• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 // work around "uninitialized" warnings and give that option some testing
12 #define EIGEN_INITIALIZE_MATRICES_BY_ZERO
13 
14 #ifndef EIGEN_NO_STATIC_ASSERT
15 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
16 #endif
17 
18 // #ifndef EIGEN_DONT_VECTORIZE
19 // #define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types
20 // #endif
21 
22 #include "main.h"
23 
24 using namespace std;
25 
mixingtypes(int size=SizeAtCompileType)26 template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
27 {
28   typedef std::complex<float>   CF;
29   typedef std::complex<double>  CD;
30   typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
31   typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
32   typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
33   typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
34   typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
35   typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
36   typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
37   typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
38 
39   Mat_f mf    = Mat_f::Random(size,size);
40   Mat_d md    = mf.template cast<double>();
41   Mat_cf mcf  = Mat_cf::Random(size,size);
42   Mat_cd mcd  = mcf.template cast<complex<double> >();
43   Vec_f vf    = Vec_f::Random(size,1);
44   Vec_d vd    = vf.template cast<double>();
45   Vec_cf vcf  = Vec_cf::Random(size,1);
46   Vec_cd vcd  = vcf.template cast<complex<double> >();
47   float           sf  = internal::random<float>();
48   double          sd  = internal::random<double>();
49   complex<float>  scf = internal::random<complex<float> >();
50   complex<double> scd = internal::random<complex<double> >();
51 
52 
53   mf+mf;
54   VERIFY_RAISES_ASSERT(mf+md);
55   VERIFY_RAISES_ASSERT(mf+mcf);
56   VERIFY_RAISES_ASSERT(vf=vd);
57   VERIFY_RAISES_ASSERT(vf+=vd);
58   VERIFY_RAISES_ASSERT(mcd=md);
59 
60   // check scalar products
61   VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf));
62   VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd);
63   VERIFY_IS_APPROX(vf * scf , vf.template cast<complex<float> >() * scf);
64   VERIFY_IS_APPROX(scd * vd, scd * vd.template cast<complex<double> >());
65 
66   // check dot product
67   vf.dot(vf);
68 #if 0 // we get other compilation errors here than just static asserts
69   VERIFY_RAISES_ASSERT(vd.dot(vf));
70 #endif
71   VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
72 
73   // check diagonal product
74   VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
75   VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
76   VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
77   VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
78 //   vd.asDiagonal() * mf;    // does not even compile
79 //   vcd.asDiagonal() * mf;   // does not even compile
80 
81   // check inner product
82   VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
83 
84   // check outer product
85   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
86 
87   // coeff wise product
88 
89   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
90 
91   Mat_cd mcd2 = mcd;
92   VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
93 
94   // check matrix-matrix products
95 
96   VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
97   VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
98   VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
99   VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
100 
101   VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
102   VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
103   VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
104   VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
105 
106   VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
107   VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
108   VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
109   VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
110 
111   VERIFY_IS_APPROX(sf*vcf.adjoint()*mf,  sf*vcf.adjoint()*mf.template cast<CF>().eval());
112   VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
113   VERIFY_IS_APPROX(sf*vf.adjoint()*mcf,  sf*vf.adjoint().template cast<CF>().eval()*mcf);
114   VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
115 
116   VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
117   VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
118   VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
119   VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
120 
121   VERIFY_IS_APPROX(sd*vcd.adjoint()*md,  sd*vcd.adjoint()*md.template cast<CD>().eval());
122   VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
123   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd,  sd*vd.adjoint().template cast<CD>().eval()*mcd);
124   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
125 }
126 
test_mixingtypes()127 void test_mixingtypes()
128 {
129   CALL_SUBTEST_1(mixingtypes<3>());
130   CALL_SUBTEST_2(mixingtypes<4>());
131   CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
132 }
133