();
155     a.transpose() += a.adjoint();
156     a.transpose() += a.adjoint() + b;
157   }
158 #endif
159 }
160 
161