1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_MATRIX_POWER
11 #define EIGEN_MATRIX_POWER
12
13 namespace Eigen {
14
15 template<typename MatrixType> class MatrixPower;
16
17 template<typename MatrixType>
18 class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
19 {
20 public:
21 typedef typename MatrixType::RealScalar RealScalar;
22 typedef typename MatrixType::Index Index;
23
MatrixPowerRetval(MatrixPower<MatrixType> & pow,RealScalar p)24 MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
25 { }
26
27 template<typename ResultType>
evalTo(ResultType & res)28 inline void evalTo(ResultType& res) const
29 { m_pow.compute(res, m_p); }
30
rows()31 Index rows() const { return m_pow.rows(); }
cols()32 Index cols() const { return m_pow.cols(); }
33
34 private:
35 MatrixPower<MatrixType>& m_pow;
36 const RealScalar m_p;
37 MatrixPowerRetval& operator=(const MatrixPowerRetval&);
38 };
39
40 template<typename MatrixType>
41 class MatrixPowerAtomic
42 {
43 private:
44 enum {
45 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
46 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
47 };
48 typedef typename MatrixType::Scalar Scalar;
49 typedef typename MatrixType::RealScalar RealScalar;
50 typedef std::complex<RealScalar> ComplexScalar;
51 typedef typename MatrixType::Index Index;
52 typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;
53
54 const MatrixType& m_A;
55 RealScalar m_p;
56
57 void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
58 void compute2x2(MatrixType& res, RealScalar p) const;
59 void computeBig(MatrixType& res) const;
60 static int getPadeDegree(float normIminusT);
61 static int getPadeDegree(double normIminusT);
62 static int getPadeDegree(long double normIminusT);
63 static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
64 static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
65
66 public:
67 MatrixPowerAtomic(const MatrixType& T, RealScalar p);
68 void compute(MatrixType& res) const;
69 };
70
71 template<typename MatrixType>
MatrixPowerAtomic(const MatrixType & T,RealScalar p)72 MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
73 m_A(T), m_p(p)
74 { eigen_assert(T.rows() == T.cols()); }
75
76 template<typename MatrixType>
compute(MatrixType & res)77 void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
78 {
79 res.resizeLike(m_A);
80 switch (m_A.rows()) {
81 case 0:
82 break;
83 case 1:
84 res(0,0) = std::pow(m_A(0,0), m_p);
85 break;
86 case 2:
87 compute2x2(res, m_p);
88 break;
89 default:
90 computeBig(res);
91 }
92 }
93
94 template<typename MatrixType>
computePade(int degree,const MatrixType & IminusT,MatrixType & res)95 void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
96 {
97 int i = degree<<1;
98 res = (m_p-degree) / ((i-1)<<1) * IminusT;
99 for (--i; i; --i) {
100 res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
101 .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
102 }
103 res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
104 }
105
106 // This function assumes that res has the correct size (see bug 614)
107 template<typename MatrixType>
compute2x2(MatrixType & res,RealScalar p)108 void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
109 {
110 using std::abs;
111 using std::pow;
112
113 ArrayType logTdiag = m_A.diagonal().array().log();
114 res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
115
116 for (Index i=1; i < m_A.cols(); ++i) {
117 res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
118 if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
119 res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
120 else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
121 res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
122 else
123 res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
124 res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
125 }
126 }
127
128 template<typename MatrixType>
computeBig(MatrixType & res)129 void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
130 {
131 const int digits = std::numeric_limits<RealScalar>::digits;
132 const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
133 digits <= 53? 2.789358995219730e-1: // double precision
134 digits <= 64? 2.4471944416607995472e-1L: // extended precision
135 digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
136 9.134603732914548552537150753385375e-2L; // quadruple precision
137 MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
138 RealScalar normIminusT;
139 int degree, degree2, numberOfSquareRoots = 0;
140 bool hasExtraSquareRoot = false;
141
142 /* FIXME
143 * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
144 * loop. We should move 0 eigenvalues to bottom right corner. We need not
145 * worry about tiny values (e.g. 1e-300) because they will reach 1 if
146 * repetitively sqrt'ed.
147 *
148 * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
149 * bottom right corner.
