• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/Geometry>
13 #include <Eigen/LU>
14 #include <Eigen/SVD>
15 
bounded_acos(T v)16 template<typename T> T bounded_acos(T v)
17 {
18   using std::acos;
19   using std::min;
20   using std::max;
21   return acos((max)(T(-1),(min)(v,T(1))));
22 }
23 
check_slerp(const QuatType & q0,const QuatType & q1)24 template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
25 {
26   using std::abs;
27   typedef typename QuatType::Scalar Scalar;
28   typedef AngleAxis<Scalar> AA;
29 
30   Scalar largeEps = test_precision<Scalar>();
31 
32   Scalar theta_tot = AA(q1*q0.inverse()).angle();
33   if(theta_tot>M_PI)
34     theta_tot = Scalar(2.*M_PI)-theta_tot;
35   for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1))
36   {
37     QuatType q = q0.slerp(t,q1);
38     Scalar theta = AA(q*q0.inverse()).angle();
39     VERIFY(abs(q.norm() - 1) < largeEps);
40     if(theta_tot==0)  VERIFY(theta_tot==0);
41     else              VERIFY(abs(theta - t * theta_tot) < largeEps);
42   }
43 }
44 
quaternion(void)45 template<typename Scalar, int Options> void quaternion(void)
46 {
47   /* this test covers the following files:
48      Quaternion.h
49   */
50   using std::abs;
51   typedef Matrix<Scalar,3,1> Vector3;
52   typedef Matrix<Scalar,4,1> Vector4;
53   typedef Quaternion<Scalar,Options> Quaternionx;
54   typedef AngleAxis<Scalar> AngleAxisx;
55 
56   Scalar largeEps = test_precision<Scalar>();
57   if (internal::is_same<Scalar,float>::value)
58     largeEps = 1e-3f;
59 
60   Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
61 
62   Vector3 v0 = Vector3::Random(),
63           v1 = Vector3::Random(),
64           v2 = Vector3::Random(),
65           v3 = Vector3::Random();
66 
67   Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)),
68           b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
69 
70   // Quaternion: Identity(), setIdentity();
71   Quaternionx q1, q2;
72   q2.setIdentity();
73   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
74   q1.coeffs().setRandom();
75   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
76 
77   // concatenation
78   q1 *= q2;
79 
80   q1 = AngleAxisx(a, v0.normalized());
81   q2 = AngleAxisx(a, v1.normalized());
82 
83   // angular distance
84   Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle());
85   if (refangle>Scalar(M_PI))
86     refangle = Scalar(2)*Scalar(M_PI) - refangle;
87 
88   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
89   {
90     VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
91   }
92 
93   // rotation matrix conversion
94   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
95   VERIFY_IS_APPROX(q1 * q2 * v2,
96     q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
97 
98   VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
99         || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
100 
101   q2 = q1.toRotationMatrix();
102   VERIFY_IS_APPROX(q1*v1,q2*v1);
103 
104 
105   // angle-axis conversion
106   AngleAxisx aa = AngleAxisx(q1);
107   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
108 
109   // Do not execute the test if the rotation angle is almost zero, or
110   // the rotation axis and v1 are almost parallel.
111   if (abs(aa.angle()) > 5*test_precision<Scalar>()
112       && (aa.axis() - v1.normalized()).norm() < 1.99
113       && (aa.axis() + v1.normalized()).norm() < 1.99)
114   {
115     VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
116   }
117 
118   // from two vector creation
119   VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
120   VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
121   VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
122   if (internal::is_same<Scalar,double>::value)
123   {
124     v3 = (v1.array()+eps).matrix();
125     VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
126     VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
127   }
128 
129   // from two vector creation static function
130   VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
131   VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
132   VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
133   if (internal::is_same<Scalar,double>::value)
134   {
135     v3 = (v1.array()+eps).matrix();
136     VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
137     VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
138   }
139 
140   // inverse and conjugate
141   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
142   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
143 
144   // test casting
145   Quaternion<float> q1f = q1.template cast<float>();
146   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
147   Quaternion<double> q1d = q1.template cast<double>();
148   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
149 
150   // test bug 369 - improper alignment.
