• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14 
selfadjointeigensolver(const MatrixType & m)15 template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
16 {
17   typedef typename MatrixType::Index Index;
18   /* this test covers the following files:
19      EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
20   */
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   typedef typename MatrixType::Scalar Scalar;
25   typedef typename NumTraits<Scalar>::Real RealScalar;
26 
27   RealScalar largerEps = 10*test_precision<RealScalar>();
28 
29   MatrixType a = MatrixType::Random(rows,cols);
30   MatrixType a1 = MatrixType::Random(rows,cols);
31   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
32   symmA.template triangularView<StrictlyUpper>().setZero();
33 
34   MatrixType b = MatrixType::Random(rows,cols);
35   MatrixType b1 = MatrixType::Random(rows,cols);
36   MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
37   symmB.template triangularView<StrictlyUpper>().setZero();
38 
39   SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
40   SelfAdjointEigenSolver<MatrixType> eiDirect;
41   eiDirect.computeDirect(symmA);
42   // generalized eigen pb
43   GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
44 
45   VERIFY_IS_EQUAL(eiSymm.info(), Success);
46   VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
47           eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
48   VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
49 
50   VERIFY_IS_EQUAL(eiDirect.info(), Success);
51   VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
52           eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
53   VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());
54 
55   SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
56   VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
57   VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
58 
59   // generalized eigen problem Ax = lBx
60   eiSymmGen.compute(symmA, symmB,Ax_lBx);
61   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
62   VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
63           symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
64 
65   // generalized eigen problem BAx = lx
66   eiSymmGen.compute(symmA, symmB,BAx_lx);
67   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
68   VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
69          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
70 
71   // generalized eigen problem ABx = lx
72   eiSymmGen.compute(symmA, symmB,ABx_lx);
73   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
74   VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
75          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
76 
77 
78   MatrixType sqrtSymmA = eiSymm.operatorSqrt();
79   VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
80   VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
81 
82   MatrixType id = MatrixType::Identity(rows, cols);
83   VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
84 
85   SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
86   VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
87   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
88   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
89   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
90   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
91 
92   eiSymmUninitialized.compute(symmA, false);
93   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
94   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
95   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
96 
97   // test Tridiagonalization's methods
98   Tridiagonalization<MatrixType> tridiag(symmA);
99   // FIXME tridiag.matrixQ().adjoint() does not work
100   VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
101 
102   if (rows > 1)
103   {
104     // Test matrix with NaN
105     symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
106     SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA);
107     VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
108   }
109 }
110 
test_eigensolver_selfadjoint()111 void test_eigensolver_selfadjoint()
112 {
113   int s = 0;
114   for(int i = 0; i < g_repeat; i++) {
115     // very important to test 3x3 and 2x2 matrices since we provide special paths for them
116     CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) );
117     CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
118     CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
119     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
120     CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
121     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
122     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
123     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
124     CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
125 
126     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
127     CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
128 
129     // some trivial but implementation-wise tricky cases
130     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
131     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
132     CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
133     CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
134   }
135 
136   // Test problem size constructors
137   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
138   CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s));
139   CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s));
140 
141   TEST_SET_BUT_UNUSED_VARIABLE(s)
142 }
143 
144