150 *
151 * [ T A ]^p [ T^p (T^-1 T^p A) ]
152 * [ ] = [ ]
153 * [ 0 0 ] [ 0 0 ]
154 */
155 for (Index i=0; i < m_A.cols(); ++i)
156 eigen_assert(m_A(i,i) != RealScalar(0));
157
158 while (true) {
159 IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
160 normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
161 if (normIminusT < maxNormForPade) {
162 degree = getPadeDegree(normIminusT);
163 degree2 = getPadeDegree(normIminusT/2);
164 if (degree - degree2 <= 1 || hasExtraSquareRoot)
165 break;
166 hasExtraSquareRoot = true;
167 }
168 MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
169 T = sqrtT.template triangularView<Upper>();
170 ++numberOfSquareRoots;
171 }
172 computePade(degree, IminusT, res);
173
174 for (; numberOfSquareRoots; --numberOfSquareRoots) {
175 compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
176 res = res.template triangularView<Upper>() * res;
177 }
178 compute2x2(res, m_p);
179 }
180
181 template<typename MatrixType>
getPadeDegree(float normIminusT)182 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
183 {
184 const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
185 int degree = 3;
186 for (; degree <= 4; ++degree)
187 if (normIminusT <= maxNormForPade[degree - 3])
188 break;
189 return degree;
190 }
191
192 template<typename MatrixType>
getPadeDegree(double normIminusT)193 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
194 {
195 const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
196 1.999045567181744e-1, 2.789358995219730e-1 };
197 int degree = 3;
198 for (; degree <= 7; ++degree)
199 if (normIminusT <= maxNormForPade[degree - 3])
200 break;
201 return degree;
202 }
203
204 template<typename MatrixType>
getPadeDegree(long double normIminusT)205 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
206 {
207 #if LDBL_MANT_DIG == 53
208 const int maxPadeDegree = 7;
209 const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
210 1.999045567181744e-1L, 2.789358995219730e-1L };
211 #elif LDBL_MANT_DIG <= 64
212 const int maxPadeDegree = 8;
213 const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
214 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
215 #elif LDBL_MANT_DIG <= 106
216 const int maxPadeDegree = 10;
217 const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
218 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
219 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
220 1.1016843812851143391275867258512e-1L };
221 #else
222 const int maxPadeDegree = 10;
223 const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
224 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
225 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
226 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
227 9.134603732914548552537150753385375e-2L };
228 #endif
229 int degree = 3;
230 for (; degree <= maxPadeDegree; ++degree)
231 if (normIminusT <= maxNormForPade[degree - 3])
232 break;
233 return degree;
234 }
235
236 template<typename MatrixType>
237 inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
computeSuperDiag(const ComplexScalar & curr,const ComplexScalar & prev,RealScalar p)238 MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
239 {
240 ComplexScalar logCurr = std::log(curr);
241 ComplexScalar logPrev = std::log(prev);
242 int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
243 ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
244 return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
245 }
246
247 template<typename MatrixType>
248 inline typename MatrixPowerAtomic<MatrixType>::RealScalar
computeSuperDiag(RealScalar curr,RealScalar prev,RealScalar p)249 MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
250 {
251 RealScalar w = numext::atanh2(curr - prev, curr + prev);
252 return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
253 }
254
255 /**
256 * \ingroup MatrixFunctions_Module
257 *
258 * \brief Class for computing matrix powers.
259 *
260 * \tparam MatrixType type of the base, expected to be an instantiation
261 * of the Matrix class template.
262 *
263 * This class is capable of computing real/complex matrices raised to
264 * an arbitrary real power. Meanwhile, it saves the result of Schur
265 * decomposition if an non-integral power has even been calculated.
266 * Therefore, if you want to compute multiple (>= 2) matrix powers
267 * for the same matrix, using the class directly is more efficient than
268 * calling MatrixBase::pow().
269 *
270 * Example:
271 * \include MatrixPower_optimal.cpp
272 * Output: \verbinclude MatrixPower_optimal.out
273 */
274 template<typename MatrixType>
275 class MatrixPower
276 {
277 private:
278 enum {
279 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
280 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
281 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
282 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
283 };
284 typedef typename MatrixType::Scalar Scalar;
285 typedef typename MatrixType::RealScalar RealScalar;
286 typedef typename MatrixType::Index Index;
287
288 public:
289 /**
290 * \brief Constructor.
291 *
292 * \param[in] A the base of the matrix power.
293 *
294 * The class stores a reference to A, so it should not be changed
295 * (or destroyed) before evaluation.
296 */
MatrixPower(const MatrixType & A)297 explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
298 { eigen_assert(A.rows() == A.cols()); }
299
300 /**
301 * \brief Returns the matrix power.
302 *
303 * \param[in] p exponent, a real scalar.
304 * \return The expression \f$ A^p \f$, where A is specified in the
305 * constructor.
306 */
operator()307 const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
308 { return MatrixPowerRetval<MatrixType>(*this, p); }
309
310 /**
311 * \brief Compute the matrix power.
312 *
313 * \param[in] p exponent, a real scalar.
314 * \param[out] res \f$ A^p \f$ where A is specified in the
315 * constructor.
