1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
11 #define EIGEN_INCOMPLETE_CHOlESKY_H
12 #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
13 #include <Eigen/OrderingMethods>
14 #include <list>
15
16 namespace Eigen {
17 /**
18 * \brief Modified Incomplete Cholesky with dual threshold
19 *
20 * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
21 * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
22 *
23 * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
24 * matrix. It is advised to give a row-oriented sparse matrix
25 * \tparam _UpLo The triangular part of the matrix to reference.
26 * \tparam _OrderingType
27 */
28
29 template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
30 class IncompleteCholesky : internal::noncopyable
31 {
32 public:
33 typedef SparseMatrix<Scalar,ColMajor> MatrixType;
34 typedef _OrderingType OrderingType;
35 typedef typename MatrixType::RealScalar RealScalar;
36 typedef typename MatrixType::Index Index;
37 typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
38 typedef Matrix<Scalar,Dynamic,1> ScalarType;
39 typedef Matrix<Index,Dynamic, 1> IndexType;
40 typedef std::vector<std::list<Index> > VectorList;
41 enum { UpLo = _UpLo };
42 public:
IncompleteCholesky()43 IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
IncompleteCholesky(const MatrixType & matrix)44 IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
45 {
46 compute(matrix);
47 }
48
rows()49 Index rows() const { return m_L.rows(); }
50
cols()51 Index cols() const { return m_L.cols(); }
52
53
54 /** \brief Reports whether previous computation was successful.
55 *
56 * \returns \c Success if computation was succesful,
57 * \c NumericalIssue if the matrix appears to be negative.
58 */
info()59 ComputationInfo info() const
60 {
61 eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
62 return m_info;
63 }
64
65 /**
66 * \brief Set the initial shift parameter
67 */
setShift(Scalar shift)68 void setShift( Scalar shift) { m_shift = shift; }
69
70 /**
71 * \brief Computes the fill reducing permutation vector.
72 */
73 template<typename MatrixType>
analyzePattern(const MatrixType & mat)74 void analyzePattern(const MatrixType& mat)
75 {
76 OrderingType ord;
77 ord(mat.template selfadjointView<UpLo>(), m_perm);
78 m_analysisIsOk = true;
79 }
80
81 template<typename MatrixType>
82 void factorize(const MatrixType& amat);
83
84 template<typename MatrixType>
compute(const MatrixType & matrix)85 void compute (const MatrixType& matrix)
86 {
87 analyzePattern(matrix);
88 factorize(matrix);
89 }
90
91 template<typename Rhs, typename Dest>
_solve(const Rhs & b,Dest & x)92 void _solve(const Rhs& b, Dest& x) const
93 {
94 eigen_assert(m_factorizationIsOk && "factorize() should be called first");
95 if (m_perm.rows() == b.rows())
96 x = m_perm.inverse() * b;
97 else
98 x = b;
99 x = m_scal.asDiagonal() * x;
100 x = m_L.template triangularView<UnitLower>().solve(x);
101 x = m_L.adjoint().template triangularView<Upper>().solve(x);
102 if (m_perm.rows() == b.rows())
103 x = m_perm * x;
104 x = m_scal.asDiagonal() * x;
105 }
106 template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
solve(const MatrixBase<Rhs> & b)107 solve(const MatrixBase<Rhs>& b) const
108 {
109 eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
110 eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
111 eigen_assert(cols()==b.rows()
112 && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
113 return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
114 }
115 protected:
116 SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
117 ScalarType m_scal; // The vector for scaling the matrix
118 Scalar m_shift; //The initial shift parameter
119 bool m_analysisIsOk;
120 bool m_factorizationIsOk;
121 bool m_isInitialized;
122 ComputationInfo m_info;
123 PermutationType m_perm;
124
125 private:
126 template <typename IdxType, typename SclType>
127 inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
128 };
129
130 template<typename Scalar, int _UpLo, typename OrderingType>
131 template<typename _MatrixType>
factorize(const _MatrixType & mat)132 void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
133 {
134 using std::sqrt;
135 using std::min;
136 eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
137
138 // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
139
140 // Apply the fill-reducing permutation computed in analyzePattern()
141 if (m_perm.rows() == mat.rows() ) // To detect the null permutation
