• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
11 #define EIGEN_INCOMPLETE_CHOlESKY_H
12 #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
13 #include <Eigen/OrderingMethods>
14 #include <list>
15 
16 namespace Eigen {
17 /**
18  * \brief Modified Incomplete Cholesky with dual threshold
19  *
20  * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
21  *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
22  *
23  * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
24  *                     matrix. It is advised to give  a row-oriented sparse matrix
25  * \tparam _UpLo The triangular part of the matrix to reference.
26  * \tparam _OrderingType
27  */
28 
29 template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
30 class IncompleteCholesky : internal::noncopyable
31 {
32   public:
33     typedef SparseMatrix<Scalar,ColMajor> MatrixType;
34     typedef _OrderingType OrderingType;
35     typedef typename MatrixType::RealScalar RealScalar;
36     typedef typename MatrixType::Index Index;
37     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
38     typedef Matrix<Scalar,Dynamic,1> ScalarType;
39     typedef Matrix<Index,Dynamic, 1> IndexType;
40     typedef std::vector<std::list<Index> > VectorList;
41     enum { UpLo = _UpLo };
42   public:
IncompleteCholesky()43     IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
IncompleteCholesky(const MatrixType & matrix)44     IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
45     {
46       compute(matrix);
47     }
48 
rows()49     Index rows() const { return m_L.rows(); }
50 
cols()51     Index cols() const { return m_L.cols(); }
52 
53 
54     /** \brief Reports whether previous computation was successful.
55       *
56       * \returns \c Success if computation was succesful,
57       *          \c NumericalIssue if the matrix appears to be negative.
58       */
info()59     ComputationInfo info() const
60     {
61       eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
62       return m_info;
63     }
64 
65     /**
66      * \brief Set the initial shift parameter
67      */
setShift(Scalar shift)68     void setShift( Scalar shift) { m_shift = shift; }
69 
70     /**
71     * \brief Computes the fill reducing permutation vector.
72     */
73     template<typename MatrixType>
analyzePattern(const MatrixType & mat)74     void analyzePattern(const MatrixType& mat)
75     {
76       OrderingType ord;
77       ord(mat.template selfadjointView<UpLo>(), m_perm);
78       m_analysisIsOk = true;
79     }
80 
81     template<typename MatrixType>
82     void factorize(const MatrixType& amat);
83 
84     template<typename MatrixType>
compute(const MatrixType & matrix)85     void compute (const MatrixType& matrix)
86     {
87       analyzePattern(matrix);
88       factorize(matrix);
89     }
90 
91     template<typename Rhs, typename Dest>
_solve(const Rhs & b,Dest & x)92     void _solve(const Rhs& b, Dest& x) const
93     {
94       eigen_assert(m_factorizationIsOk && "factorize() should be called first");
95       if (m_perm.rows() == b.rows())
96         x = m_perm.inverse() * b;
97       else
98         x = b;
99       x = m_scal.asDiagonal() * x;
100       x = m_L.template triangularView<UnitLower>().solve(x);
101       x = m_L.adjoint().template triangularView<Upper>().solve(x);
102       if (m_perm.rows() == b.rows())
103         x = m_perm * x;
104       x = m_scal.asDiagonal() * x;
105     }
106     template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
solve(const MatrixBase<Rhs> & b)107     solve(const MatrixBase<Rhs>& b) const
108     {
109       eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
110       eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
111       eigen_assert(cols()==b.rows()
112                 && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
113       return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
114     }
115   protected:
116     SparseMatrix<Scalar,ColMajor> m_L;  // The lower part stored in CSC
117     ScalarType m_scal; // The vector for scaling the matrix
118     Scalar m_shift; //The initial shift parameter
119     bool m_analysisIsOk;
120     bool m_factorizationIsOk;
121     bool m_isInitialized;
122     ComputationInfo m_info;
123     PermutationType m_perm;
124 
125   private:
126     template <typename IdxType, typename SclType>
127     inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
128 };
129 
130 template<typename Scalar, int _UpLo, typename OrderingType>
131 template<typename _MatrixType>
factorize(const _MatrixType & mat)132 void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
133 {
134   using std::sqrt;
135   using std::min;
136   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
137 
138   // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
139 
140   // Apply the fill-reducing permutation computed in analyzePattern()
141   if (m_perm.rows() == mat.rows() ) // To detect the null permutation