151   Quaternionx *q = new Quaternionx;
152   delete q;
153 
154   q1 = AngleAxisx(a, v0.normalized());
155   q2 = AngleAxisx(b, v1.normalized());
156   check_slerp(q1,q2);
157 
158   q1 = AngleAxisx(b, v1.normalized());
159   q2 = AngleAxisx(b+Scalar(M_PI), v1.normalized());
160   check_slerp(q1,q2);
161 
162   q1 = AngleAxisx(b,  v1.normalized());
163   q2 = AngleAxisx(-b, -v1.normalized());
164   check_slerp(q1,q2);
165 
166   q1.coeffs() = Vector4::Random().normalized();
167   q2.coeffs() = -q1.coeffs();
168   check_slerp(q1,q2);
169 }
170 
mapQuaternion(void)171 template<typename Scalar> void mapQuaternion(void){
172   typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
173   typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
174   typedef Map<Quaternion<Scalar> > MQuaternionUA;
175   typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
176   typedef Quaternion<Scalar> Quaternionx;
177   typedef Matrix<Scalar,3,1> Vector3;
178   typedef AngleAxis<Scalar> AngleAxisx;
179 
180   Vector3 v0 = Vector3::Random(),
181           v1 = Vector3::Random();
182   Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
183 
184   EIGEN_ALIGN16 Scalar array1[4];
185   EIGEN_ALIGN16 Scalar array2[4];
186   EIGEN_ALIGN16 Scalar array3[4+1];
187   Scalar* array3unaligned = array3+1;
188 
189   MQuaternionA    mq1(array1);
190   MCQuaternionA   mcq1(array1);
191   MQuaternionA    mq2(array2);
192   MQuaternionUA   mq3(array3unaligned);
193   MCQuaternionUA  mcq3(array3unaligned);
194 
195 //  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
196   mq1 = AngleAxisx(a, v0.normalized());
197   mq2 = mq1;
198   mq3 = mq1;
199 
200   Quaternionx q1 = mq1;
201   Quaternionx q2 = mq2;
202   Quaternionx q3 = mq3;
203   Quaternionx q4 = MCQuaternionUA(array3unaligned);
204 
205   VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
206   VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
207   VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
208   #ifdef EIGEN_VECTORIZE
209   if(internal::packet_traits<Scalar>::Vectorizable)
210     VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
211   #endif
212 
213   VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
214   VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
215 
216   VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
217   VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
218 
219   VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
220   VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
221 
222   VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
223   VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
224 
225   VERIFY_IS_APPROX(mq1*mq2, q1*q2);
226   VERIFY_IS_APPROX(mq3*mq2, q3*q2);
227   VERIFY_IS_APPROX(mcq1*mq2, q1*q2);
228   VERIFY_IS_APPROX(mcq3*mq2, q3*q2);
229 }
230 
quaternionAlignment(void)231 template<typename Scalar> void quaternionAlignment(void){
232   typedef Quaternion<Scalar,AutoAlign> QuaternionA;
233   typedef Quaternion<Scalar,DontAlign> QuaternionUA;
234 
235   EIGEN_ALIGN16 Scalar array1[4];
236   EIGEN_ALIGN16 Scalar array2[4];
237   EIGEN_ALIGN16 Scalar array3[4+1];
238   Scalar* arrayunaligned = array3+1;
239 
240   QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
241   QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
242   QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
243 
244   q1->coeffs().setRandom();
245   *q2 = *q1;
246   *q3 = *q1;
247 
248   VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
249   VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
250   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
251   if(internal::packet_traits<Scalar>::Vectorizable)
252     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
253   #endif
254 }
255 
check_const_correctness(const PlainObjectType &)256 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
257 {
258   // there's a lot that we can't test here while still having this test compile!
259   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
260   // CMake can help with that.
261 
262   // verify that map-to-const don't have LvalueBit
263   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
264   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
265   VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
266   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
267   VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
268 }
269 
test_geo_quaternion()270 void test_geo_quaternion()
271 {
272   for(int i = 0; i < g_repeat; i++) {
273     CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
274     CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
275     CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
276     CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
277     CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
278     CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
279     CALL_SUBTEST_5(( quaternionAlignment<float>() ));
280     CALL_SUBTEST_6(( quaternionAlignment<double>() ));
281     CALL_SUBTEST_1( mapQuaternion<float>() );
282     CALL_SUBTEST_2( mapQuaternion<double>() );
283   }
284 }
285