142 m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
143 else
144 m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
145
146 Index n = m_L.cols();
147 Index nnz = m_L.nonZeros();
148 Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
149 Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
150 Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
151 IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
152 VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
153 ScalarType curCol(n); // Store a nonzero values in each column
154 IndexType irow(n); // Row indices of nonzero elements in each column
155
156
157 // Computes the scaling factors
158 m_scal.resize(n);
159 for (int j = 0; j < n; j++)
160 {
161 m_scal(j) = m_L.col(j).norm();
162 m_scal(j) = sqrt(m_scal(j));
163 }
164 // Scale and compute the shift for the matrix
165 Scalar mindiag = vals[0];
166 for (int j = 0; j < n; j++){
167 for (int k = colPtr[j]; k < colPtr[j+1]; k++)
168 vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
169 mindiag = (min)(vals[colPtr[j]], mindiag);
170 }
171
172 if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
173 // Apply the shift to the diagonal elements of the matrix
174 for (int j = 0; j < n; j++)
175 vals[colPtr[j]] += m_shift;
176 // jki version of the Cholesky factorization
177 for (int j=0; j < n; ++j)
178 {
179 //Left-looking factorize the column j
180 // First, load the jth column into curCol
181 Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
182 curCol.setZero();
183 irow.setLinSpaced(n,0,n-1);
184 for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
185 {
186 curCol(rowIdx[i]) = vals[i];
187 irow(rowIdx[i]) = rowIdx[i];
188 }
189 std::list<int>::iterator k;
190 // Browse all previous columns that will update column j
191 for(k = listCol[j].begin(); k != listCol[j].end(); k++)
192 {
193 int jk = firstElt(*k); // First element to use in the column
194 jk += 1;
195 for (int i = jk; i < colPtr[*k+1]; i++)
196 {
197 curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
198 }
199 updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
200 }
201
202 // Scale the current column
203 if(RealScalar(diag) <= 0)
204 {
205 std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
206 m_info = NumericalIssue;
207 return;
208 }
209 RealScalar rdiag = sqrt(RealScalar(diag));
210 vals[colPtr[j]] = rdiag;
211 for (int i = j+1; i < n; i++)
212 {
213 //Scale
214 curCol(i) /= rdiag;
215 //Update the remaining diagonals with curCol
216 vals[colPtr[i]] -= curCol(i) * curCol(i);
217 }
218 // Select the largest p elements
219 // p is the original number of elements in the column (without the diagonal)
220 int p = colPtr[j+1] - colPtr[j] - 1 ;
221 internal::QuickSplit(curCol, irow, p);
222 // Insert the largest p elements in the matrix
223 int cpt = 0;
224 for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
225 {
226 vals[i] = curCol(cpt);
227 rowIdx[i] = irow(cpt);
228 cpt ++;
229 }
230 // Get the first smallest row index and put it after the diagonal element
231 Index jk = colPtr(j)+1;
232 updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
233 }
234 m_factorizationIsOk = true;
235 m_isInitialized = true;
236 m_info = Success;
237 }
238
239 template<typename Scalar, int _UpLo, typename OrderingType>
240 template <typename IdxType, typename SclType>
updateList(const IdxType & colPtr,IdxType & rowIdx,SclType & vals,const Index & col,const Index & jk,IndexType & firstElt,VectorList & listCol)241 inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
242 {
243 if (jk < colPtr(col+1) )
244 {
245 Index p = colPtr(col+1) - jk;
246 Index minpos;
247 rowIdx.segment(jk,p).minCoeff(&minpos);
248 minpos += jk;
249 if (rowIdx(minpos) != rowIdx(jk))
250 {
251 //Swap
252 std::swap(rowIdx(jk),rowIdx(minpos));
253 std::swap(vals(jk),vals(minpos));
254 }
255 firstElt(col) = jk;
256 listCol[rowIdx(jk)].push_back(col);
257 }
258 }
259 namespace internal {
260
261 template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
262 struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
263 : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
264 {
265 typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
266 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
267
268 template<typename Dest> void evalTo(Dest& dst) const
269 {
270 dec()._solve(rhs(),dst);
271 }
272 };
273
274 } // end namespace internal
275
276 } // end namespace Eigen
277
278 #endif
279