142     m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
143   else
144     m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
145 
146   Index n = m_L.cols();
147   Index nnz = m_L.nonZeros();
148   Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
149   Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz);  //Row indices
150   Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
151   IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
152   VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
153   ScalarType curCol(n); // Store a  nonzero values in each column
154   IndexType irow(n); // Row indices of nonzero elements in each column
155 
156 
157   // Computes the scaling factors
158   m_scal.resize(n);
159   for (int j = 0; j < n; j++)
160   {
161     m_scal(j) = m_L.col(j).norm();
162     m_scal(j) = sqrt(m_scal(j));
163   }
164   // Scale and compute the shift for the matrix
165   Scalar mindiag = vals[0];
166   for (int j = 0; j < n; j++){
167     for (int k = colPtr[j]; k < colPtr[j+1]; k++)
168      vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
169     mindiag = (min)(vals[colPtr[j]], mindiag);
170   }
171 
172   if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
173   // Apply the shift to the diagonal elements of the matrix
174   for (int j = 0; j < n; j++)
175     vals[colPtr[j]] += m_shift;
176   // jki version of the Cholesky factorization
177   for (int j=0; j < n; ++j)
178   {
179     //Left-looking factorize the column j
180     // First, load the jth column into curCol
181     Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored
182     curCol.setZero();
183     irow.setLinSpaced(n,0,n-1);
184     for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
185     {
186       curCol(rowIdx[i]) = vals[i];
187       irow(rowIdx[i]) = rowIdx[i];
188     }
189     std::list<int>::iterator k;
190     // Browse all previous columns that will update column j
191     for(k = listCol[j].begin(); k != listCol[j].end(); k++)
192     {
193       int jk = firstElt(*k); // First element to use in the column
194       jk += 1;
195       for (int i = jk; i < colPtr[*k+1]; i++)
196       {
197         curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
198       }
199       updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
200     }
201 
202     // Scale the current column
203     if(RealScalar(diag) <= 0)
204     {
205       std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
206       m_info = NumericalIssue;
207       return;
208     }
209     RealScalar rdiag = sqrt(RealScalar(diag));
210     vals[colPtr[j]] = rdiag;
211     for (int i = j+1; i < n; i++)
212     {
213       //Scale
214       curCol(i) /= rdiag;
215       //Update the remaining diagonals with curCol
216       vals[colPtr[i]] -= curCol(i) * curCol(i);
217     }
218     // Select the largest p elements
219     //  p is the original number of elements in the column (without the diagonal)
220     int p = colPtr[j+1] - colPtr[j] - 1 ;
221     internal::QuickSplit(curCol, irow, p);
222     // Insert the largest p elements in the matrix
223     int cpt = 0;
224     for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
225     {
226       vals[i] = curCol(cpt);
227       rowIdx[i] = irow(cpt);
228       cpt ++;
229     }
230     // Get the first smallest row index and put it after the diagonal element
231     Index jk = colPtr(j)+1;
232     updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
233   }
234   m_factorizationIsOk = true;
235   m_isInitialized = true;
236   m_info = Success;
237 }
238 
239 template<typename Scalar, int _UpLo, typename OrderingType>
240 template <typename IdxType, typename SclType>
updateList(const IdxType & colPtr,IdxType & rowIdx,SclType & vals,const Index & col,const Index & jk,IndexType & firstElt,VectorList & listCol)241 inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
242 {
243   if (jk < colPtr(col+1) )
244   {
245     Index p = colPtr(col+1) - jk;
246     Index minpos;
247     rowIdx.segment(jk,p).minCoeff(&minpos);
248     minpos += jk;
249     if (rowIdx(minpos) != rowIdx(jk))
250     {
251       //Swap
252       std::swap(rowIdx(jk),rowIdx(minpos));
253       std::swap(vals(jk),vals(minpos));
254     }
255     firstElt(col) = jk;
256     listCol[rowIdx(jk)].push_back(col);
257   }
258 }
259 namespace internal {
260 
261 template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
262 struct solve_retval<IncompleteCholesky<_Scalar,  _UpLo, OrderingType>, Rhs>
263   : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
264 {
265   typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
266   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
267 
268   template<typename Dest> void evalTo(Dest& dst) const
269   {
270     dec()._solve(rhs(),dst);
271   }
272 };
273 
274 } // end namespace internal
275 
276 } // end namespace Eigen
277 
278 #endif
279