316 */
317 template<typename ResultType>
318 void compute(ResultType& res, RealScalar p);
319
rows()320 Index rows() const { return m_A.rows(); }
cols()321 Index cols() const { return m_A.cols(); }
322
323 private:
324 typedef std::complex<RealScalar> ComplexScalar;
325 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
326 MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
327
328 typename MatrixType::Nested m_A;
329 MatrixType m_tmp;
330 ComplexMatrix m_T, m_U, m_fT;
331 RealScalar m_conditionNumber;
332
333 RealScalar modfAndInit(RealScalar, RealScalar*);
334
335 template<typename ResultType>
336 void computeIntPower(ResultType&, RealScalar);
337
338 template<typename ResultType>
339 void computeFracPower(ResultType&, RealScalar);
340
341 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
342 static void revertSchur(
343 Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
344 const ComplexMatrix& T,
345 const ComplexMatrix& U);
346
347 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
348 static void revertSchur(
349 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
350 const ComplexMatrix& T,
351 const ComplexMatrix& U);
352 };
353
354 template<typename MatrixType>
355 template<typename ResultType>
compute(ResultType & res,RealScalar p)356 void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
357 {
358 switch (cols()) {
359 case 0:
360 break;
361 case 1:
362 res(0,0) = std::pow(m_A.coeff(0,0), p);
363 break;
364 default:
365 RealScalar intpart, x = modfAndInit(p, &intpart);
366 computeIntPower(res, intpart);
367 computeFracPower(res, x);
368 }
369 }
370
371 template<typename MatrixType>
372 typename MatrixPower<MatrixType>::RealScalar
modfAndInit(RealScalar x,RealScalar * intpart)373 MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
374 {
375 typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;
376
377 *intpart = std::floor(x);
378 RealScalar res = x - *intpart;
379
380 if (!m_conditionNumber && res) {
381 const ComplexSchur<MatrixType> schurOfA(m_A);
382 m_T = schurOfA.matrixT();
383 m_U = schurOfA.matrixU();
384
385 const RealArray absTdiag = m_T.diagonal().array().abs();
386 m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
387 }
388
389 if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
390 --res;
391 ++*intpart;
392 }
393 return res;
394 }
395
396 template<typename MatrixType>
397 template<typename ResultType>
computeIntPower(ResultType & res,RealScalar p)398 void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
399 {
400 RealScalar pp = std::abs(p);
401
402 if (p<0) m_tmp = m_A.inverse();
403 else m_tmp = m_A;
404
405 res = MatrixType::Identity(rows(), cols());
406 while (pp >= 1) {
407 if (std::fmod(pp, 2) >= 1)
408 res = m_tmp * res;
409 m_tmp *= m_tmp;
410 pp /= 2;
411 }
412 }
413
414 template<typename MatrixType>
415 template<typename ResultType>
computeFracPower(ResultType & res,RealScalar p)416 void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
417 {
418 if (p) {
419 eigen_assert(m_conditionNumber);
420 MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
421 revertSchur(m_tmp, m_fT, m_U);
422 res = m_tmp * res;
423 }
424 }
425
426 template<typename MatrixType>
427 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
revertSchur(Matrix<ComplexScalar,Rows,Cols,Options,MaxRows,MaxCols> & res,const ComplexMatrix & T,const ComplexMatrix & U)428 inline void MatrixPower<MatrixType>::revertSchur(
429 Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
430 const ComplexMatrix& T,
431 const ComplexMatrix& U)
432 { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
433
434 template<typename MatrixType>
435 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
revertSchur(Matrix<RealScalar,Rows,Cols,Options,MaxRows,MaxCols> & res,const ComplexMatrix & T,const ComplexMatrix & U)436 inline void MatrixPower<MatrixType>::revertSchur(
437 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
438 const ComplexMatrix& T,
439 const ComplexMatrix& U)
440 { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
441
442 /**
443 * \ingroup MatrixFunctions_Module
444 *
445 * \brief Proxy for the matrix power of some matrix (expression).
446 *
447 * \tparam Derived type of the base, a matrix (expression).
448 *
449 * This class holds the arguments to the matrix power until it is
450 * assigned or evaluated for some other reason (so the argument
451 * should not be changed in the meantime). It is the return type of
452 * MatrixBase::pow() and related functions and most of the
453 * time this is the only way it is used.
454 */
455 template<typename Derived>
456 class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
457 {
458 public:
459 typedef typename Derived::PlainObject PlainObject;
460 typedef typename Derived::RealScalar RealScalar;
461 typedef typename Derived::Index Index;
462
463 /**
464 * \brief Constructor.
465 *
466 * \param[in] A %Matrix (expression), the base of the matrix power.
467 * \param[in] p scalar, the exponent of the matrix power.
468 */
MatrixPowerReturnValue(const Derived & A,RealScalar p)469 MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
470 { }
471
472 /**
473 * \brief Compute the matrix power.
474 *
475 * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
476 * constructor.
477 */
478 template<typename ResultType>
evalTo(ResultType & res)479 inline void evalTo(ResultType& res) const
480 { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
481
rows()482 Index rows() const { return m_A.rows(); }
cols()483 Index cols() const { return m_A.cols(); }
484
485 private:
486 const Derived& m_A;
487 const RealScalar m_p;
488 MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
489 };
490
491 namespace internal {
492
493 template<typename MatrixPowerType>
494 struct traits< MatrixPowerRetval<MatrixPowerType> >
495 { typedef typename MatrixPowerType::PlainObject ReturnType; };
496
497 template<typename Derived>
498 struct traits< MatrixPowerReturnValue<Derived> >
499 { typedef typename Derived::PlainObject ReturnType; };
500
501 }
502
503 template<typename Derived>
504 const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
505 { return MatrixPowerReturnValue<Derived>(derived(), p); }
506
507 } // namespace Eigen
508
509 #endif // EIGEN_MATRIX_POWER
510